首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal communication signals are diverse. The types of sounds that animals produce, and the way that information is encoded in those sounds, not only varies between species but can also vary geographically within a species. Therefore, an understanding of the vocal repertoire at the population level is important for providing insight into regional differences in vocal communication signals. One species whose vocal repertoire has received considerable attention is the bottlenose dolphin. This species is well known for its use of individually distinctive identity signals, known as signature whistles. Bottlenose dolphins use their signature whistles to broadcast their identity and to maintain contact with social companions. Signature whistles are not innate, but are learnt signals that develop within the first few months of an animal’s life. It is therefore unsurprising that studies which have characterized signature whistles in wild populations of bottlenose dolphins have provided evidence of geographic variation in signature whistle structure. Here, we describe the occurrence of signature whistles in a previously unexplored wild population of bottlenose dolphins in Cardigan Bay, Wales. We present the first occurrence of a signature whistle with an ultrasonic fundamental frequency component (>30 kHz), a frequency band that was not thought to be utilized by this species for whistle communication. We also describe the occurrence of an ultrasonic non-signature whistle. Our findings highlight the importance of conducting regional studies in order to fully quantify a species’ vocal repertoire, and call into question the efficacy of those studies that use restricted sampling rates.  相似文献   

2.
3.
Indo-Pacific humpback dolphins (Sousa chinensis) use whistles to communicate with their conspecifics. Little is known about the acoustic repertoire of Indo-Pacific humpback dolphins in waters southwest of Hainan Island, a newly recorded population in 2014. In this study, whistles of Hainan humpback dolphin population were collected by using autonomous acoustic recorders. The fundamental frequencies and durations of whistles were in ranges of 0.71–21.35 kHz and 0.06–2.22 s, respectively. Significant intraspecific differences in duration and frequency of whistles were found between the Hainan population and the other geographically neighboring populations (in Chinese waters) or the population in Malaysia waters. Compared with other Sousa species, significant interspecific differences were also observed. Based on clustering analysis, the whistle parameters of neighboring populations were likely similar to each other. Significant differences were found between humpback dolphins in waters southwest of Hainan Island and those dolphins in the neighboring areas, supporting the hypothesis that this population may be independent. Ambient noise measurements in waters of Hainan Island, Zhanjiang, and Sanniang Bay showed that humpback dolphin populations may use whistles with longer duration, lower frequency, and fewer inflection points for more effective communication to adapt to a noisier environment.  相似文献   

4.
Whistles are key elements in the acoustic repertoire of bottlenose dolphins. In this species, the frequency contours of whistles are used as individual signatures. Assessing the long-lasting stability of such stereotyped signals, and the abundant production of non-stereotyped whistles in the wild, is relevant to a more complete understanding of their biological function. Additionally, studying the effects of group size and activity patterns on whistle emission rate may provide insights into the use of these calls. In this study, we document the decades-long occurrence of whistles with stereotyped frequency contours in a population of wild bottlenose dolphins, resident in the region of the Sado estuary, Portugal. Confirmed stereotypy throughout more than 20 years, and positive identification using the signature identification (SIGID) criteria, suggests that the identified stereotyped whistles are in fact signature whistles. The potential roles of non-stereotyped whistles, which represent 68 % of all whistles recorded, are still unclear and should be further investigated. Emission rates were significantly higher during food-related events. Finally, our data show a comparatively high overall whistle production for this population, and no positive correlation between group size and emission rates, suggesting social or environmental restriction mechanisms in vocal production.  相似文献   

5.
Tonal vocalizations or whistles produced by many species of delphinids range from simple tones to complex frequency contours. Whistle structure varies in duration, frequency, and composition between delphinid species, as well as between populations and individuals. Categorization of whistles may be improved by decomposition of complex calls into simpler subunits, much like the use of phonemes in classification of human speech. We identify a potential whistle decomposition scheme and normalization process to facilitate comparison of whistle subunits derived from tonal vocalizations of bottlenose dolphins (Tursiops truncatus), spinner dolphins (Stenella longirostris), and short‐beaked common dolphins (Delphinus delphis). Network analysis is then used to compare subunits within the vocal corpus of each species. By processing whistles through a series of steps including segmentation, normalization, and dynamic time warping, we are able to automatically cluster selected subunits by shape, regardless of differences in absolute frequency or moderate differences in duration. Using the clustered subunits, we demonstrate a preliminary species classification scheme based on rates of subunit occurrence in vocal repertoires. This provides a potential mechanism for comparing the structure of complex vocalizations within and between species.  相似文献   

