首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large‐scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr?1) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.  相似文献   

2.
生物炭对土壤有机碳矿化的激发效应及其机理研究进展   总被引:11,自引:0,他引:11  
近年来由于生物炭具有碳素稳定性强和孔隙结构发达等特性,其在土壤固碳减排方面的作用研究受到广泛关注.然而当生物炭进入土壤环境后最终是增加土壤碳的储存还是促进土壤碳的排放?目前学术界对该问题仍存在争议.生物炭对土壤有机碳的激发效应及其机理研究有待进一步深入开展.本文在分析生物炭自身碳素组分和稳定性、孔隙结构及表面形态特征的基础上,综述了添加生物炭对土壤本底有机碳矿化产生激发效应的研究进展,分别阐述了产生正激发和负激发效应(即促进和抑制矿化)的机制机理,认为正激发效应主要是基于生物炭促进土壤微生物活性增强、生物炭中易分解组分的优先矿化以及由此引发的土壤微生物的共代谢作用,而负激发效应主要是基于生物炭内部孔隙结构和外表面对土壤有机质的包封作用和吸附保护作用、生物炭促进土壤有机-无机复合体形成的稳定化作用、生物炭对土壤微生物及其酶活性的抑制作用.最后对今后相关研究方向进行了展望,以期为生物炭在土壤固碳减排方面的应用提供理论依据.  相似文献   

3.
赤潮藻毒素生物合成研究进展   总被引:12,自引:0,他引:12  
合成毒素是赤潮藻类的一个常见特征,已知能够产生毒素的微藻有70多种。作为次级代谢产物,藻毒素的产生可能是一种压制或清除其它藻类竞争者的一种反应,在群落演替、种间竞争中发挥重要作用。目前,人们对藻毒素生物合成机理依然知之甚少,相关基因的研究仍无明显突破。利用环境因子诱导毒素生成变化进而分离差异表达基因或者比较不同产毒藻株间基因表达的差异,从中克隆藻毒素生物合成基因似乎是一种极具潜力的研究方向。  相似文献   

4.
5.
This study was set up to identify the long‐term effect of biochar on soil C sequestration of recent carbon inputs. Arable fields (n = 5) were found in Belgium with charcoal‐enriched black spots (>50 m2; n = 14) dating >150 years ago from historical charcoal production mound kilns. Topsoils from these ‘black spots’ had a higher organic C concentration [3.6 ± 0.9% organic carbon (OC)] than adjacent soils outside these black spots (2.1 ± 0.2% OC). The soils had been cropped with maize for at least 12 years which provided a continuous input of C with a C isotope signature (δ13C) ?13.1, distinct from the δ13C of soil organic carbon (?27.4 ‰) and charcoal (?25.7 ‰) collected in the surrounding area. The isotope signatures in the soil revealed that maize‐derived C concentration was significantly higher in charcoal‐amended samples (‘black spots’) than in adjacent unamended ones (0.44% vs. 0.31%; = 0.02). Topsoils were subsequently collected as a gradient across two ‘black spots’ along with corresponding adjacent soils outside these black spots and soil respiration, and physical soil fractionation was conducted. Total soil respiration (130 days) was unaffected by charcoal, but the maize‐derived C respiration per unit maize‐derived OC in soil significantly decreased about half (< 0.02) with increasing charcoal‐derived C in soil. Maize‐derived C was proportionally present more in protected soil aggregates in the presence of charcoal. The lower specific mineralization and increased C sequestration of recent C with charcoal are attributed to a combination of physical protection, C saturation of microbial communities and, potentially, slightly higher annual primary production. Overall, this study provides evidence of the capacity of biochar to enhance C sequestration in soils through reduced C turnover on the long term.  相似文献   

