首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. The pulse-like clicking sounds made by odontocetes for echolocation (biosonar) can be roughly classified by their frequency characteristics into narrow-band high-frequency (NBHF) clicks with a sharp peak at around 130 kHz and wide-band (WB) clicks with a moderate peak at 30–100 kHz. Structural differences in the sound-producing organs between NBHF species and WB species have not been comprehensively discussed, nor has the formation of NBHF and WB clicks.
  2. A review of the sound-producing organs, including the latest findings, could lead to a new hypothesis about the sound production mechanisms. In the current review, data on echolocation click characteristics and on the anatomical structure of the sound-producing organs were compared in 33 species (14 NBHF species and 19 WB species).
  3. We review interspecific information on the characteristics of click frequencies and data from computed tomography scans and morphology of the sound-producing organs, accumulated in conventional studies. The morphology of several characteristic structures, such as the melon, the dense connective tissue over the melon (the ‘porpoise capsule’), and the vestibular sacs, was compared interspecifically.
  4. Interspecific comparisons suggest that the presence or absence of the porpoise capsule is unlikely to affect echolocation frequency. Folded structures in the vestibular sacs, features that have been overlooked until now, are present in most species with NBHF sound production and not in WB species; the vestibular sacs are therefore likely to be important in determining echolocation click frequency characteristics. The acoustical properties of the shape of the melon and vestibular sacs are important topics for future investigations about the relationship between anatomical structure and sound-producing mechanisms for echolocation clicks.
  相似文献   

2.
The melon is a lipid‐rich structure located in the forehead of odontocetes that functions to propagate echolocation sounds into the surrounding aquatic environment. To date, the melon's ability to guide and impedance match biosonar sounds to seawater has been attributed to its unique fatty acid composition. However, the melon is also acted upon by complex facial muscles derived from the m. maxillonasolabialis. The goal of this study was to investigate the gross morphology of the melon in bottlenose dolphins (Tursiops truncatus) and to describe how it is tendinously connected to these facial muscles. Standard gross dissection (N = 8 specimens) and serial sectioning (N = 3 specimens) techniques were used to describe the melon and to identify its connections to the surrounding muscles and blubber in three orthogonal body planes. The dolphin forehead was also thin‐sectioned in three body planes (N = 3 specimens), and polarized light was used to reveal the birefringent collagen fibers within and surrounding the melon. This study identified distinct regions of the melon that vary in shape and display locally specific muscle‐tendon morphologies. These regions include the bilaterally symmetric main body and cone and the asymmetric right and left caudal melon. This study is the first to identify that each caudal melon terminates in a lipid cup that envelopes the echolocation sound generators. Facial muscles of the melon have highly organized tendon populations that traverse the melon and insert into either the surrounding blubber, the connective tissue matrix of the nasal plug, or the connective tissue sheath surrounding the sound generators. The facial muscles and tendons also lie within multiple orthogonal body planes, which suggest that the melon is capable of complex shape change. The results of this study suggest that these muscles could function to change the frequency, beam width, and directionality of the emitted sound beam in bottlenose dolphins. The echolocation sound propagation pathway within the dolphin forehead appears to be a tunable system. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
The melon, the echolocation organ of the striped dolphin (Stenella coeruleoalba), was investigated by morphological and high-resolution (13)C nuclear magnetic resonance (NMR) methods, in order to characterize structure and composition gradient at the histological and molecular level. Morphological analysis showed that the lipidic components are organized in an adipose tissue; moreover, a clear muscular component was observed. Age-related structural differences also were noted. Furthermore, NMR yielded detailed information at a qualitative-quantitative level on the lipid components.  相似文献   

4.
Odontocete cetaceans use biosonar clicks to acoustically probe their aquatic environment with an aptitude unmatched by man-made sonar. A cornerstone of this ability is their use of short, broadband pulses produced in the region of the upper nasal passages. Here we provide empirical evidence that a beluga whale (Delphinapterus leucas) uses two signal generators simultaneously when echolocating. We show that the pulses of the two generators are combined as they are transmitted through the melon to produce a single echolocation click emitted from the front of the animal. Generating two pulses probably offers the beluga the ability to control the energy and frequency distribution of the emitted click and may allow it to acoustically steer its echolocation beam.  相似文献   

