首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cetaceans produce a variety of vocalizations to communicate; however, little information exists on the acoustic behavior displayed by Commerson's dolphins (Cephalorhynchus commersonii) in the wild other than their echolocation behavior. Most available literature suggests that Commerson's dolphins do not produce any other sound type besides narrow‐band high‐frequency (NBHF) clicks, such that no signals are emitted below 100 kHz. We conducted acoustic recordings together with sightings to study the acoustic behavior of Commerson's dolphins in Bahia San Julian, Argentina. This is the first study that provides evidence that this species produces a variety of acoustic signals, including whistles and broad‐band clicks (BBC), with frequency content well below 100 kHz. Whistles were recorded mostly in the presence of mother and calf and were associated with parental behavior. BBC may be used for communication purposes by adults. These vocalizations are within the hearing range of killer whales and so could pose a risk of predation for Commerson's dolphins. Whether this population of Commerson's dolphins produce all these types of signals while they are in the open sea out of the waters of Bahía San Julián, which are apparently safe from predation, remains unknown.  相似文献   

2.
Simultaneous high resolution sampling of predator behavior and habitat characteristics is often difficult to achieve despite its importance in understanding the foraging decisions and habitat use of predators. Here we tap into the biosonar system of Blainville''s beaked whales, Mesoplodon densirostris, using sound and orientation recording tags to uncover prey-finding cues available to echolocating predators in the deep-sea. Echolocation sounds indicate where whales search and encounter prey, as well as the altitude of whales above the sea-floor and the density of organisms around them, providing a link between foraging activity and the bio-physical environment. Tagged whales (n = 9) hunted exclusively at depth, investing most of their search time either in the lower part of the deep scattering layer (DSL) or near the sea-floor with little diel change. At least 43% (420/974) of recorded prey-capture attempts were performed within the benthic boundary layer despite a wide range of dive depths, and many dives included both meso- and bentho-pelagic foraging. Blainville''s beaked whales only initiate searching when already deep in the descent and encounter prey suitable for capture within 2 min of the start of echolocation, suggesting that these whales are accessing prey in reliable vertical strata. Moreover, these prey resources are sufficiently dense to feed the animals in what is effectively four hours of hunting per day enabling a strategy in which long dives to exploit numerous deep-prey with low nutritional value require protracted recovery periods (average 1.5 h) between dives. This apparent searching efficiency maybe aided by inhabiting steep undersea slopes with access to both the DSL and the sea-floor over small spatial scales. Aggregations of prey in these biotopes are located using biosonar-derived landmarks and represent stable and abundant resources for Blainville''s beaked whales in the otherwise food-limited deep-ocean.  相似文献   

3.
Toothed whales use a pneumatic sound generator to produce echolocation and communication sounds. Increasing hydrostatic pressure at depth influences the amplitude and duration of calls but not of echolocation clicks. Here we test the hypothesis that information transfer at depth might be facilitated by click‐based communication signals. Wild short‐finned pilot whales (27) instrumented with multisensor DTAGs produced four main types of communication signals: low‐ and medium‐frequency calls (median fundamental frequency: 1.7 and 2.9 kHz), two‐component calls (median frequency of the low and high frequency components: 2 and 9 kHz), and rasps (burst‐pulses with median interclick interval of 21 ms). Rasps can be confused with foraging buzzes, but rasps are shorter and slower, and are not associated with fast changes in body acceleration nor reduced acoustic output of buzzes, characteristic of prey capture attempts. Contrary to calls, the energy flux density of rasps was not significantly affected by depth. This, and a different information content, may explain the observed increase in the relative occurrence of rasps with respect to calls at depth, and supports the hypothesis that click‐based communication signals may facilitate communication under high hydrostatic pressure. However, calls are produced at depth also, indicating that they may carry additional information relevant for deep‐diving animals, including potential communication among whales diving at the same time in this highly social deep‐diving species.  相似文献   

