首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concanavalin A bound to Sepharose has been used for the purification of brain β-galactosidase, α-L-fucosidase, α-D-mannosidase, arylsulphatase and β-glucuronidase.0 Several factorsviz pH, temperature and concentration of α-methyl glucoside influenced the binding and elution of these enzymes. A lysosomal acid α-mannosidase and a cytosolic neutral mannosidase were separable by concanavalin A-Sepharose chromatography. Similarly lysosomal and microsomal β-glucuronidases were separable using gradient elution with α-methyl glucoside. The results indicate the usefulness of this lectin for the isolation of wide variety of enzymes under specified experimental conditions.  相似文献   

2.
The reactions of some 4,6-disulphonates of methyl 2,3-di-O-acyl-(and di-O-methyl)-d-glucopyranosides and -galactopyranosides, with thiocyanate, thioacetate, and thiobenzoate anions, have been studied under a variety of conditions. In the glucoside series, somewhat similar reactivity is shown by isomers differing only in anomeric configuration, and there is no very great difference between the reactivities of a 2,3-dibenzoate and its 2,3-di-O-methyl analogue. In contrast to the situation in the β-d-galactoside series, the presence of O-benzoyl groups in an α-d-galactoside does not have an unfavourable effect on displacement at C-4. Two hexose derivatives containing the novel 4,6-epithio bridge are described.  相似文献   

3.
The uptake of 14C-fructose by T. crassiceps larvae was linear with respect to concentration. Uptake of 0.05 mM14C-fructose was not inhibited by 5.0 mM unlabeled fructose, tagatose, or sorbose. Fructose appears to enter larvae by diffusion only. The uptake of radioglucose and radiogalactose was not linear with respect to concentration at low substrate concentrations; at high substrate concentrations, the uptake of both hexoses was linear with respect to concentration. Inhibitor studies indicated that both glucose and galactose enter larvae by a combination of diffusion and a mediated process, and that these hexoses are mutually competitive inhibitors of one another. The uptake of glucose and galactose was also inhibited by α-and β-methyl glucoside, fucose, and phlorizin, but not by several amino acids, certain sugar analogs, nor ouabain. Glucose transport is Na+ sensitive; K+ was demonstrated to be a competitive inhibitor of Na+ activation of glucose uptake. After a 90-min incubation in 5 mM unlabeled glucose, larvae accumulated glucose against an apparent concentration difference. Although larvae appear freely permeable to ouabain, this compound had no apparent effect on glucose accumulation. The results of this study are compared with previous studies on Hymenolepis diminuta, Calliobothrium verticillatum, Hydatigera (Taenia) taeniaeformis, and mammalian systems.  相似文献   

4.
5.
From the roots of Onoseris gnaphalioides in addition to a known 5-methyl coumarin a new type was isolated. The aerial parts contain a glucoside of 4-hydroxy-5-methyl coumarin. From Gerbera ambigua a compound related to the possible precursor of the 5-methyl coumarins was isolated.  相似文献   

6.
The structure of jasminoside, a new secoiridoid glucoside isolated from Jasminum humile var. revolutum. was elucidated to be 10-cinnamoyloxyoleoside 7-methyl ester.  相似文献   

7.
The biochemical basis for the ability of the pterocarpan phytoalexin glycinol (3,6a,9-trihydroxypterocarpan) to inhibit the growth of bacteria was examined. Glycinol at bacteriostatic concentrations (e.g. 50 micrograms per milliliter) inhibits the ability of Erwinia carotovora to incorporate [3H]leucine, [3H]thymidine, or [3H]uridine into biopolymers. Exposure of Escherichia coli membrane vesicles to glycinol at 20 micrograms per milliliter results in inhibition of respiration-linked transport of [14C]lactose and [14C]glycine into the vesicles when either d-lactate or succinate is supplied as the energy source. The ability of E. coli membrane vesicles to transport [14C]α-methyl glucoside, a vectorial phosphorylation-mediated process, is also inhibited by glycinol at 20 micrograms per milliliter. Furthermore, exposure of membrane vesicles to glycinol (50 micrograms per milliliter) at 20°C results in the leakage of accumulated [14C]α-methyl glucoside-6-phosphate. The effects of the phytoalexins glyceollin, capsidiol, and coumestrol, and daidzein, a compound structurally related to glycinol but without antibiotic activity, upon the E. coli membrane vesicle respiration-linked transport of [14C]glycine and of [14C]α-methyl glucoside was also examined. Glyceollin and coumestrol (50 micrograms per milliliter), but not daidzein, inhibit both membrane-associated transport processes. These data imply that the antimicrobial activity of glycinol, glyceollin, and coumestrol are due to a general interaction with the bacterial membrane. Capsidiol (50 micrograms per milliliter) inhibits d-lactate-dependent transport of [14C]glycine but not vectorial phosphorylation-mediated transport of [14C]α-methyl glucoside. Thus, capsidiol's mechanism of antimicrobial action seems to differ from that of the other phytoalexins examined.  相似文献   