5.
On the basis of disputed physiological evidence the fat-filled lower jaw of odontocete cetaceans has previously been hypothesized as the primary pathway to the inner ear for acoustic signals. To gain behavioral evidence, a dolphin was trained to perform an echolocation task while wearing suction cups over its eyes and either of two neoprene robber hoods over its lower jaw. One hood allowed returning acoustic signals to pass. The other substantially attenuated such signals. The dolphin's performance was significantly hindered while wearing the attenuating hood ( P <. 001, ψ2) as would be expected if the lower jaw was critically important in the reception of high frequency signals.  相似文献   

6.
The origin and maintenance of intraspecific variation in vocal signals is important for population divergence and speciation. Where vocalizations are transmitted by vertical cultural inheritance, similarity will reflect co-ancestry, and thus vocal divergence should reflect genetic structure. Horseshoe bats are characterized by echolocation calls dominated by a constant frequency component that is partly determined by maternal imprinting. Although previous studies showed that constant frequency calls are also influenced by some non-genetic factors, it is not known how frequency relates to genetic structure. To test this, we related constant frequency variation to genetic and non-genetic variables in the Formosan lesser horseshoe bat (Rhinolophus monoceros). Recordings of bats from across Taiwan revealed that females called at higher frequencies than males; however, we found no effect of environmental or morphological factors on call frequency. By comparison, variation showed clear population structure, with frequencies lower in the centre and east, and higher in the north and south. Within these regions, frequency divergence was directional and correlated with geographical distance, suggesting that call frequencies are subject to cultural drift. However, microsatellite clustering analysis showed that broad differences in constant frequency among populations corresponded to discontinuities in allele frequencies resulting from vicariant events. Our results provide evidence that the processes shaping genetic subdivision have concomitant consequences for divergence in echolocation call frequency.  相似文献   

7.
The site and physiologic mechanism(s) responsible for the generation of odontocete biosonar signals have eluded investigators for decades. To address these issues we subjected postmortem toothed whale heads to interrogation using medical imaging techniques. Most of the 40 specimens (from 19 species) were examined using X-ray computed tomography (CT) and/or magnetic resonance imaging (MR). Interpretation of scan images was aided by subsequent dissection of the specimens or, in one case, by cryosectioning. In all specimens we described a similar tissue complex and identified it as the hypothetical biosonar signal generator. This complex includes a small pair of fatty bursae embedded in a pair of connective tissue lips, a cartilaginous blade, a stout ligament, and an array of soft tissue air sacs. Comparing and contrasting the morphologic patterns of nasal structures across species representing every extant odontocete superfamily reveals probable homologous relationships, which suggests that all toothed whales may be making their biosonar signals by a similar mechanism. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Auditory feedback from the animal''s own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.  相似文献   

9.
世界珍稀水兽白豚(Lipotes vexillifer.)是我国名贵特产之一,属齿鲸亚目(Odontoceti),淡水豚总科(Platanistoidea),白鱀豚科(Lipotidae)。白鱀豚生活在长江中、下游。借回声定位系统以探知外界情况(荆显英等,1981)。通常认为,在声发射过程中,齿鲸类饱含油分的额隆组织起着声透镜的作用。额隆的这种特殊生理机能,与其所含脂质的脂肪酸组成密切相关。1980年陆佩洪等报道了白鱀豚额隆油的酸价、碘价、皂化价、不皂化物及甘油三酯(比色法)的含量。有关白鱀豚额隆油的脂肪酸组成,迄今尚未研究。目前我们才开始进行该项工作。  相似文献   

10.
朱旭  王静  孙克萍  江廷磊  姜云垒  冯江 《生态学报》2008,28(11):5248-5258
2007年在吉林省罗通山自然保护区,利用超声波探测仪(Avisoft-SASLAB PRO)录制并分析不同生境中马铁菊头蝠的回声定位声波。结果显示马铁菊头蝠在不同类型生境中活动;各生境中回声定位声波参数存在显著差异(one-way ANOVA,P〈0.05)。从环境因子中通过主成分分析筛选出与其回声定位声波相关的植被、气候和地形因子,探讨回声定位声波与这些因子的相关性。结果显示FM1和FM2带宽与乔木高(r=-0.948,-0.825;P〈0.05)、FM1起始频率和FM2终止频率与林冠面积(r=-0.967,-0.958;P〈0.05)、FM1起始频率、FM2终止频率和峰频与湿度(r=-0.776、-0.875和-0.794,P〈0.05)、脉冲持续时间和脉冲间隔与平均灌木高均呈显著负相关(r=-0.911,-0.990;P〈0.05),峰频与植被株数(r=0.756,P〈0.05)、脉冲持续时间与冠下高呈显著正相关(r=0.870,P〈0.05)。表明各种环境因子(植被因子、气候因子和地形因子)都在一定程度上影响回声定位声波,回声定位声波具有表型可塑性和生境适应性,这些特性决定了马铁菊头蝠生境利用的程度和可利用的资源。  相似文献   