6.
Common bottlenose dolphins (Tursiops truncatus) use individually distinctive signature whistles which are highly stereotyped and function as contact calls. Here we investigate whether Indo‐Pacific bottlenose dolphins (T. aduncus) use signature whistles. The frequency trace of whistle contours recorded from three genetically distinct free‐ranging populations was extracted and sorted into whistle types of similar shape using automated categorization. A signature whistle identification method based on the temporal patterns in signature whistle sequences of T. truncatus was used to identify signature whistle types (SWTs). We then compared the degree of variability in SWTs for several whistle parameters to determine which parameters are likely to encode identity information. Additional recordings from two temporarily isolated T. aduncus made during natural entrapment events in 2008 and 2009 were analyzed for the occurrence of SWTs. All populations were found to produce SWTs; 34 SWTs were identified from recordings of free‐ranging T. aduncus and one SWT was prevalent in each recording of the two temporarily isolated individuals. Of the parameters considered, mean frequency and maximum frequency were the least variable and therefore most likely to reflect identity information encoded in frequency modulation patterns. Our results suggest that signature whistles are commonly used by T. aduncus.  相似文献   

7.
A previous comparison of whistles using data sampled at 48 kHz suggested that certain frequency parameters vary along a latitudinal gradient. This geographical pattern may be biased because whistles sampled at higher frequencies could potentially have very different frequency contents. The current study compared the acoustic parameters of Guiana dolphin (Sotalia guianensis) whistles recorded at a higher sampling rate (96 kHz) and from groups occupying two never before sampled sites, Benevente Bay, Espírito Santo, Brazil, and Formosa Bay, Rio Grande do Norte, Brazil, with recordings of other populations in South America. By only considering data sampled at a rate of at least 96 kHz, we aimed to detect differences in whistles across locations. Contrary to previous findings, our analyses do not indicate any clear separation between northern and southern populations based on whistles, and do not corroborate the hypothesis of latitudinal acoustic variation in this species. The variation in Guiana dolphin whistle parameters found here appears to be influenced by latitude to some extent, but several other factors, including sampling method, environmental fluctuations, and social influence on vocal learning, may be confounding the detection of a geographic pattern in these whistle samples.  相似文献   

8.
A signature whistle type is a learned, individually distinctive whistle type in a dolphin''s acoustic repertoire that broadcasts the identity of the whistle owner. The acquisition and use of signature whistles indicates complex cognitive functioning that requires wider investigation in wild dolphin populations. Here we identify signature whistle types from a population of approximately 100 wild common bottlenose dolphins (Tursiops truncatus) inhabiting Walvis Bay, and describe signature whistle occurrence, acoustic parameters and temporal production. A catalogue of 43 repeatedly emitted whistle types (REWTs) was generated by analysing 79 hrs of acoustic recordings. From this, 28 signature whistle types were identified using a method based on the temporal patterns in whistle sequences. A visual classification task conducted by 5 naïve judges showed high levels of agreement in classification of whistles (Fleiss-Kappa statistic, κ = 0.848, Z = 55.3, P<0.001) and supported our categorisation. Signature whistle structure remained stable over time and location, with most types (82%) recorded in 2 or more years, and 4 identified at Walvis Bay and a second field site approximately 450 km away. Whistle acoustic parameters were consistent with those of signature whistles documented in Sarasota Bay (Florida, USA). We provide evidence of possible two-voice signature whistle production by a common bottlenose dolphin. Although signature whistle types have potential use as a marker for studying individual habitat use, we only identified approximately 28% of those from the Walvis Bay population, despite considerable recording effort. We found that signature whistle type diversity was higher in larger dolphin groups and groups with calves present. This is the first study describing signature whistles in a wild free-ranging T. truncatus population inhabiting African waters and it provides a baseline on which more in depth behavioural studies can be based.  相似文献   

