首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult mammalian hearts show limited capacity to proliferate after injury, while zebrafish are capable to completely regenerate injured hearts through the proliferation of spared cardiomyocytes. BMP and Notch signaling pathways have been implicated in cardiomyocyte proliferation during zebrafish heart regeneration. However, the molecular mechanism underneath this process as well as the interaction between these two pathways remains to be further explored. In this study we showed BMP signaling was activated after ventricle ablation and acted epistatic downstream of Notch signaling. Inhibition of both signaling pathways differentially influenced ventricle regeneration and cardiomyocyte proliferation, as revealed by time-lapse analysis using a cardiomyocyte-specific FUCCI (fluorescent ubiquitylation-based cell cycle indicator) system. Further experiments revealed that inhibition of BMP and Notch signaling led to cell-cycle arrest at different phases. Overall, our results shed light on the interaction between BMP and Notch signaling pathways and their functions in cardiomyocyte proliferation during cardiac regeneration.  相似文献   

2.
3.
4.
Notch信号是广泛存在于各种动物细胞中高度保守的信号途径,在干细胞生物学功能中发挥重要作用。心脏干细胞(cardiac stem cells,CSCs)是存在于心脏特殊微环境下的多潜能干细胞,其表面存在Notch受体,而与其相邻的细胞可表达Notch配体,提示心脏干细胞中的Notch信号在某些条件下可被活化。该文从Notch信号通路的组成和激活、CSCs的界定与来源、CSCs主要类型的一般生物学特征及Notch信号通路与CSCs形成、分化和增殖的关系等方面进行综述,并展望了基于CSCs在心肌再生相关转化医学研究中的前景。  相似文献   

5.
适宜的运动负荷可刺激心肌生理性肥大和心肌细胞增殖,但这种内源性生理过程的分子机制知之甚少,因此有氧运动诱导心肌肥大和心肌细胞增殖的研究是目前发育生物学和细胞生物学领域的热点,其具体分子机制以及生理价值具有重要的生物学和医学研究及应用意义。该文综述了近年来有氧运动诱导心肌肥大和心肌细胞增殖的研究进展,旨在为相关领域的研究提供参考。  相似文献   

6.
目的:HMGA2(high-mobility group AT-hook 2)一个染色质蛋白,被报道在多种癌症中都发挥重要作用。本文研究染色体蛋白HMGA2对Wnt信号传递的影响,及对结直肠癌细胞增殖的影响。方法:本文通过q RT-PCR和免疫印迹法检测HMGA2在结直肠癌样本中m RNA和蛋白水平。用荧光素酶报告基因系统研究HMGA2对Wnt信号通路的作用。用细胞增殖实验检测HMGA2对结直肠癌细胞增殖的作用。结果:在我们检测的大部分结直肠癌样本里,HMGA2表达水平升高;HMGA2蛋白可上调Wnt信号通路荧光素酶报告基因TOPflash-luciferase的表达,并呈现剂量依赖的形式。降低HMGA2表达可抑制由Wnt3a、Dvl(Dishevelled)、Li Cl以及βcatenin(S37A)引起的TOPflash-luciferase报告基因表达上调作用。此外,SW480中过量表达HMGA2可以促进细胞增殖。结论:HMGA2在结直肠癌中表达升高,HMGA2在结直肠癌中通过增强Wnt信号来促进结直肠癌细胞的增殖。  相似文献   

7.
8.
尽管分子心脏学在很多方面已经取得了较大的进展,但是有关心脏形成细胞的起源、诱导心脏发生的机理、胚胎期和成人期心肌细胞增殖的调控途径仍然不是很清楚.在最近的研究中,人们对心肌细胞周期调控已有所了解.主要就心肌细胞周期活动和成人心肌细胞发生的研究进展进行了综述.  相似文献   