11.
Summary Bats of the species Rhinolophus rouxi, Hipposideros lankadiva and Eptesicus fuscus were trained to discriminate between two simultaneously presented artificial insect wingbeat targets moving at different wingbeat rates. During the discrimination trials, R. rouxi, H. lankadiva and E. fuscus emitted long-CF/FM, short-CF/FM and FM echolocation sounds respectively. R. rouxi, H. lankadiva and E. fuscus were able to discriminate a difference in wingbeat rate of 2.7 Hz, 9.2 Hz and 15.8 Hz, respectively, between two simultaneously presented targets at an absolute wingbeat rate of 60 Hz, using a criterion of 75% correct responses.The performance of the different bat species is correlated with the echolocation signal design used by each species, particularly with the presence and relative duration of a narrowband component preceding a broadband FM component. These results provide behavioral evidence supporting the hypothesis that bats that use CF/FM echolocation sounds have adaptations for the perception of insect wingbeat motion and that long-CF/FM species are more specialized for this task than short-CF/FM species.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

12.
Zhu X  Wang J  Sun K P  Jiang T L  Jiang Y H  Feng J 《农业工程》2008,28(11):5248-5258
The present experiment was carried out in Luotong Mountain Natural Reserve in Jilin Province of China in 2007. We recorded and analyzed the echolocation calls of Rhinolophus ferrumequinum in different habitats by using Avisoft Bioacoustics USG 116 and Avisoft-SASLAB PRO (Avisoft Bioacoustics, Berlin, Germany). Our results showed that R. ferrumequinum foraged in diverse habitats in the study area, and their echolocation calls were significantly variable in different habitats (One-Way ANOVA, P < 0.05). Vegetative, climatic and topographical factors were selected by using the principal component analysis and the correlations between the parameters of echolocation calls and these environmental factors were analyzed. The results indicated that although R. ferrumequinum always emitted FM/CF/FM echolocation calls in different habitats, the parameters of echolocation calls varied with variable environmental factors. Significant negative correlation existed between FM1 bandwidth and arbor height (r = ?0.948, P < 0.05), FM2 bandwidth and arbor height (r = ?0.825; P < 0.05), FM1 starting frequency and canopy area (r = ?0.967, P < 0.05), FM2 ending frequency and canopy area (r = ?0.958, P < 0.05), FM1 starting frequency and air relative humidity (r = ?0.776, P < 0.05), FM2 ending frequency and air relative humidity (r = ?0.875, P < 0.05), peak frequency and air relative humidity (r = ?0.794, P < 0.05), pulse duration and average shrub height (r = ?0.911, P < 0.05), and inter-pulse interval and average shrub height (r = ?0.990, P < 0.05). Significant positive correlation existed between peak frequency and number of plants (r = 0.756, P < 0.05), and pulse duration and height below the canopy (r = 0.870, P < 0.05). Our results suggested that many kinds of ecological factors (such as vegetation factor, climatic factor and topographical factor) affected the structure of echolocation calls and made them diverse in different habitats, i.e., echolocation calls of bats had phenotypic flexibility and eco-adaptability. These characteristics determined the degree of available habitats and natural resources for R. ferrumequinum.  相似文献   

13.
During the past 50 years, the high acoustic sensitivity and the echolocation behavior of dolphins and other small odontocetes have been studied thoroughly. However, understanding has been scarce as to how the dolphin cochlea is stimulated by high frequency echoes, and likewise regarding the ear mechanics affecting dolphin audiograms. The characteristic impedance of mammalian soft tissues is similar to that of water, and thus no radical refractions of sound, nor reflections of sound, can be expected at the water/soft tissue interfaces. Consequently, a sound-collecting terrestrial pinna and an outer ear canal serve little purpose in underwater hearing. Additionally, compared to terrestrial mammals whose middle ear performs an impedance match from air to the cochlea, the impedance match performed by the odontocete middle ear needs to be reversed to perform an opposite match from water to the cochlea. In this paper, we discuss anatomical adaptations of dolphins: a lower jaw collecting sound, thus replacing the terrestrial outer ear pinna, and a thin and large tympanic bone plate replacing the tympanic membrane of terrestrial mammals. The paper describes the lower jaw anatomy and hypothetical middle ear mechanisms explaining both the high sensitivity and the converted acoustic impedance match.  相似文献   