6.
Biochar amendment is one of the most promising agricultural approaches to tackle climate change by enhancing soil carbon (C) sequestration. Microbial-mediated decomposition processes are fundamental for the fate and persistence of sequestered C in soil, but the underlying mechanisms are uncertain. Here, we synthesise 923 observations regarding the effects of biochar addition (over periods ranging from several weeks to several years) on soil C-degrading enzyme activities from 130 articles across five continents worldwide. Our results showed that biochar addition increased soil ligninase activity targeting complex phenolic macromolecules by 7.1%, but suppressed cellulase activity degrading simpler polysaccharides by 8.3%. These shifts in enzyme activities explained the most variation of changes in soil C sequestration across a wide range of climatic, edaphic and experimental conditions, with biochar-induced shift in ligninase:cellulase ratio correlating negatively with soil C sequestration. Specifically, short-term (<1 year) biochar addition significantly reduced cellulase activity by 4.6% and enhanced soil organic C sequestration by 87.5%, whereas no significant responses were observed for ligninase activity and ligninase:cellulase ratio. However, long-term (≥1 year) biochar addition significantly enhanced ligninase activity by 5.2% and ligninase:cellulase ratio by 36.1%, leading to a smaller increase in soil organic C sequestration (25.1%). These results suggest that shifts in enzyme activities increased ligninase:cellulase ratio with time after biochar addition, limiting long-term soil C sequestration with biochar addition. Our work provides novel evidence to explain the diminished soil C sequestration with long-term biochar addition and suggests that earlier studies may have overestimated soil C sequestration with biochar addition by failing to consider the physiological acclimation of soil microorganisms over time.  相似文献   

7.
Sweden is one of the largest exporters of pulp and paper products in the world. It follows that huge quantities of sludge rich in carbonaceous organic material and containing heavy metals are generated. This paper carried out a comparative environmental analysis of three different technologies, which can be adopted to produce biochar and recover energy from the biosludge, using landfilling as the reference case. These three thermochemical biosludge management systems—using incineration, pyrolysis, and hydrothermal carbonization (HTC)—were modeled using life cycle assessment (LCA). Heat generated in the incineration process (System A) was considered to be for captive consumption within the kraft pulp mills. It was assumed that the biochars—pyrochar and hydrochar—produced from pyrolysis (System B) and HTC (System C), respectively, were added to the forest soils. The LCA results show that all the alternative systems considerably improve the environmental performance of biosludge management, relative to landfilling. For all systems, there are net reductions in greenhouse gas emissions (–0.89, –1.43, and –1.13 tonnes CO2‐equivalent per tonne dry matter biosludge in Systems A, B, and C, respectively). System B resulted in the lowest potential eutrophication and terrestrial ecotoxicity impacts, whereas System C had the least acidification potential. The results of this analysis show that, from an environmental point of view, biochar soil amendment as an alternative method for handling pulp and paper mill biosludge is preferable to energy recovery. However, an optimal biochar system needs to factor in the social and economic contexts as well.  相似文献   

8.
Applying biochar to agricultural soils has been proposed as a means of sequestering carbon (C) while simultaneously enhancing soil health and agricultural sustainability. However, our understanding of the long‐term effects of biochar and annual versus perennial cropping systems and their interactions on soil properties under field conditions is limited. We quantified changes in soil C concentration and stocks, and other soil properties 6 years after biochar applications to corn (Zea mays L.) and dedicated bioenergy crops on a Midwestern US soil. Treatments were as follows: no‐till continuous corn, Liberty switchgrass (Panicum virgatum L.), and low‐diversity prairie grasses, 45% big bluestem (Andropogon gerardii), 45% Indiangrass (Sorghastrum nutans), and 10% sideoats grama (Bouteloua curtipendula), as main plots, and wood biochar (9.3 Mg/ha with 63% total C) and no biochar applications as subplots. Biochar‐amended plots accumulated more C (14.07 Mg soil C/ha vs. 2.25 Mg soil C/ha) than non‐biochar‐amended plots in the 0–30 cm soil depth but other soil properties were not significantly affected by the biochar amendments. The total increase in C stocks in the biochar‐amended plots was nearly twice (14.07 Mg soil C/ha) the amount of C added with biochar 6 years earlier (7.25 Mg biochar C/ha), suggesting a negative priming effect of biochar on formation and/or mineralization of native soil organic C. Dedicated bioenergy crops increased soil C concentration by 79% and improved both aggregation and plant available water in the 0–5 cm soil depth. Biochar did not interact with the cropping systems. Overall, biochar has the potential to increase soil C stocks both directly and through negative priming, but, in this study, it had limited effects on other soil properties after 6 years.  相似文献   

