首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male and nulliparous female mosquitoes were surveyed for evidence of vertical WNV infection in East Baton Rouge Parish, Louisiana. Adult male mosquitoes collected by trapping and aspiration, and adult male and nulliparous female mosquitoes reared from field‐collected larvae were tested. Adult male Culex spp., female Aedes albopictus (Skuse), and female Culex quinquifasciatus Say mosquitoes that were collected as larvae were test‐positive for WNV RNA. Infectious WNV was detected using virus isolation in field‐collected male Aedes triseriatus Say and Culex salinarius Coquillett; these data represent the first field evidence of vertical transmission of WNV in Ae. triseriatus and Cx. salinarius.  相似文献   

2.
Abstract Sublethal viral infections can cause changes in the body size and demography of insect vectors, with important consequences for population dynamics and the probability that individual mosquitoes will transmit disease. This study examined the effects of covert (sublethal) infection by Invertebrate iridescent virus 6 (IIV‐6) on the demography of female Aedes aegypti and the relationship between key life history parameters in covertly infected female insects compared with healthy (control) insects or non‐infected mosquitoes that had survived exposure to virus inoculum without becoming infected. Of the female mosquitoes that emerged following exposure to virus inoculum and were offered blood meals, 29% (43/150) proved positive for covert IIV‐6 infection. The net reproductive rate (R0) of covertly infected females was 50% lower for infected females compared to control mosquitoes, whereas non‐infected exposed females had an R0 approximately 15% lower than that of controls. Reproduction caused a significant decrease of about 13 days in mosquito longevity compared to females that did not reproduce (P < 0.001). Infected females lived 5–8 days less than non‐infected exposed females or controls, respectively (P = 0.028). Infected females and non‐infected exposed females both had significantly shorter wings than control insects (P < 0.001). There was a significant positive correlation between wing length and longevity in covertly infected female mosquitoes but not in control or non‐infected exposed mosquitoes. Longer lived females produced more eggs in all treatments. There were no significant correlations between body size and fecundity or the production of offspring. There was also no correlation between fecundity and fertility, suggesting that sperm inactivation was a more likely cause of decreased fertility in older mosquitoes than sperm depletion. We conclude that covert infection by iridescent virus is likely to reduce the vectorial capacity of this mosquito.  相似文献   

3.
4.
The distribution of the West Nile virus (WNV) in the organs and tissues of the mosquito Culex pipiens pallens, a potential vector of WNV in China, was investigated up to 14 days after oral infection. The WNV antigen was detected in paraffin‐embedded mosquitoes using immunocytochemistry and viral titers of post‐infected mosquitoes determined by plaque assay. Viral titers sharply decreased 24 h post‐infection, were undetectable for the first few days, then rose over the course of infection. The first midgut infection appeared after one day, and the overall infection rate (based on midgut infection) was 43.9%. Other tissues, including hindgut, foregut, ovarian follicles, Malpighian tubules, and ommatidia, showed weak WNV antigens as early as three days post‐infection. Staining in the salivary glands first appeared after seven days, and the salivary gland infection rate on the 14th day was 37.5%. Specimens with no detectable WNV antigens in any tissues, and with positive results confined to the midgut, anterior midgut, and hindgut, were observed on the 14th day. The route of viral dissemination from the midgut, and the relative importance of amplifying tissues in mosquitoes' susceptibility to infection, were evaluated. The results indicate that Cx. p. pallens has the ability to harbor WNV throughout its alimentary system and that midgut epithelial cells may be the initial site of the replication of this virus in this species.  相似文献   

5.
Utility of early‐season mosquito surveillance to predict West Nile virus activity in late summer was assessed in Suffolk County, NY. Dry ice‐baited CDC miniature light traps paired with gravid traps were set weekly. Maximum‐likelihood estimates of WNV positivity, minimum infection rates, and % positive pools were generally well correlated. However, positivity in gravid traps was not correlated with positivity in CDC light traps. The best early‐season predictors of WNV activity in late summer (estimated using maximum‐likelihood estimates of Culex positivity in August and September) were early date of first positive pool, low numbers of mosquitoes in July, and low numbers of mosquito species in July. These results suggest that early‐season entomological samples can be used to predict WNV activity later in the summer, when most human cases are acquired. Additional research is needed to establish which surveillance variables are most predictive and to characterize the reliability of the predictions.  相似文献   