4.
Breath‐hold divers are strongly interacting species whose top–down influence on aquatic communities is shaped by factors governing their diving decisions. Although some of these factors (e.g. physiological constraints, energetic needs) have been scrutinized, the possibility that predation risk influences diving behavior has been largely overlooked, and no study to date has asked if anti‐predator responses by divers depend on foraging mode. We contrasted dive cycle changes by herbivorous dugongs Dugong dugon using two foraging tactics – cropping, which always permits anti‐predator vigilance, and excavation, which limits surveillance at depth – in response to temporal variation in tiger shark Galeocerdo cuvier abundance. Dugongs responded to increasing shark abundance (one component of predation risk) by diving more frequently without changing their surface times and thereby spending a greater proportion of time at the surface, but only while excavating. When threatened, in other words, excavating dugongs sacrificed foraging time at depth to facilitate shark detection. In contrast, cropping dugongs at risk from sharks were able to continue diving and foraging normally. By implication, future studies should consider the influence of predation risk on diving decisions, even by large‐bodied species, and the possibility that behavioral responses by divers to predators may vary with foraging mode.  相似文献   

5.
Investigating intraspecific variation in acoustic signals can indicate the extent of isolation and divergence between populations and adaptations to local environments. Here we analyze the variation in killer whale high‐frequency (>17 kHz) whistles recorded off Norway, Iceland, and in the North Pacific. We used a combination of methods including multivariate comparisons of spectral and temporal parameters and categorization of contours to types. Our results show that spectral and temporal characteristics of high‐frequency whistles recorded in the North Pacific show significant differences from whistles recorded in the Northeast Atlantic, being generally stereotyped, lower in frequency, and slightly longer in duration. Most high‐frequency whistles from the North Pacific were downsweeps, whereas this was one of the least common types recorded in the Northeast Atlantic. The repertoire of whistles recorded in Norway was similar to Iceland, but whistles produced in Norway had significantly lower maximum frequency and frequency range. Most methods were able to discriminate between whistles of the North Pacific and the Northeast Atlantic, but were unable to consistently distinguish whistles from Iceland and Norway. This suggests that macro‐ and microgeographic differences in high‐frequency whistles of killer whales may reflect historical geographic isolation between ocean basins and more recent divergence between adjacent populations.  相似文献   

6.

Aim

Understanding cetacean species' distributions and population structure over space and time is necessary for effective conservation and management. Geographic differences in acoustic signals may provide a line of evidence for population-level discrimination in some cetacean species. We use acoustic recordings collected over broad spatial and temporal scales to investigate whether global variability in echolocation click peak frequency could elucidate population structure in Blainville's beaked whale (Mesoplodon densirostris), a cryptic species well-studied acoustically.

Location

North Pacific, Western North Atlantic and Gulf of Mexico.

Time period

2004–2021.

Major taxa studied

Blainville's beaked whale.

Methods

Passive acoustic data were collected at 76 sites and 150 cumulative years of data were analysed to extract beaked whale echolocation clicks. Using an automated detector and subsequent weighted network clustering on spectral content and interclick interval of clicks, we determined the properties of a primary cluster of clicks with similar characteristics per site. These were compared within regions and across ocean basins and evaluated for suitability as population-level indicators.

Results

Spectral averages obtained from primary clusters of echolocation clicks identified at each site were similar in overall shape but varied in peak frequency by up to 8 kHz. We identified a latitudinal cline, with higher peak frequencies occurring in lower latitudes.

Main conclusions

It may be possible to acoustically delineate populations of Blainville's beaked whales. The documented negative correlation between signal peak frequency and latitude could relate to body size. Body size has been shown to influence signal frequency, with lower frequencies produced by larger animals, which are subsequently more common in higher latitudes for some species, although data are lacking to adequately investigate this for beaked whales. Prey size and depth may shape frequency content of echolocation signals, and larger prey items may occur in higher latitudes, resulting in lower signal frequencies of their predators.  相似文献   