9.
A major limiting factor in the development of algae as a feedstock for the bioenergy industry is the consistent production and supply of biomass. This study is the first to access the suitability of the freshwater macroalgal genus Oedogonium to supply biomass for bioenergy applications. Specifically, we quantified the effect of CO2 supplementation on the rate of biomass production, carbon capture, and feedstock quality of Oedogonium when cultured in large‐scale outdoor tanks. Oedogonium cultures maintained at a pH of 7.5 through the addition of CO2 resulted in biomass productivities of 8.33 (±0.51) g DW m?2 day?1, which was 2.5 times higher than controls which had an average productivity of 3.37 (±0.75) g DW m?2 day?1. Under these productivities, Oedogonium had a carbon content of 41–45% and a higher heating value of 18.5 MJ kg?1, making it an ideal biomass energy feedstock. The rate of carbon fixation was 1380 g C m?2 yr?1 and 1073.1 g C m?2 yr?1 for cultures maintained at a pH of 7.5 and 8.5, and 481 g C m?2 yr?1 for cultures not supplemented with CO2. This study highlights the potential of integrating the large‐scale culture of freshwater macroalgae with existing carbon waste streams, for example coal‐fired power stations, both as a tool for carbon sequestration and as an enhanced and sustainable source of bioenergy.  相似文献   

10.
生物炭施用的固碳减排潜力及农田效应   总被引:17,自引:0,他引:17  
徐敏  伍钧  张小洪  杨刚 《生态学报》2018,38(2):393-404
气候变暖及粮食安全是保证人类可持续发展的重要课题。生物炭具有较高的稳定性、较高碳含量等特点,能增加土壤碳储量,提高土壤物理及化学性质,提高农田产出,能应对高温胁迫及土壤退化双重压力,具有一举多赢的生态环境效益,在缓解温室效应及粮食危机方面展现出巨大的潜力。综合前人研究成果,分析了生物炭固碳减排潜力及农田效应影响因素(包括:生物炭原料、制备温度、施用量、土壤类型等)。综合固碳减排及提高产出两方面因素,提出了较合适的生物炭施用标准,即300—700℃制备的农林废弃物生物炭,且施用量不超过5%。对生物炭固碳减排及田间效应领域未来的研究方向进行了展望。  相似文献   

11.
Introduction: In the present study bioremediation potential of a high biomass yielding grass, Panicum virgatum (switchgrass), along with plant associated microbes (AM fungi and Azospirillum), was tested against lead and cadmium in pot trials.

Methods: A pot trial was set up in order to evaluate bioremediation efficiency of P. virgatum in association with PAMs (Plant Associated Microbes). Growth parameters and bioremediation potential of endomycorrhizal fungi (AMF) and Azospirillum against different concentrations of Pb and Cd were compared.

Results: AM fungi and Azospirillum increased the root length, branches, surface area, and root and shoot biomass. The soil pH was found towards neutral with AMF and Azospirillum inoculations. The bioconcentration factor (BCF) for Pb (12 mg kg?1) and Cd (10 mg kg?1) were found to be 0.25 and 0.23 respectively and translocation index (Ti) was 17.8 and 16.7 respectively (approx 45% higher than control).

Conclusions: The lower values of BCF and Ti, even at highest concentration of Pb and Cd, revealed the capability of switchgrass of accumulating high concentration of Pb and Cd in the roots, while preventing the translocation of Pb and Cd to aerial biomass.  相似文献   

12.
This study aimed to investigate the extent to which it is possible to marry the two seemingly opposing concepts of heat and/or power production from biomass with carbon sequestration in the form of biochar. To do this, we investigated the effects of feedstock, highest heating temperature (HTT), residence time at HTT and carrier gas flow rate on the distribution of pyrolysis co‐products and their energy content, as well as the carbon sequestration potential of biochar. Biochar was produced from wood pellets (WP) and straw pellets (SP) at two temperatures (350 and 650 °C), with three residence times (10, 20 and 40 min) and three carrier gas flow rates (0, 0.33 and 0.66 l min?1). The energy balance of the system was determined experimentally by quantifying the energy contained within pyrolysis co‐products. Biochar was also analysed for physicochemical and soil functional properties, namely environmentally stable‐C and labile‐C content. Residence time showed no considerable effect on any of the measured properties. Increased HTT resulted in higher concentrations of fixed C, total C and stable‐C in biochar, as well as higher heating value (HHV) due to the increased release of volatile compounds. Increased carrier gas flow rate resulted in decreased biochar yields and reduced biochar stable‐C and labile‐C content. Pyrolysis at 650 °C showed an increased stable‐C yield as well as a decreased proportion of energy stored in the biochar fraction but increased stored energy in the liquid and gas co‐products. Carrier gas flow rate was also seen to be influential in determining the proportion of energy stored in the gas phase. Understanding the influence of production conditions on long term biochar stability in addition to the energy content of the co‐products obtained from pyrolysis is critical for the development of specifically engineered biochar, be it for agricultural use, carbon storage, energy generation or combinations of the three.  相似文献   