6.
West Nile virus (WNV) could be introduced into Germany via migratory birds originating from Africa or southern Europe and subsequently transmitted to indigenous birds, humans, or horses by mosquitoes. Neither the virus itself nor antibodies against WNV have yet to be found in mosquitoes and horses, whereas antibodies have been detected in migrating birds and in humans that were in close contact with birds. At present, the West Nile virus itself has yet to be detected in Germany. This investigation was conducted primarily in major bird breeding, resting, and roosting habitats (hotspots) in the Upper Rhine Valley. Adult mosquitoes were trapped using CO2‐baited Encephalitis Vector Surveillance (EVS)‐traps and were tested for WNV by the VecTest WNV Antigen Assay. In 2007 and 2008, a total of 11,073 host‐seeking adult female mosquitoes (13 species) were tested, and all tests were negative for WNV. Statistical calculations could be performed only where sufficient numbers of mosquitoes were trapped. For these sites, WNV infection among mosquitoes could be ruled out with 80% certainty. For the evaluation of the WNV situation in Germany, the results of this investigation are a further indication that the virus has not yet arrived.  相似文献   

7.
The Eurasian collared‐dove (Streptopelia decaocto) has recently experienced a population explosion in North America. It is frequently infected with West Nile virus (WNV). To test the hypothesis that the Eurasian collared‐dove is competent to transmit WNV, we experimentally infected two cohorts of doves with two different strains of WNV, CO08, and NY99, respectively. Both virus strains induced a low‐level viremia, capable of infecting a small fraction of vector mosquitoes. We suggest that the Eurasian collared‐dove plays a relatively insignificant role as an amplifying host for WNV, but it may be important where it is locally abundant.  相似文献   

8.
Pathogens of medical or veterinary significance that are transmitted by mosquitoes (Diptera: Culicidae) are (re‐)emerging in Europe [e.g. West Nile virus (WNV), Dirofilaria nematodes]. Little is known about the spatiotemporal abundances of mosquito species in Switzerland. Therefore, mosquito population dynamics were investigated, focusing on areas of risk for sylvatic or synanthropic transmission, such as natural sites and suburban sites on either side of the Alpine crest. Repeated collections were made using Centers for Disease Control (CDC) traps, juvenile sampling and ovitrapping. A total of 122 831 mosquito specimens of 21 taxa were identified. Levels of mosquito species richness were similar at suburban sites and in natural zones in Switzerland. Mosquito abundances and seasonality were analysed with generalized linear mixed models based on 382 CDC trap samples (29 454 females) and revealed Aedes annulipes/cantans, Aedes geniculatus, Aedes japonicus, Aedes sticticus, Aedes vexans, Coquillettidia richiardii and Culex pipiens/torrentium as the dominant species overall. Abundances of these species were season‐dependent in most cases. There was an effect of site with regard to abundance (higher in natural zones), but not with respect to seasonality. Together with data on vector competence and the host preferences of different species, the present data contribute to assessments of risk for pathogen transmission. For example, both natural and suburban environments seem feasible as sites for amplification cycles of WNV and transmission to mammals.  相似文献   

9.
Kwan JL  Kluh S  Reisen WK 《PloS one》2012,7(3):e34127

Background

West Nile virus (WNV) is a mosquito-borne flavivirus maintained and amplified among birds and tangentially transmitted to humans and horses which may develop terminal neuroinvasive disease. Outbreaks typically have a three-year pattern of silent introduction, rapid amplification and subsidence, followed by intermittent recrudescence. Our hypothesis that amplification to outbreak levels is contingent upon antecedent seroprevalence within maintenance host populations was tested by tracking WNV transmission in Los Angeles, California from 2003 through 2011.