7.
Seamounts are considered hot spots of biodiversity and can aggregate pelagic predators and their prey. Passive acoustic monitoring was conducted over 3 mo in 2012 to document the occurrence of odontocetes near a seamount chain in the central equatorial Pacific in relation to oceanographic changes over time. Beaked whale echolocation signals were most frequently encountered. The main beaked whale signal was an unknown type, BW38, which resembled signals produced by Blainville's beaked whales. It had high occurrence during high sea surface temperature and low sea surface salinity. Cuvier's beaked whales were the second most detected. They had an opposite pattern and were encountered more often when sea surface temperature was low and net primary productivity was high. Risso's dolphins and short‐finned pilot whales had high acoustic densities, and echolocated predominantly at night. Risso's dolphins occurred more often during low sea surface height deviation. False killer whales were less frequently detected and mostly occurred during the day. Sperm whale detections were fewer than expected and associated with high chlorophyll a. Short duration Kogiidae encounters occurred on average every third day. These types of long‐term site studies are an informative tool to comparatively assess species composition, relative abundance, and relationship to oceanographic changes.  相似文献   

8.
Increasing evidence links exposure to Navy sonar with certain mass stranding events of deep diving beaked whales. Although the cause of these strandings is unknown, one theory suggests that the animals confuse the sonar signals with vocalizations of killer whales, a known predator. Here we analyze the movement patterns of a tagged female Blainville's beaked whale in reaction to playback of killer whale predation calls. During a deep foraging dive, the whale was exposed to a playback of killer whale vocalizations with the source level slowly increased until the whale prematurely ceased foraging. The heading data from the tag were analyzed using a rotation test with a likelihood ratio calculated for a nonparametric kernel density estimate. We found a significant difference (< 0.005) in the distribution of Δheading (the change in heading averaged over 200 s) after the cessation of the killer whale playback. A test of the angular standard deviation (SD) of the Δheading showed that after the playback, the SD was significantly reduced (= 0.0064), which indicates that the animal maintained a straighter than normal course for an extended period of time. The prolonged directed avoidance response observed here suggests a behavioral reaction that could pose a risk factor for stranding.  相似文献   

9.
Foraging and predation risk are often separated at rookeries of marine central place foragers, thus offering an opportunity to gain insight into how predator‐avoidance shapes the behavior of prey. Here we compare the behavior of Cape fur seals (Arctocephalus pusillus pusillus) at two island rookeries with and without white shark (Carcharodon carcharias) predations, and assess seal behavior in relation to marked spatiotemporal variation in risk at the high‐risk site (Seal Island, South Africa). Our results show that seal behavior at the two sites is comparatively similar in summer, when predation risk is low at both sites, but not in winter. Compared to seals at the “low‐risk” site, seals at Seal Island avoided deep‐water habitat around the island at high risk times and restricted their use of this habitat in favor of safe, shallow waters when engaging in social and thermoregulatory behaviors. Seals increased their frequency of jostling, porpoising, and diving when moving through the danger zone and seals in groups were safer than single individuals. Overall, our results suggest that seal behavior around the high‐risk site is strongly affected by predation risk, and show this rookery to be an excellent predator‐prey system at which to evaluate long‐standing ecological hypotheses.  相似文献   

10.
The use of conspicuous communication signals often increases a signaler's risk of predation. Many species communicate with a repertoire of signals that may differ in their conspicuousness to predators. Few studies have examined the ability of prey to selectively decrease the use of individual signals in their displays under heightened predation risk. Here, I examined the behavior of male brown anole lizards (Anolis sagrei) in response to a simulated predatory attack from a model kestrel. This species communicates with three major visual signal types, the head‐bob, pushup, and dewlap extension, which vary in their motion and spectral characteristics. I predicted that lizards would decrease frequencies of the dewlap extension and pushup following the attack, but not the head‐bob. Males modulated their use of individual signals by decreasing pushup rates, but not head‐bob rates. Decreases in dewlap frequency were marginally significant. One explanation for these results is that lizards decrease frequencies of signal types based partly on their conspicuousness. The energetic cost of each signal type may be an equally important factor that determines the signaler's response to predators, particularly if a predatory attack is perceived as imminent.  相似文献   