13.
Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long‐term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long‐term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high‐temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (Rs), and metabolic quotient (qCO2) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N2O emissions, possibly due to accelerated N‐cycling at elevated soil temperature and to biochar‐induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar‐C into soil was estimated to offset warming‐induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N2O emissions under warming limit the GHG mitigation potential of biochar.  相似文献   

14.
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land‐use and soil management. We review literature that reports changes in soil organic carbon after changes in land‐use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m?2 y?1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m?2 y?1 and 33.2 g C m?2 y?1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.  相似文献   

15.
Little is known about the bulk hydrogen stable isotope composition (δ2H) of seaweeds. This study investigated the bulk δ2H in several different seaweed species collected from three different beaches in Brazil, Australia, and Argentina. Here, we show that Ulvophyceae (a group of green algae) had lower δ2H values (between ?94‰ and ?130‰) than red algae (Florideophyceae), brown algae (Phaeophyceae), and species from the class Bryopsidophyceae (another group of green algae). Overall the latter three groups of seaweeds had δ2H values between ?50‰ and ?90‰. These findings were similar at the three different geographic locations. Observed differences in δ2H values were probably related to differences in hydrogen (H) metabolism among algal groups, also observed in the δ2H values of their lipids. The marked difference between the δ2H values of Ulvophyecae and those of the other groups could be useful to trace the food source of food webs in coastal rocky shores, to assess the impacts of green tides on coastal ecosystems, and to help clarify aspects of their phylogeny. However, reference materials for seaweed δ2H are required before the full potential of using the δ2H of seaweeds for ecological studies can be exploited.  相似文献   

16.
Research note: Identity of the Qingdao algal bloom   总被引:2,自引:0,他引:2  
In early July 2008, news agencies worldwide reported on a vast algal bloom that was threatening the upcoming Olympic sailing events in Qingdao, China. The identity of the culpable alga, however, remained undiscussed. We have identified the alga that caused the bloom by means of morphological and molecular data, including sequence data of the plastid encoded large subunit ribulose 1,5-bisphosphate carboxylase gene ( rbc L) and the nuclear encoded rDNA internal transcribed spacer (ITS) region. The bloom-forming alga falls within the morphological limits of the green seaweed Ulva prolifera O.F. Müller (' Enteromorpha prolifera (O.F. Müller) J. Agardh') but our phylogenetic analyses show that it forms a clade with representatives of the Ulva linza-procera-prolifera (LPP) complex. The Chinese rbc L sequences are identical to those of specimens collected from Japan, New Zealand, Finland and Portugal, suggesting that the taxon is widely distributed. rDNA ITS sequences showed a close affinity with Japanese isolates of the species complex. The Qingdao bloom is a typical illustration of a green tide, which occurs increasingly along several coasts worldwide.  相似文献   

17.
以菜地和果园土壤为研究对象,通过室内培养实验,向土壤中分别添加不同材料制备的生物炭(马尼拉草、阔叶和竹叶),热解温度为350℃,研究不同材料制备生物炭添加对土壤呼吸和有机碳含量的影响.结果表明:不同生物炭施入土壤后,土壤 CO 2释放速率总的趋势是前期分解速率快,后期缓慢.在整个培养过程中(28 d),随着培养时间的延长,土壤 CO 2释放速率下降趋势逐渐降低.在不同土壤培养条件下,均是添加阔叶生物炭后土壤 CO 2-C 累计释放增多,果园和菜地土壤 CO 2-C 累计分别达到482.57和424.72 mg·kg-1.添加不同的生物炭均能提高土壤有机碳含量,但只有添加阔叶生物炭之后,差异才会达到显著(P <0.05).研究结果为正确利用生物炭和评价其在土壤碳库作用提供科学依据.  相似文献   