Methods

Prevalence of antibodies against WNV was monitored weekly in House Finches and House Sparrows. Tangential or spillover transmission was measured by seroconversions in sentinel chickens and by the number of West Nile neuroinvasive disease (WNND) cases reported to the Los Angeles County Department of Public Health.

Results

Elevated seroprevalence in these avian populations was associated with the subsidence of outbreaks and in the antecedent dampening of amplification during succeeding years. Dilution of seroprevalence by recruitment resulted in the progressive loss of herd immunity following the 2004 outbreak, leading to recrudescence during 2008 and 2011. WNV appeared to be a significant cause of death in these avian species, because the survivorship of antibody positive birds significantly exceeded that of antibody negative birds. Cross-correlation analysis showed that seroprevalence was negatively correlated prior to the onset of human cases and then positively correlated, peaking at 4–6 weeks after the onset of tangential transmission. Antecedent seroprevalence during winter (Jan – Mar) was negatively correlated with the number of WNND cases during the succeeding summer (Jul–Sep).

Conclusions

Herd immunity levels within after hatching year avian maintenance host populations <10% during the antecedent late winter and spring period were followed on three occasions by outbreaks of WNND cases during the succeeding summer. Because mosquitoes feed almost exclusively on these avian species, amplification was directly related to the availability of receptive non-immune hosts.  相似文献   

10.
Dispersal is a critical life history behavior for mosquitoes and is important for the spread of mosquito-borne disease. We implemented the first stable isotope mark-capture study to measure mosquito dispersal, focusing on Culex pipiens in southwest suburban Chicago, Illinois, a hotspot of West Nile virus (WNV) transmission. We enriched nine catch basins in 2010 and 2011 with 15N-potassium nitrate and detected dispersal of enriched adult females emerging from these catch basins using CDC light and gravid traps to distances as far as 3 km. We detected 12 isotopically enriched pools of mosquitoes out of 2,442 tested during the two years and calculated a mean dispersal distance of 1.15 km and maximum flight range of 2.48 km. According to a logistic distribution function, 90% of the female Culex mosquitoes stayed within 3 km of their larval habitat, which corresponds with the distance-limited genetic variation of WNV observed in this study region. This study provides new insights on the dispersal of the most important vector of WNV in the eastern United States and demonstrates the utility of stable isotope enrichment for studying the biology of mosquitoes in other disease systems.  相似文献   

11.
Mosquito and West Nile virus (WNV) surveillance was conducted on a national wildlife refuge in northeast Montana in 2005 and 2006, during which outbreaks of WNV in a colony of American white pelicans (Pelecanus erythrorhynchos Gmelin) (Pelecaniformes: Pelecanidae) resulted in juvenile mortality rates of ~ 31%. Both years, floodwater species Ochlerotatus dorsalis (Meigen) (Diptera: Culicidae), Aedes vexans (Meigen) (Diptera: Culicidae) and Ochlerotatus flavescens (Muller) (Diptera: Culicidae) comprised 78% of the total collection and heightened host‐seeking activity was observed from mid‐June to mid‐July. Culex tarsalis Coquillett (Diptera: Culicidae) was most active from mid‐July to mid‐August and comprised 18% of the collection in 2005 and 20% in 2006. However, fewer than 10% of the Cx. tarsalis females collected in 2006 were obtained adjacent to the pelicans' nesting grounds. Minimum infection rates per 1000 Cx. tarsalis tested for WNV were 1.36 in 2005 and 1.41 in 2006. All pools in which WNV was detected in 2006 were composed of females collected 10 km from the nesting grounds. Substantial juvenile pelican mortality in 2006 despite reductions in the population of the primary vector and in mosquito infection rates near the colony suggests that the methods used to detect the introduction of WNV were too coarse and that amplification of the virus within the colony may reflect causes other than mosquito infection.  相似文献   