11.
A disparate selection of toothed whales (Odontoceti) share striking features of their acoustic repertoires including the absence of whistles and high frequency but weak (low peak-to-peak source level) clicks that have a relatively long duration and a narrow bandwidth. The non-whistling, high frequency click species include members of the family Phocoenidae, members of one genus of delphinids, Cephalorhynchus, the pygmy sperm whale, Kogia breviceps, and apparently the sole member of the family Pontoporiidae. Our review supports the 'acoustic crypsis' hypothesis that killer whale predation risk was the primary selective factor favouring an echolocation and communication system in cephalorhynchids, phocoenids and possibly Pontoporiidae and Kogiidae restricted to sounds that killer whales hear poorly or not at all (< 2 and > 100 kHz).  相似文献   

12.
Female sand tilefish (Malacanthus plumieri) inhabiting a deep channel in the fringing reef at Glover's Atoll, Belize (channel females) spawned planktonic eggs more frequently than those occupying the shallow sand‐rubble slopes adjacent to patch coral reefs inside the atoll lagoon (reef‐slope females). We tested five non‐exclusive hypotheses to explain habitat differences in female spawning frequency. We found no evidence that spawning frequency variation was a consequence of differences in food availability, variation in male fertility, or the intensity of predation on spawned eggs. On reef slopes, barracuda stalked tilefish near their benthic burrows, whereas these piscivores attacked channel tilefish by diving suddenly from higher in the water column. Differences in the hunting behavior of barracuda suggested that the behavior of tilefish females might be influenced by temporal variation in predation risk (risk allocation hypothesis). Consistent with this hypothesis, reef‐slope females had a much higher frequency of retreats to burrows in response to barracuda, spent more time burrowing and ventured less far from these refugia in response to a simulated predatory threat. As predicted by the risk allocation hypothesis, reef‐slope females also had lower and more variable frequencies of foraging bites, and shorter and more variable travel distances to forage than channel females. Estimated mortality from predation was over nine times higher in channel tilefish. Consistent with the hypothesis that investment in current vs. future reproduction is influenced by rates of adult mortality (mortality risk hypothesis), channel females invested more supplemental energy in egg production whereas reef‐slope females invested more in growth. Our results indicate that behavioral and life‐history traits of female tilefish show phenotypic plasticity depending upon the nature and intensity of localized predation risk.  相似文献   

13.
The Hauraki Gulf is a large, shallow embayment located north of Auckland City (36°51′S, 174°46′E), New Zealand. Bryde's whales (Balaenoptera edeni) are the most frequently observed balaenopterid in these waters. To assess the use of the Hauraki Gulf for this species, we examined the occurrence and distribution in relation to environmental parameters. Data were collected from a platform of opportunity during 674 daily surveys between March 2003 and February 2006. A total of 760 observations of Bryde's whales were recorded throughout the study period during 371 surveys. The number of Bryde's whales sighted/day was highest in winter, coinciding with the coolest median sea‐surface temperature (14.6°C). Bryde's whales were recorded throughout the Hauraki Gulf in water depths ranging from 12.1–59.8 m (mean = 42.3, SD = 5.1). Cow–calf pairs were most frequently observed during the austral autumn in water depths of 29.9–53.9 m (mean = 40.8, SD = 5.2). Data from this study suggest Bryde's whales in the Hauraki Gulf exhibit a mix of both “inshore” and “offshore” characteristics from the Bryde's whales examined off the coast of South Africa.  相似文献   