14.
The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade‐offs. Here, we investigate whether a trade‐off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three‐dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade‐off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency‐specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study.  相似文献   

15.
Summary The rufous horseshoe bat, Rhinolophus rouxi, was trained to discriminate differences in target distance. Loud free running artificial pulses, simulating the bat's natural long-CF/FM echolocation sounds, interfered with the ability of the bat to discriminate target distance. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 70 ms. A brief (2.0 ms) CF signal 2–68 ms before an isolated FM signal was as effective as a continuous CF component of the same duration. When coupled with the bat's own emissions, a 2 ms FM sweep alone was effective in interfering when it came 42 to 69 ms after the onset of the bat's pulse. The coupled FM artificial pulses did not interfere when they began during the bat's own emissions.It appears that the onset of the CF component activates a gating mechanism that establishes a time window during which FM component signals must occur for proper neural processing. A comparison with a similar gating mechanism in Noctillo albiventris, which emits short-CF/FM echolocation sounds, reveals that the temporal parameters of the time window of the gating mechanism are species specific and specified by the temporal structure of the echolocation sound pattern of each species.Abbreviations FM frequency modulated - CF constant frequency  相似文献   

16.
Summary Bats of the speciesNoctilio albiventris emit short-constant frequency/frequency modulated (short-CF/FM) pulses with a CF component frequency at about 75 kHz. Bats sitting on a stationary platform were trained to discriminate target distance by means of echolocation. Loud, free-running artificial pulses, simulating the bat's natural CF/FM echolocation sounds or with systematic modifications in the frequency of the sounds, were presented to the bats during the discrimination trials. When the CF component of the artificial CF/FM sound was between 72 and 77 kHz, the bats shifted the frequency of the CF component of their own echolocation sounds toward that of the artificial pulse, tracking the frequency of the artificial CF component.Bats flying within a large laboratory flight cage were also presented with artificial pulses. Bats in flight lower the frequency of their emitted pulses to compensate for Doppler shifts caused by their own flight speed and systematically shift the frequency of their emitted CF component so that the echo CF frequency returns close to that of the CF component of the artificial CF/FM pulse, over the frequency range where tracking occurs.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

17.
The Pliocene Beds of the Pisco Formation on the southern coast of Peru have yielded three new skulls of the walrus-like odontocete, Odobenocetops (Delphinoidea, Cetacea). Two of the skulls are from a slightly younger horizon than the holotype of O. peruvianus and belong to a different species, O. leptodon . The holotype of O. leptodon bears a 135 cm long needle-like right tusk and a small 25 cm long left tusk, the apex of which was erupted. The third skull, referred to a female of O. peruvianus , bears two small tusks similar in size to the small left tusk of the holotype. The new specimens include periotic, tympanic and ear ossicles, which confirm referral to the Order Cetacea and the morphology of the humerus reinforces affinities of odobenocetopsids to monodontids. Because the anterodorsal edge of its orbit is slightly concave O. leptodon had reduced anterodorsal binocular vision, a condition compensated for by the probable presence of a small melon (and inferred echolocation). The head was bent ventrally when swimming in such a way that the long tusk was approximately parallel to the axis of the body. The extremely salient occipital condyles of Odobenocetops are indicative of great mobility of the neck, probably related to bottom-feeding. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 134 , 423–452.  相似文献   

18.
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.  相似文献   

19.
许多动物的叫声频率呈现性二态现象。蝙蝠夜间活动,主要利用声音信号导航空间、追踪猎物、传递交流信息。本研究选择成体菲菊头蝠作为研究对象,检验回声定位声波频率性二态是否有利于性别识别。研究发现,菲菊头蝠回声定位声波频率参数具有显著性别差异。播放白噪音、雄性回声定位声波及雌性回声定位声波期间,实验个体的反应叫声数量依次递减。播放白噪音、雌性回声定位声波及雄性回声定位声波后,实验个体的反应叫声数量依次递增。白噪音诱导反应叫声强度高于回声定位声波诱导反应叫声强度。研究结果表明,菲菊头蝠回声定位声波的频率参数编码发声者性别信息,有利于种群内部的性别识别。本研究暗示,回声定位声波可能在蝙蝠配偶选择中扮演一定作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号