12.
Culex quinquefasciatus Say (Diptera: Culicidae), an important vector of West Nile virus (WNV) in the U.S.A., was first detected on the Galápagos Islands (Ecuador) in the 1980s. However, little is known of its ecology, distribution or capacity for arbovirus transmission in the Galápagos. We characterize details of lifecycle (including gonotrophic period), temporal abundance, spatial distribution, vector competence and host‐feeding behaviour. Culex quinquefasciatus was detected on five islands of the Galápagos during 2006–2011. A period of 7–14 days was required for egg–adult emergence; water salinity above 5 ppt was demonstrated to hinder larval development. Blood‐meal analysis indicated feeding on reptiles, birds and mammals. Assessment of WNV vector competency of Galápagos C. quinquefasciatus showed a median infectious dose of 7.41 log10 plaque‐forming units per millilitre and evidence of vertical transmission (minimal filial infection rate of 3.7 per 1000 progeny). The distribution of C. quinquefasciatus across the archipelago could be limited by salt intolerance, and its abundance constrained by high temperatures. Feeding behaviour indicates potential to act as a bridge vector for transmission of pathogens across multiple taxa. Vertical transmission is a potential persistence mechanism for WNV on Galápagos. Together, our results can be used for epidemiological assessments of WNV and target vector control, should this pathogen reach the Galápagos Islands.  相似文献   

13.
For vectorborne infections, host selection by bloodfeeding arthropods dictates the interaction between host and pathogen. Because Culex mosquitoes that transmit West Nile virus (WNV) feed both on mammalian and avian hosts with varying competence, understanding the bloodfeeding patterns of these mosquitoes is important for understanding the transmission dynamics of WNV. Herein, we describe a new microsphere‐based assay using Luminex xMAP® technology to rapidly identify 15 common hosts of Culex mosquitoes at our California study sites. The assay was verified with over 100 known vertebrate species samples and was used in conjunction with DNA sequencing to identify over 125 avian and mammalian host species from unknown Culex bloodmeals, more quickly and with less expense than sequencing alone. In addition, with multiplexed labelled probes, this microsphere array identified mixed bloodmeals that were difficult to discern with traditional sequencing. The microsphere set was easily expanded or reduced according to host range in a specific area, and this assay has made it possible to rapidly screen thousands of Culex spp. bloodmeals to extend our understanding of WNV transmission patterns.  相似文献   

14.
Wolbachia as an endosymbiont is widespread in insects and other arthropods and is best known for reproductive manipulations of the host. Recently, it has been shown that wMelpop and wMel strains of Wolbachia inhibit the replication of several RNA viruses, including dengue virus, and other vector-borne pathogens (e.g., Plasmodium and filarial nematodes) in mosquitoes, providing an alternative approach to limit the transmission of vector-borne pathogens. In this study, we tested the effect of Wolbachia on the replication of West Nile Virus (WNV). Surprisingly, accumulation of the genomic RNA of WNV for all three strains of WNV tested (New York 99, Kunjin, and New South Wales) was enhanced in Wolbachia-infected Aedes aegypti cells (Aag2). However, the amount of secreted virus was significantly reduced in the presence of Wolbachia. Intrathoracic injections showed that replication of WNV in A. aegypti mosquitoes infected with wMel strain of Wolbachia was not inhibited, whereas wMelPop strain of Wolbachia significantly reduced the replication of WNV in mosquitoes. Further, when wMelPop mosquitoes were orally fed with WNV, virus infection, transmission, and dissemination rates were very low in Wolbachia-free mosquitoes and were completely inhibited in the presence of Wolbachia. The results suggest that (i) despite the enhancement of viral genomic RNA replication in the Wolbachia-infected cell line the production of secreted virus was significantly inhibited, (ii) the antiviral effect in intrathoracically infected mosquitoes depends on the strain of Wolbachia, and (iii) replication of the virus in orally fed mosquitoes was completely inhibited in wMelPop strain of Wolbachia.  相似文献   