14.
The vulnerability of beaked whales (Family: Ziphiidae) to intense sound exposure has led to interest in their behavioral responses to mid-frequency active sonar (MFAS, 3–8 kHz). Here we present satellite-transmitting tag movement and dive behavior records from Blainville's beaked whales (Mesoplodon densirostris) tagged in advance of naval sonar exercises at the Atlantic Undersea Test and Evaluation Center (AUTEC) in the Bahamas. This represents one of the largest samples of beaked whales individually tracked during sonar operations (n = 7). The majority of individuals (five of seven) were displaced 28–68 km after the onset of sonar exposure and returned to the AUTEC range 2–4 days after exercises ended. Modeled sound pressure received levels were available during the tracking of four individuals and three of those individuals showed declines from initial maxima of 145–172 dB re 1 μPa to maxima of 70–150 dB re 1 μPa following displacements. Dive behavior data from tags showed a continuation of deep diving activity consistent with foraging during MFAS exposure periods, but also suggested reductions in time spent on deep dives during initial exposure periods. These data provide new insights into behavioral responses to MFAS and have important implications for modeling the population consequences of disturbance.  相似文献   

15.
Here, we describe the diving behavior of sperm whales (Physeter macrocephalus) using the Advanced Dive Behavior (ADB) tag, which records depth data at 1‐Hz resolution and GPS‐quality locations for over 1 month, before releasing from the whale for recovery. A total of 27 ADB tags were deployed on sperm whales in the central Gulf of California, Mexico, during spring 2007 and 2008, of which 10 were recovered for data download. Tracking durations of all tags ranged from 0 to 34.5 days (median = 2.3 days), and 0.6 to 26.6 days (median = 5.0 days) for recovered tags. Recovered tags recorded a median of 50.8 GPS‐quality locations and 42.6 dives per day. Dive summary metrics were generated for archived dives and were subsequently classified into six categories using hierarchical cluster analysis. A mean of 77% of archived dives per individual were one of four dive categories with median Maximum Dive Depth >290 m (V‐shaped, Mid‐water, Benthic, or Variable), likely associated with foraging. Median Maximum Dive Depth was <30 m for the other two categories (Short‐ and Long‐duration shallow dives), likely representing socializing or resting behavior. Most tagged whales remained near the tagging area during the tracking period, but one moved north of Isla Tiburón, where it appeared to regularly dive to, and travel along the seafloor. Three whales were tagged on the same day in 2007 and subsequently traveled in close proximity (<1 km) for 2 days. During this period, the depth and timing of their dives were not coordinated, suggesting they were foraging on a vertically heterogeneous prey field. The multiweek dive records produced by ADB tags enabled us to generate a robust characterization of the diving behavior, activity budget, and individual variation for an important predator of the mesopelagos over temporal and spatial scales not previously possible.  相似文献   

16.
17.
Many diving seabirds and marine mammals have been found to regularly exceed their theoretical aerobic dive limit (TADL). No animals have been found to dive for durations that are consistently shorter than their TADL. We attached time-depth recorders to 7 blue whales and 15 fin whales (family Balaenopteridae). The diving behavior of both species was similar, and we distinguished between foraging and traveling dives. Foraging dives in both species were deeper, longer in duration and distinguished by a series of vertical excursions where lunge feeding presumably occurred. Foraging blue whales lunged 2.4 (+/-1.13) times per dive, with a maximum of six times and average vertical excursion of 30.2 (+/-10.04) m. Foraging fin whales lunged 1.7 (+/-0.88) times per dive, with a maximum of eight times and average vertical excursion of 21.2 (+/-4.35) m. The maximum rate of ascent of lunges was higher than the maximum rate of descent in both species, indicating that feeding lunges occurred on ascent. Foraging dives were deeper and longer than non-feeding dives in both species. On average, blue whales dived to 140.0 (+/-46.01) m and 7.8 (+/-1.89) min when foraging, and 67.6 (+/-51.46) m and 4.9 (+/-2.53) min when not foraging. Fin whales dived to 97.9 (+/-32.59) m and 6.3 (+/-1.53) min when foraging and to 59.3 (+/-29.67) m and 4.2 (+/-1.67) min when not foraging. The longest dives recorded for both species, 14.7 min for blue whales and 16.9 min for fin whales, were considerably shorter than the TADL of 31.2 and 28.6 min, respectively. An allometric comparison of seven families diving to an average depth of 80-150 m showed a significant relationship between body mass and dive duration once Balaenopteridae whales, with a mean dive duration of 6.8 min, were excluded from the analysis. Thus, the short dive durations of blue whales and fin whales cannot be explained by the shallow distribution of their prey. We propose instead that short duration diving in large whales results from either: (1) dispersal behavior of prey; or (2) a high energetic cost of foraging.  相似文献   