8.
In the context of HIV-integrase, dihydroxypyrimidine and N-methyl pyrimidone inhibitors the cellular activity of this class of compounds has been optimized by the introduction of a simple methyl substituent in the α-position of the C-2 side chains. Enhanced passive membrane permeability has been identified as the key factor driving the observed cell-based activity improvement. The rat PK profile of the α-methyl derivative 26a was also improved over its des-methyl exact analog.  相似文献   

9.
The relationships of the changes of cAMP and cGMP concentrations in E. coli varied as a function of experimental conditions. (1) Cells starved for carbon source for a short time period had high cAMP and low cGMP concentrations. Addition of carbon source (succinate, glucose or α-methyl glucoside) led to a decrease in cAMP and an increase in cGMP (bi-directional change). (2) Washed cells starved for glucose for long time periods had low cAMP levels which did not change on glucose addition. Addition of succinate or glucose to such cells led to a transient increase in cGMP levels (uncoupled change). The cGMP concentration peaked at 15 minutes or 1 hour after glucose or succinate addition, respectively. (3) Sham shift-up experiments (addition of α-methyl glucoside to cultures growing in succinate) in E. coli 1100 and CA 8000 showed decreases in cGMP levels in both strains; however, cAMP levels increased in the former (bi-directional change) and decreased in the latter (unidirectional change).  相似文献   

10.
Specificity for the glucose-6-P inhibition site of hexokinase   总被引:4,自引:0,他引:4  
Inhibition of the three animal hexokinase isozymes by the following glucose-6-P analogs has been determined: α-glucose-1,6-P2, α- and β-methyl glucose-6-P, α- and β-glucose-6-P, 2-Cl- and 4F-glucose-6-P, 5-deoxyglucose-6-P, glucose-6-sulfate, and δ-gluconolactone-6-P. Although both anomers of glucose-6-P were about equally active inhibitors, the β-methyl derivative was inactive. Generally the α-methyl and α-PO3? derivatives were good inhibitors though weaker than glucose-6-P except in the case of hexokinase II for which α-glucose-1,6-P2 was an excellent inhibitor.  相似文献   

11.
Studies were carried out on the acceptor specificity of dextransucrase which had been isolated from Streptococcus sanguis 10558. Radioactive acceptors were employed in reactions with cold sucrose and the counts incorporated were taken as a measure of “acceptor activity.” An order of relative activity was found to be polysaccharide > oligosaccharide > glycoside > monosaccharide. An evaluation of the time course of the reaction with α-methyl glucoside, or maltose, showed that a homologous series of oligosaccharides were formed from each. This suggested that the individual members of the series were related as precursors and products. The kinetics of the reaction with different acceptors was studied. All acceptors studied caused an activation of the enzyme and changes in the Km for sucrose. The kinetic constants obtained were also used to compare the various acceptors.  相似文献   

12.
Cyclic adenosine 3′,5′-monophosphate and N6-2′-O-dibutyryl cyclic adenosine 3′,5′-monophosphate increase the accumulation of α-methyl-d-glucoside by cortical slices from rat, rabbit, dog and human kidney. The characteristics of the effect have been studied in rat tissue. At least 90 min of exposure of the tissue to cyclic nucleotide prior to onset of glucoside accumulation is required as well as presence of the cyclic nucleotide during the accumulation phase. Inhibition of protein synthesis does not abolish the effect of N6-2′-O-dibutyryl cyclic adenosine 3′,5′-monophosphate. The cyclic nucleotide causes an increase in the initial entry rate of α-methyl-d-glucoside into cells and an increase in the intracellular steady state concentration. The cyclic nucleotide does not affect the apparent Km of the glucoside entry process but increases the maximum velocity of accumulation.  相似文献   