15.
We conducted studies on mosquitoes and West Nile virus (WNV) along a riparian corridor following the South Platte River and Big Thompson River in northeastern Colorado and extending from an elevation of 1,215 m in the prairie landscape of the eastern Colorado plains to 1,840 m in low montane areas at the eastern edge of the Rocky Mountains in the central part of the state. Mosquito collection during June‐September 2007 in 20 sites along this riparian corridor yielded a total of 199,833 identifiable mosquitoes of 17 species. The most commonly collected mosquitoes were, in descending order: Aedes vexans, Culex tarsalis, Ae. dorsalis, Ae. trivittatus, Ae. melanimon, Cx. pipiens, and Culiseta inornata. Species richness was higher in the plains than in foothills‐montane areas, and abundances of several individual species, including the WNV vectors Cx. tarsalis and Cx. pipiens and the nuisance‐biter and potential secondary WNV vector Ae. vexans, decreased dramatically from the plains (1,215‐1,487 m) to foothills‐montane areas (1,524‐1,840 m). Ae. vexans and Cx. tarsalis had a striking pattern of uniformly high abundances between 1,200‐1,450 m followed by a gradual decrease in abundance above 1,450 m to reach very low numbers above 1,550 m. Culex species were commonly infected with WNV in the plains portion of the riparian corridor in 2007, with 14 of 16 sites yielding WNV‐infected Cx. tarsalis and infection rates for Cx. tarsalis females exceeding 2.0 per 1,000 individuals in ten of the sites. The Vector Index for abundance of WNV‐infected Cx. tarsalis females during June‐September exceeded 0.5 in six plains sites along the South Platte River but was uniformly low (0–0.1) in plains, foothills and montane sites above 1,500 m along the Big Thompson River. A population genetic analysis of Cx. tarsalis revealed that all collections from the ≈190 km riparian transect in northeastern Colorado were genetically uniform but that these collections were genetically distinct from collections from Delta County on the western slope of the Continental Divide. This suggests that major waterways in the Great Plains serve as important dispersal corridors for Cx. tarsalis but that the Continental Divide is a formidable barrier to this WNV vector.  相似文献   

16.
In Europe, West Nile virus (WNV) outbreaks have been limited to southern and central European countries. However, competent mosquito vectors and susceptible bird hosts are present in northern Europe. Differences in temperature and vector competence of mosquito populations may explain the absence of WNV outbreaks in northern Europe. The aim of the present study was to directly compare vector competence of northern and southern European Culex pipiens (Cx. p.) pipiens mosquitoes for WNV across a gradient of temperatures. WNV infection and transmission rates were determined for two Cx. p. pipiens populations originating from The Netherlands and Italy, respectively. Mosquitoes were orally exposed by providing an infectious bloodmeal, or by injecting WNV (lineage 2) in the thorax, followed by 14‐day incubation at 18, 23, or 28 °C. No differences in infection or transmission rates were found between the Cx. p. pipiens populations with both infection methods, but WNV transmission rates were significantly higher at temperatures above 18 °C. The absence of WNV outbreaks in northern Europe cannot be explained by differences in vector competence between Cx. p. pipiens populations originating from northern and southern Europe. This study suggests that low temperature is a key limiting factor for WNV transmission.  相似文献   

17.
Female Aedes albopictus mosquitoes, aged 1 week, were infected with DEN-2 dengue virus. The kinetics of infection in mosquito brain and mesenteron were monitored using DNA probes with polymerase chain reaction (PCR) amplification of target DNA sequences coding for DEN-2 virus envelope protein, compared with the standard immunofluorescence assay technique (IFA). Rates of virus detection in the mesenteron of orally infected mosquitoes rose to 38% by day 4 post-inoculation, then declined until day 8, followed by irregular peaks around days 11-14 and subsequently. In mosquito head squashes, virus was detected from day 4 onwards, reaching 38% positive by day 18. Salivary glands of all the same females were found to be positive for virus by day 8 onwards. Parenterally infected Ae.albopictus females were all positive for DEN-2 in the brain and salivary glands 8 days post-inoculation. In every case, results obtained with the PCR matched those from the IFA. Our DNA probe with PCR procedure can therefore be utilized as a sensitive and reliable method for studies of DEN-2 vectors.  相似文献   