9.
Very little is known about the acoustic repertoire of the Pacific humpback dolphin Sousa chinensis . This study, off eastern Australia, used concurrent observations of surface behaviour and acoustic recordings to gain an insight into the behavioural significance of humpback dolphin vocalizations. Humpback dolphins exhibit five different vocalization categories: broad band clicks; barks; quacks; grunts; and whistles. Broad band clicks were high in frequency (8 kHz to > 22 kHz), were directly related to foraging behaviour and may play a role in social behaviour. Barks and quacks were burst pulse sounds (frequency: 0.6 kHz to > 22 kHz, duration: 0.1–8 s) and were associated with both foraging and social behaviour. The grunt vocalization is a low frequency narrow band sound (frequency 0.5–2.6 kHz, duration 0.06–2 s) and was only heard during socializing. There were 17 different types of whistles, ranging widely in frequency (0.9–22 kHz) and vocal structure (n=329). The predominant whistle types used by the groups were type 1 (46%) and type 2 (17%). Most whistles were heard during both socializing and foraging. The number of whistles recorded in a group increased significantly as the number of mother–calf pairs increased, suggesting that whistles may be used as contact calls. Few vocalizations were heard during either travelling or milling behaviours. Broad band clicks, barks and whistle type 1 were the only vocalizations recorded during either travelling or milling.  相似文献   

10.
Biphonation, the simultaneous production of two sounds by a single animal, is found in the vocalizations of a range of mammalian species. Its prevalence suggests it plays an important role in acoustic communication. Concurrent vocal and behavioural recordings were made of Atlantic spotted dolphins (Stenella frontalis) off Bimini, The Bahamas. The occurrence of two types of biphonal signals is reported: burst-pulse whistles with combined tonal and burst-pulse elements, and bitonal whistles. Biphonal whistles are rarely described in reports of dolphin acoustic repertoires, but were common in these dolphins: of all whistles analysed (n = 1211), 26.84% were burst-pulse whistles and 4.71% were bitonal whistles. A subset of whistles (n = 397) were attributed to dolphins of specific age classes, and used to compare prevalence of biphonation across age. Biphonation occurred in 61.54% of sexually mature and 48.32% of sexually immature dolphins’ whistles. Sexually immature dolphins emitted more burst-pulse whistles than older dolphins: 44.13% of sexually immature dolphins’ whistles were burst-pulse whistles, while 15.38% of adult whistles were burst-pulse whistles. Bitonal whistle production was more prevalent in sexually mature dolphins: 41.03% of adult whistles were bitonal, while only 4.19% of sexually immature dolphins’ whistles were bitonal. The prevalence of a biphonal component in specific repeated, stereotyped whistle contours suggests that these acoustic features could be important components of contact calls, or signature whistles. The biphonal components of spotted dolphin whistles may serve to convey additional information as to identity, age or other factors to conspecifics.  相似文献   

11.
The prevailing view among researchers of dolphin communication is that bottlenose dolphins possess an individualized whistle contour; known as the ‘signature whistle’, it accounts for 74–95 % of a dolphin's whistle repertoire and functions to signal the individual identity of the whistler. This study used a new quantitative technique, termed the contour similarity technique (CS technique), and reports on the quantitative comparison of whistles from the individuals of three different social groups of bottlenose dolphins in socially interactive contexts. Results suggest that captive adult dolphins share several different whistle types including one predominant whistle type shared by all individuals across three different social groups. These analyses suggest a different interpretation of the dolphin whistle repertoire than has previously been proposed by proponents of the signature whistle hypothesis. In addition, results from our study support the results of early studies, published before the advent of the signature whistle hypothesis, in which investigators reported a large whistle repertoire within socially interactive captive and free-ranging groups and a predominant whistle type similar to that found in our study. Our results, combined with the results from earlier studies of dolphin vocal behaviour, suggest that the signature whistle hypothesis is incomplete and that dolphin whistle repertoires need to be analysed with respect to behavioural context and social relationships. In addition, these results suggest that contour discrimination and other acoustic features of whistles need to be tested in perception and categorization experiments.  相似文献   