13.
The peptide N-acetylmuramyl-l-alanyl-d-isoglutamine (MDP), which has adjuvant activities, and 17 of its derivatives and analogs were synthesized and assayed to elucidate the structure necessary for adjuvant activity in induction of experimental allergic encephalomyelitis (EAE) in guinea pigs. The results revealed the importance of the d configuration and the α-carboxamide group of the isoglutaminyl residue of MDP for adjuvant activity. Replacement of the l-alanyl residue of MDP by d-alanine, but not by l-serine or glycine, resulted in a marked decrease in the activity. The β-methyl glycoside of MDP was found to be more active than the α-methyl derivative. 6-O-Stearoyl-N-acetylmuramyl-l-alanyl-d-isoglutamme showed activity.  相似文献   

14.
The mutagenicity of streptozotocin (SZN), 8 of its analogs and N-msthyl-N-nitrosourea (MNU) were compared in Salmonella typhimurium. SZN and its analogs carry MNU attached to the carbohydrate moiety at the C-2 position. The C-1 analogs tested were α- and β-methyl-SZN, α-ethyl-SZN, β-propyl-SZN, α- and β-butyl-SZN; in 2 analogs glucose was replaced by α- or β-inositol. When the ability of these compounds to revert the hisG46 auxotroph was compared, they fell into 4 groups which differed by about 10-fold in mutagenicity from one another. The most mutagenic was (i) SZN, followed by (ii) β-methyl-SZN; (iii) α-methyl-SZN, α-ethyl-SZN, β-propyl-SZN, α- and β-butyl-SZN; (iv) α and β-inositol-MNU. These results suggest that the presence of the glucose moiety is conducive to a high level of mutagenicity of SZN. Alterations of the glucose moiety by addition of larger alkyl groups, especially in the α position lead to decreased mutagenicity. The least mutagenic analogs are those in which the glucose moiety is replaced by inositols.The mutagenicity of SZN, β-methyl-SZN and of β-butyl-SZN was also compared in a mouse tissue-mediated assay. SZN was about 500-fold more mutagenic than its β-methyl analog, while the β-butyl analog was not mutagenic.Depletion of SZN and 4 of its analogs from the medium in presence of bacteria was determined spectrophotometrically. The more mutagenic compounds were depleted more rapidly but the quantitative differences in mutagenicity between these compounds could not be accounted for by depletion alone.  相似文献   

15.
A.M. Jetten 《BBA》1976,440(2):403-411
1. Glycerol-grown cells of Escherichia coli and its mutant uncA, treated with colicin E1 or K, exhibited a several-fold higher level of α-methylglucoside uptake than untreated cells. This stimulation was independent of the carbon source present during the uptake test. In a mutant strain that has elevated levels of α-methylglucoside accumulation the addition of colicin E1 or carbonylcyanide m-chlorophenylhydrazone (CCCP) did not further enhance the uptake.2. Colicins K and E1 decreased the apparent Km for α-methylglucoside uptake significantly and increased the V about twofold. The exit of the glucoside was severely inhibited by the colicins.3. In the presence of colicins, α-methylglucoside is still accumulated via the phosphoenolpyruvate-phosphotransferase system since no accumulation or phosphorylation occurs in an enzyme I mutant. The colicins increased the relative intracellular concentration of phosphorylated α-methylglucoside, possibly by inhibiting the dephosphorylation reaction, and caused an excretion of this compound.4. The results are interpreted as indicating that energization of the membrane has an inhibitory effect on the phosphotransferase system. Possible modes of action are discussed.  相似文献   