18.
Soil carbon (C) dynamics and sequestration are controlled by interactions of chemical, physical and biological factors. These factors include biomass quantity and quality, physical environment and the biota. Management can alter these factors in ways that alter C dynamics. We have focused on a range of managed sites with documented land use change from agriculture or grassland to forest. Our results suggest that interactions of soil type, plant and environment impact soil C sequestration. Above and below ground C storage varied widely across sites. Results were related to plant type and calcium on sandy soils in our Northern sites. Predictors of sequestration were more difficult to detect over the temperature range of 12.4°C in the present study. Accrual of litter under pines in the moist Mississippi site limited C storage in a similar manner to our dry Nebraska site. Pre-planting heterogeneity of agricultural fields such as found in Illinois influences C contents. Manipulation of controls on C sequestration such as species planted or amelioration of soil quality before planting within managed sites could increase soil C to provide gains in terrestrial C storage. Cost effective management would also improve soil C pools positively affecting soil fertility and site productivity.  相似文献   

19.
Biochar management has been proposed as a possible tool to mitigate anthropogenic CO2 emissions, and thus far its impacts in forested environments remain poorly understood. We conducted a large‐scale, replicated field experiment using 0.05‐ha plots in the boreal region in northern Sweden to evaluate how soil and vegetation properties and processes responded to biochar application and the disturbance associated with burying biochar in the soil. We employed a randomized block design, where biochar and soil mixing treatments were established in factorial combination (i.e., control, soil mixing only, biochar only, and biochar and soil mixing; n = 6 plots of each). After two growing seasons, we found that biochar application enhanced net soil N mineralization rates and soil concentrations regardless of the soil mixing treatment, but had no impact on the availability of , the majority of soil microbial community parameters, or soil respiration. Meanwhile, soil mixing enhanced soil concentrations, but had negative impacts on net N mineralization rates and several soil microbial community variables. Many of the effects of soil mixing on soil nutrient and microbial community properties were less extreme when biochar was also added. Biochar addition had almost no effects on vegetation properties (except for a small reduction in species richness of the ground layer vegetation), while soil mixing caused significant reductions in graminoid and total ground layer vegetation cover, and enhanced seedling survival rates of P. sylvestris, and seed germination rates for four tree species. Our results suggest that biochar application can serve as an effective tool to store soil C in boreal forests while enhancing availability. They also suggest that biochar may serve as a useful complement to site preparation techniques that are frequently used in the boreal region, by enhancing soil fertility and reducing nutrient losses when soils are scarified during site preparation.  相似文献   

20.
Algal carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P) ratios are fundamental for understanding many oceanic biogeochemical processes, such as nutrient flux and climate regulation. We synthesized literature data (444 species, >400 locations) and collected original samples from Tasmania, Australia (51 species, 10 locations) to update the global ratios of seaweed carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P). The updated global mean molar ratio for seaweed C:N is 20 (ranging from 6 to 123) and for C:P is 801 (ranging from 76 to 4102). The C:N and C:P ratios were significantly influenced by seawater inorganic nutrient concentrations and seasonality. Additionally, C:N ratios varied by phyla. Brown seaweeds (Ochrophyta, Phaeophyceae) had the highest mean C:N of 27.5 (range: 7.6–122.5), followed by green seaweeds (Chlorophyta) of 17.8 (6.2–54.3) and red seaweeds (Rhodophyta) of 14.8 (5.6–77.6). We used the updated C:N and C:P values to compare seaweed tissue stoichiometry with the most recently reported values for plankton community stoichiometry. Our results show that seaweeds have on average 2.8 and 4.0 times higher C:N and C:P than phytoplankton, indicating seaweeds can assimilate more carbon in their biomass for a given amount of nutrient resource. The stoichiometric comparison presented herein is central to the discourse on ocean afforestation (the deliberate replacement of phytoplankton with seaweeds to enhance the ocean biological carbon sink) by contributing to the understanding of the impact of nutrient reallocation from phytoplankton to seaweeds under large-scale seaweed cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号