12.
The developments of marine observatories and automatic sound detection algorithms have facilitated the long-term monitoring of multiple species of odontocetes. Although classification remains difficult, information on tonal sound in odontocetes (i.e., toothed whales, including dolphins and porpoises) can provide insights into the species composition and group behavior of these species. However, the approach to measure whistle contour parameters for detecting the variability of odontocete vocal behavior may be biased when the signal-to-noise ratio is low. Thus, methods for analyzing the whistle usage of an entire group are necessary. In this study, a local-max detector was used to detect burst pulses and representative frequencies of whistles within 4.5–48 kHz. Whistle contours were extracted and classified using an unsupervised method. Whistle characteristics and usage pattern were quantified based on the distribution of representative frequencies and the composition of whistle repertoires. Based on the one year recordings collected from the Marine Cable Hosted Observatory off northeastern Taiwan, odontocete burst pulses and whistles were primarily detected during the nighttime, especially after sunset. Whistle usage during the nighttime was more complex, and whistles with higher frequency were mainly detected during summer and fall. According to the multivariate analysis, the diurnal variation of whistle usage was primarily related to the change of mode frequency, diversity of representative frequency, and sequence complexity. The seasonal variation of whistle usage involved the previous three parameters, in addition to the diversity of whistle clusters. Our results indicated that the species and behavioral composition of the local odontocete community may vary among seasonal and diurnal cycles. The current monitoring platform facilitates the evaluation of whistle usage based on group behavior and provides feature vectors for species and behavioral classification in future studies.  相似文献   

13.
New Zealand is the southernmost limit of the common dolphin's (genus Delphinus) distribution in the Pacific Ocean. In this area, common dolphins occur in both coastal and oceanic habitats, exhibit seasonal and resident occurrence, and present high morphological variability. Here we investigated the population structure and the taxonomic identity of common dolphins (Delphinus sp.) within New Zealand waters using 14 microsatellite loci, 577 bp of the mtDNA control region, and 1,120 bp of the mtDNA cytochrome b gene across 90 individuals. We found high genetic variability and evidence of population expansion. Phylogenetic analyses conducted to clarify the taxonomic status of New Zealand common dolphins did not show any clustering reflecting geographic origin or morphotypes. The microsatellite analysis showed genetic differentiation between Coastal and Oceanic putative populations, while mtDNA revealed significant genetic differentiation only between the Hauraki Gulf and other putative groups. Our results suggest that differences in habitat choice and possible female site fidelity may play a role in shaping population structure of New Zealand common dolphins.  相似文献   

14.
Delphinids produce tonal whistles shaped by vocal learning for acoustic communication. Unlike terrestrial mammals, delphinid sound production is driven by pressurized air within a complex nasal system. It is unclear how fundamental whistle contours can be maintained across a large range of hydrostatic pressures and air sac volumes. Two opposing hypotheses propose that tonal sounds arise either from tissue vibrations or through actual whistle production from vortices stabilized by resonating nasal air volumes. Here, we use a trained bottlenose dolphin whistling in air and in heliox to test these hypotheses. The fundamental frequency contours of stereotyped whistles were unaffected by the higher sound speed in heliox. Therefore, the term whistle is a functional misnomer as dolphins actually do not whistle, but form the fundamental frequency contour of their tonal calls by pneumatically induced tissue vibrations analogous to the operation of vocal folds in terrestrial mammals and the syrinx in birds. This form of tonal sound production by nasal tissue vibrations has probably evolved in delphinids to enable impedance matching to the water, and to maintain tonal signature contours across changes in hydrostatic pressures, air density and relative nasal air volumes during dives.  相似文献   

15.
The capacity of nonhuman primates to actively modify the acoustic structure of existing sounds or vocalizations in their repertoire appears limited. Several studies have reported population or community differences in the acoustical structure of nonhuman primate long distance calls and have suggested vocal learning as a mechanism for explaining such variation. In addition, recent studies on great apes have indicated that there are repertoire differences between populations. Some populations have sounds in their repertoire that others have not. These differences have also been suggested to be the result of vocal learning. On yet another level great apes can, after extensive human training, also learn some species atypical vocalizations. Here we show a new aspect of great ape vocal learning by providing data that an orangutan has spontaneously (without any training) acquired a human whistle and can modulate the duration and number of whistles to copy a human model. This might indicate that the learning capacities of great apes in the auditory domain might be more flexible than hitherto assumed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Bottlenose dolphins (Tursiops truncatus) have individually distinctive signature whistles. Each individual dolphin develops its own unique frequency modulation pattern and uses it to broadcast its identity. However, underwater sound localization is challenging, and researchers have had difficulties identifying signature whistles. The traditional method to identify them involved isolating individuals. In this context, the signature whistle is the most commonly produced whistle type of an animal. However, most studies on wild dolphins cannot isolate animals. We present a novel method, SIGnature IDentification (SIGID), that can identify signature whistles in recordings of groups of dolphins recorded via a single hydrophone. We found that signature whistles tend to be delivered in bouts with whistles of the same type occurring within 1–10 s of each other. Nonsignature whistles occur with longer or shorter interwhistle intervals, and this distinction can be used to identify signature whistles in a recording. We tested this method on recordings from wild and captive bottlenose dolphins and show thresholds needed to identify signature whistles reliably. SIGID will facilitate the study of signature whistle use in the wild, signature whistle diversity between different populations, and potentially allow signature whistles to be used in mark‐recapture studies.  相似文献   