18.
We attempted to determine the vertical transmission of dengue virus (DENV) in Aedes aegypti in selected sites in Cebu City, Philippines. Mosquito sub‐adults were collected monthly from households and the field during the wet‐dry‐wet season from November, 2011 to July, 2012 and were laboratory‐reared to adults. Viral RNA extracts in mosquitoes were assayed by hemi‐nested RT‐PCR. Results showed that 62 (36.26%; n=679) out of 171 mosquito pools (n=2,871) were DENV+. The minimum infection rate (MIR) of DENV ranged from 0 in wet months to 48.22/1,000 mosquitoes in April, 2012 (mid‐dry). DENVs were detected in larvae, pupae, and male and female adults, with DENV‐4, DENV‐3, and DENV‐1, in that rank of prevalence. DENV‐1 co‐infected with either DENV‐3 or ?4 or with both in April, 2012; DENV‐3 and ?4 were present in both seasons. More DENV+ mosquitoes were collected from households than in field premises (p<0.001) and in the dry than in the wet season (p<0.05), with significant interaction (p<0.05) between sites and premises but no interaction between sites and seasons (p>0.05). By Generalized Linear Mixed models, the type of premises nested in sites and monthly total rainfall were significant predictors of monthly dengue cases (p<0.05) and not MIR, season, temperature, and relative humidity. Surveillance of DENV prevalence in Ae. aegypti and detecting their natural foci in the dry season provide an early warning signal of dengue outbreak.  相似文献   

19.
West Nile virus (WNV) is a zoonotic arboviral pathogen transmitted by mosquitoes in a cycle that involves wild birds as reservoir hosts. The virus is responsible for outbreaks of viral encephalitis in humans and horses. In Europe, Culex pipiens (Diptera: Culicidae) is considered to be the main vector of WNV, but other species such as Stegomyia albopicta (=Aedes albopictus) (Diptera: Culicidae) may also act as competent vectors of this virus. Since 2008 human cases of WNV disease have been reported in northeast Italy. In 2011, new areas of southern Italy became involved and a first outbreak of WNV lineage 1 occurred on the island of Sardinia. On the assumption that a potential involvement of St. albopicta in WNV transmission cannot be excluded, and in order to evaluate the competence of this species for the virus, an experimental infection of an St. albopicta laboratory colony, established from mosquitoes collected in Sardinia, was carried out. The results were compared with those obtained in a colony of the main vector Cx. pipiens. The study showed St. albopicta collected on Sardinia to be susceptible to WNV infection, which suggests this Italian mosquito species is able to act as a possible secondary vector, particularly in urban areas where the species reaches high levels of seasonal abundance.  相似文献   

20.
The avian zoonotic agent for West Nile virus (WNV) can cause neuroinvasive disease in horses and humans and is expanding its range in Europe. Analyses of the risk for transmission to these hosts in non‐endemic areas are necessary. Host preferences of mosquitoes (Diptera: Culicidae), the main vectors of WNV, were determined in Switzerland using animal‐baited trap (horse, chickens) experiments at a natural and a periurban site. This was undertaken on four occasions during May–September 2014. In addition, the hosts of 505 blood‐fed mosquitoes collected in a zoo and in the field were determined. Mosquito data obtained in the animal bait experiments were corrected for host weight and body surface area and by Kleiber's scaling factor. Collections of 11–14 different mosquito species were achieved with these approaches. Statistically significant host preferences were identified in three species in both approaches. The other species showed opportunistic feeding behaviours to varying extents. Specifically, the invasive species Hulecoeteomyia japonica (= Aedes japonicus) was identified for the first time as feeding on avians in nature. Abundance data, spatiotemporal activity and laboratory vector competence for WNV suggested that, in addition to the main WNV vector Culex pipiens, H. japonica and Aedimorphus vexans (= Aedes vexans) are the most likely candidate bridge vectors for WNV transmission in Switzerland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号