9.
Wnt信号转导途径是调控细胞形状、运动、黏附、增殖、分化、癌变及机体发育等过程的主要途径之一.Axin(轴蛋白)是一个体轴发育抑制因子,作为构架蛋白在Wnt信号转导途径中起着关键的作用.Axin通过不同的机制调节β连环蛋白的磷酸化和稳定性.它通过与APC、GSK-3β、β连环蛋白和CKIα结合形成复合体促进β连环蛋白的降解,还通过同源二聚化、核质穿梭、自身磷酸化和稳定性的调控来调节β连环蛋白的稳定性.Axin通过Wnt信号转导途径参与了一系列生物学效应的调控,如体轴发育、细胞死亡、神经元的分化等.作为一个新发现的肿瘤抑制因子,axin将为癌症的诊断和治疗提供新的有效的手段.  相似文献   

10.
Notch信号通路是进化中高度保守的信号转导通路,其调控细胞增殖、分化和凋亡的功能涉及几乎所有组织和器官。血管损伤后,Notch信号通路分子表达改变,引起内皮细胞(endothelial cell,EC)和血管平滑肌细胞(vascular smooth muscle cell,VSMC)表型改变,其增殖、迁移、抗凋亡等能力也随之变化,从而参与血管的损伤修复。Notch信号通路能够促进EC和VSMC增殖以及VSMC迁移至内膜,并提高其存活能力,凶此能够促进新生内膜的形成。  相似文献   

11.
4-1BB和4-1BB配体(4-1BBL),又被称为CD137和CD137配体,分别属于肿瘤坏死因子(TNF)受体和配体家族的成员。4-1BBL 与4-1BB相互作用可以激活T细胞免疫应答。因此,4-1BBL一直在抗肿瘤免疫应答中发挥经典的免疫共刺激分子作用。近期研究发现,4-1BBL在肿瘤细胞中另有其他的生物学功能,但4-1BBL在胃癌进展过程中的功能尚不明确。本文探讨了4-1BBL在人胃癌细胞中的生物学功能和分子作用机制。首先,通过检索TCGA和Kaplan Meier plotter数据库发现,4-1BBL在胃癌组织中的表达显著高于癌旁组织(P<0.001),且4-1BBL的高表达与胃癌的不良预后正相关(P<0.05)。细胞生物学的结果显示,敲除4-1BBL明显抑制胃癌细胞的增殖(P<0.05)、侵袭和迁移(P<0.05),促进胃癌细胞的凋亡(P<0.05);另外,蛋白质免疫印迹结果表明,敲除4-1BBL可使β-联蛋白、c-Myc和细胞周期蛋白D1(cyclin D1)的蛋白质表达水平下降,抑制Wnt/β-catenin信号通路。相反,过表达4-1BBL则显著促进胃癌细胞增殖(P<0.05)、侵袭和迁移(P<0.05),减少胃癌细胞的凋亡(P<0.05);且过表达4-1BBL促进β-联蛋白(β-catenin)、c-Myc和细胞周期蛋白D1的蛋白质表达,激活Wnt/β-catenin信号通路。综上所述,4-1BBL可通过激活Wnt/β-catenin信号通路促进人胃癌细胞的增殖和迁移。  相似文献   

12.
The developing mammalian heart responds to a variety of conditions, including changes in nutrient availability, blood oxygenation, hemodynamics, or tissue homeostasis, with impressive growth plasticity. This ensures the formation of a functional and normal sized organ by birth. During embryonic and fetal development the heart is exposed to various physiological and potentially pathological changes in the intrauterine environment which dramatically impact on normal cardiac function, tissue composition, and morphology. This paper summarizes the mechanisms employed by the embryonic and fetal heart to adapt to various intrauterine challenges to prevent or minimize postnatal consequences of impaired cardiac development. Future investigations of this growth plasticity might lead to new therapeutic strategies for the prevention of cardiac disease in postnatal life.  相似文献   