17.
18.
Male brown-headed cowbirds (Molothrus ater) vocalize to females during pair formation, a period usually lasting several days. Males also vocalize to females in the seconds immediately prior to females' adopting copulatory postures. The two major classes of male vocalizations occurring during courtship and copulation are songs and flight whistles. Observations across the species' North American range suggest that the function of these two courtship vocalizations may differ geographically. Aviary observations of eastern and midwestern populations suggested, furthermore, that the precise timing of song and whistle used during copulation sequences differs, with flight whistles occurring most often after a copulatory posture but before the male mounts and the pair copulates. Such timing of the two signals suggested different proximate functions. Here, we report three experiments that addressed the communicative properties of the two signals in two midwestern populations. First, we tested females of the two populations in two playback experiments to determine copulatory responsiveness and discrimination of the two signals. We asked whether females of the two populations gave more copulatory responses to the playbacks of songs and flight whistles of males of their own population than to those of males of the other population, and whether females responded differently to songs than to whistles. In the third experiment, we observed courtship interactions among males and females from one population in a large aviary to assess the use of flight whistles in relation to courtship success. Females of both populations responded more frequently to playbacks of songs than to playbacks of flight whistles and showed reliably more responsiveness to local song variants. Thus, information in male song can be used by females to discriminate the local population. The aviary data revealed that the rate of flight whistling correlated strongly with male courtship success. Thus, the vocal antecedents to mating in midwestern cowbirds include close-range signaling to females followed by longer range signaling, perhaps to other males and to females other than the mate. Acoustic and behavioral differences between these two signals in diverse parts of the cowbirds' range suggest that the function of ‘speciestypical’ signals such as songs or whistles may not be fixed, a conclusion in keeping with the growing evidence of vocal and social mallcability in these brood parasitic birds.  相似文献   

19.
Acoustic recordings of two closely related species, spinner dolphin (Stenella longirostris) and pantropical spotted dolphin (Stenella attenuata), were investigated from four different geographic locations: two in the Central Tropical Pacific, one in the Eastern Tropical Pacific and one in the Indian Ocean. The two delphinid species occur in tropical and warm temperate waters, with overlapping ranges. They produce very similar vocalizations, but at the same time their calls exhibit a certain degree of intraspecific variation among different geographic locations as has been observed in other delphinid species. Oscillatory whistles (whistles with at least two oscillations in their frequency contours) were identified and manually extracted from the recordings. Whistles with four or more maxima (oscillations) occurred only in spinner dolphins and they were present in all geographic regions investigated. In addition, the oscillatory whistles with two and three maxima were significantly more frequent in spinner than in spotted dolphins. The differences in oscillatory whistles for these two species seem to be consistent across study areas and therefore, could be used in addition to other whistle features to help distinguish between them.  相似文献   

20.
Bottlenose dolphins (Tursiops truncatus) produce individually distinctive vocalizations—referred to as “signature whistles”—that are thought to function as an individual and conspecific recognition system for maintenance of consistent contact between individuals. Observations and playback experiments were conducted at aquariums to study these whistle–vocal exchanges in bottlenose dolphins. Temporal patterns of vocalization were examined by analyzing the intercall intervals between two consecutive whistles. When a second individual produced a call that was different from the first individual’s vocalization, most of these calls were shorter than 1 s. However, when two consecutive calls were produced by the same individual, the second call rarely occurred within 1 s of the first. These results suggest that a second whistle may be produced by a different caller in response to the first whistle; however, in the case of an absence of a response, the first caller is likely to give further whistles. The results of this acoustic analysis show that the dolphins used in this study mostly used signature whistles during the recorded vocal exchanges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号