18.
Diel variation in beaked whale diving behavior   总被引:2,自引:0,他引:2  
We investigate diel variation in beaked whale diving behavior using data from time–depth recorders deployed on six Blainville's ( Mesoplodon densirostris) (255 h) and two Cuvier's ( Ziphius cavirostris ) (34 h) beaked whales. Deep foraging dives (>800 m) occurred at similar rates during the day and night for Blainville's beaked whales, and there were no significant diel differences in ascent rates, descent rates, or mean or maximum depths or durations for deep dives. Dive to mid-water depths (100–600 m) occurred significantly more often during the day (mean = 1.59 h−1) than at night (mean = 0.26 h−1). Series of progressively shallower "bounce" dives were only documented to follow the deep, long dives made during the day; at night whales spent more time in shallow (<100 m) depths. Significantly slower ascent rates than descent rates were found following deep foraging dives both during the day and night. Similar patterns were found for the Cuvier's beaked whales. Our results suggest that so-called "bounce" dives do not serve a physiological function, although the slow ascents may. This diel variation in behavior suggests that beaked whales may spend less time in surface waters during the day to avoid near-surface, visually oriented predators such as large sharks or killer whales ( Orcinus orca ).  相似文献   

19.
Competing species benefit from eavesdropping on each other's signals by learning about shared resources or predators. But conspicuous signals are also open to exploitation by eavesdropping predators and should also pose a threat to other sympatric prey species. In western Finland, sibling voles Microtus rossiameridionalis and field voles M. agrestis compete for food and space, and both species rely upon scent marks for intraspecific communication. Both vole species are prey to a range of terrestrial scent hunting predators such as least weasels, however, the competitively superior sibling voles are taken preferentially. We tested in large out‐door enclosures whether field voles eavesdrop on the signals of its competitor, and whether they behave as though this eavesdropping carries a risk of predation. We presented field voles with scent marks from unknown conspecifics and sibling voles and measured their visitation, activity and scent marking behaviours at these scents under high (weasel present) and low (weasel absent) predation risk. Field voles readily visited both field and sibling vole scents under both high and low predation risk; however their activity at sibling vole scent marks declined significantly under increased predation risk. In contrast, predation risk did not affect field voles’ activity at conspecific scents. Thus, field voles were compelled to maintain eavesdropping on heterospecific scents under an increased risk of predation, however they compensated for this additional risk by reducing their activity at these risky scents. Scent marking rates declined significantly under high predation risk. Our results therefore reveal a hidden complexity in the use of social signals within multi‐species assemblages that is clearly sensitive to the potential for increased predation risk. The predation risks of interspecific eavesdropping demonstrated here represents a significant generalisation of the concept of associational susceptibility.  相似文献   

20.
Echolocating animals that forage in social groups can potentially benefit from eavesdropping on other group members, cooperative foraging or social defence, but may also face problems of acoustic interference and intra-group competition for prey. Here, we investigate these potential trade-offs of sociality for extreme deep-diving Blainville′s and Cuvier''s beaked whales. These species perform highly synchronous group dives as a presumed predator-avoidance behaviour, but the benefits and costs of this on foraging have not been investigated. We show that group members could hear their companions for a median of at least 91% of the vocal foraging phase of their dives. This enables whales to coordinate their mean travel direction despite differing individual headings as they pursue prey on a minute-by-minute basis. While beaked whales coordinate their echolocation-based foraging periods tightly, individual click and buzz rates are both independent of the number of whales in the group. Thus, their foraging performance is not affected by intra-group competition or interference from group members, and they do not seem to capitalize directly on eavesdropping on the echoes produced by the echolocation clicks of their companions. We conclude that the close diving and vocal synchronization of beaked whale groups that quantitatively reduces predation risk has little impact on foraging performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号