13.
14.
15.
Hepatocarcinogenesis commonly involves the gradual progression from hepatitis to fibrosis and cirrhosis, and ultimately to hepatocellular carcinoma (HCC). Endothelin 1 (Edn1) has been identified as a gene that is significantly up-regulated in HBx-induced HCC in mice. In this study, we further investigated the role of edn1 in hepatocarcinogenesis using a transgenic zebrafish model and a cell culture system. Liver-specific edn1 expression caused steatosis, fibrosis, glycogen accumulation, bile duct dilation, hyperplasia, and HCC in zebrafish. Overexpression of EDN1 in 293T cells enhanced cell proliferation and cell migration in in vitro and xenotransplantation assays and was accompanied with up-regulation of several cell cycle/proliferation- and migration-specific genes. Furthermore, expression of the unfolded protein response (UPR) pathway-related mediators, such as spliced XBP1, ATF6, IRE1, and PERK, was also up-regulated at both the RNA and protein levels. In the presence of an EDN1 inhibitor or an AKT inhibitor, these increases were diminished and the EDN1-induced migration ability also was disappeared, suggesting that the EDN1 effects act through activation of the AKT pathway to enhance the UPR and subsequently activate the expression of downstream genes. Additionally, p-AKT is enhanced in the edn1 transgenic fish compared to the GFP-mCherry control. The micro RNA miR-1 was found to inhibit the expression of EDN1. We also observed an inverse correlation between EDN1 and miR-1 expression in HCC patients. In conclusion, our data suggest that EDN1 plays an important role in HCC progression by activating the PI3K/AKT pathway and is regulated by miR-1.  相似文献   

16.
17.
18.
Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions.In stem cells,a small number of pathways,notably those of TGF-?/BMP,Hedgehog,Notch,and Wnt,are responsible for the regulation of pluripotency and differentiation.During embryonic development,these pathways govern cell fate specifications as well as the formation of tissues and organs.In adulthood,their normal functions are important for tissue homeostasis and regeneration,whereas aberrations result in diseases,such as cancer and degenerative disorders.In complex biological systems,stem cell signaling pathways work in concert as a network and exhibit crosstalk,such as the negative crosstalk between Wnt and Notch.Over the past decade,genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways.Indeed,discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry.Remarkable progress has been made and several promising drug candidates have entered into clinical trials.This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.  相似文献   

19.
Wnt信号通路参与细胞增殖、胚胎发育、组织再生和干细胞维持等多种生物学过程。近年来,Wnt信号通路在骨骼系统发育及代谢过程中的作用引起广泛关注。探讨Wnt信号通路调节成骨细胞分化、增殖以及维持整个骨骼系统平衡的分子机制,对于临床治疗各种骨疾病(如骨质疏松)具有重要意义。  相似文献   

20.
The formation of somites in the course of vertebrate segmentation is governed by an oscillator known as the segmentation clock, which is characterized by a period ranging from 30 min to a few hours depending on the organism. This oscillator permits the synchronized activation of segmentation genes in successive cohorts of cells in the presomitic mesoderm in response to a periodic signal emitted by the segmentation clock, thereby defining the future segments. Recent microarray experiments [Dequeant, M.L., Glynn, E., Gaudenz, K., Wahl, M., Chen, J., Mushegian, A., Pourquie, O., 2006. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595-1598] indicate that the Notch, Wnt and Fibroblast Growth Factor (FGF) signaling pathways are involved in the mechanism of the segmentation clock. By means of computational modeling, we investigate the conditions in which sustained oscillations occur in these three signaling pathways. First we show that negative feedback mediated by the Lunatic Fringe protein on intracellular Notch activation can give rise to periodic behavior in the Notch pathway. We then show that negative feedback exerted by Axin2 on the degradation of β-catenin through formation of the Axin2 destruction complex can produce oscillations in the Wnt pathway. Likewise, negative feedback on FGF signaling mediated by the phosphatase product of the gene MKP3/Dusp6 can produce oscillatory gene expression in the FGF pathway. Coupling the Wnt, Notch and FGF oscillators through common intermediates can lead to synchronized oscillations in the three signaling pathways or to complex periodic behavior, depending on the relative periods of oscillations in the three pathways. The phase relationships between cycling genes in the three pathways depend on the nature of the coupling between the pathways and on their relative autonomous periods. The model provides a framework for analyzing the dynamics of the segmentation clock in terms of a network of oscillating modules involving the Wnt, Notch and FGF signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号