16.
(2R,3R)-2 3-Dihydro-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-5-benzofuranpropanol 4′-O-β-d-glucopyranoside [dihydrodehydrodiconiferyl alcohol glucoside], (2R,3R)-2 3-dihydro-7-hydroxy-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-5-benzofuranpropanol 4′-O-β-d-glucopyranoside and 4′-O-α-l-rhamnopyranoside, 1-(4′-hydroxy-3′-methoxyphenyl)-2- [2″-hydroxy-4″-(3-hydroxypropyl)phenoxy]-1, 3-propanediol 1-O-β-d-glucopyranoside and 4′-O-β-d-xylopyranoside, 2,3-bis[(4′-hydroxy-3′-methoxyphenyl)-methyl]-1,4-butanediol 1-O-β-d-glucopyranoside [(?)-seco-isolariciresinol glucoside] and (1R,2S,3S)-1,2,3,4-tetrahydro-7-hydroxy-1-(4′-hydroxy-3′-methoxyphenyl)-6-methoxy-2 3-naphthalenedimethanol α2-O-β-d-xylopyranoside [(?)-isolariciresinol xyloside] have been isolated from needles of Picea abies and identified.  相似文献   

17.
During a chemosystematic survey of 38 representative species of the Juncaceae for leaf and stem flavonoids, the 5-methyl ether of luteolin was discovered for the first time in plants. It occurs both free and as the 7-glucoside; its identity was confirmed by synthesis. Flavone sulphates were also found in the family and the 7-glucosidesulphates of luteolin and chrysoeriol were characterised for the first time. 7,3′,4′-Trihydroxyflavone and its 7-glucoside, not previously reported in the monocotyledons, were found in three species. The presence of luteolin 5-methyl ether or its glucoside in 70% of the species surveyed serves to distinguish the Juncaceae from the morphologically related Centrolepidaceae, Restionaceae and Thurniaceae. Flavone C-glycosides, common in grasses and sedges, were found only in Prionium, a genus which on anatomical grounds is anomalous in the Juncaceae. Among other phenolics detected during the survey, the uncommon 7,8-dihydroxycoumarin, daphnetin, was identified in Juncus effusus and its 8-methyl ether in four Luzula species. Taken together, these chemical findings show that the Juncaceae are very distinctive in their phenolic pattern and confirm the correctness of assigning them an isolated position in a separate order, the Juncales. The results indicate that the Juncaceae are chemically specialized, in spite of the facts that the family has been regarded as ancestral to the Cyperaceae and Gramineae and that they have been assigned a low advancement index by Sporne.  相似文献   

18.
The leaves of Lippia origanoides Kunth are used in culinary as flavoring regional dishes and remedy for gastrointestinal and respiratory diseases in the Amazon region. The circadian and seasonal study of its essential oil was characterized by GC and GC–MS analysis. The oil components were grouped into monoterpenes, sesquiterpenes and phenylpropanoids, during the dry and rainy season. The main constituents were (E)-methyl cinnamate, (E)-nerolidol, p-cymene, 1,8-cineole, carvacrol, α-pinene, (E)-caryophyllene and γ-terpinene, with great variation throughout the year. In this work, we are reporting the occurrence of a new chemotype for L. origanoides, characterized by an essential oil rich in (E)-methyl cinnamate and (E)-nerolidol, with fruity-woody odor, reminiscent of cinnamon, strawberry and wood. The oil yield varied from 1.7% to 4.6%, which is considered a significant value for the production of essential oils on an industrial scale. This new chemotype may have ecological, chemosystematics and taxonomic significance in the management and economic utilization of the species.  相似文献   

19.
Siegfried Huneck 《Phytochemistry》1973,12(10):2497-2500
From the lichen Lobodirina cerebriformis (Mont.) Follm. Roccellaceae) a new chromone glucoside lobodirin (I) has been isolated. The structure, 7-0-β-d-triacetylglucosyl-isoeugenitol, was established by hydrolysis to glucose isoeugenitol by synthesis of acetyllobodirin from α-acetobromoglucose and isoeugenitol with subsequent acetylation.  相似文献   

20.
Larvae of Lucilia cuprina, fed toxic levels of α-methyl DOPA (or other DOPA decarboxylase inhibitors) during the first or second instar, die at the completion of the next moult, soon after exposing their new cuticles. In electron micrographs of newly synthesised cuticle from these treated larvae, the ultrastructure of the lipid-rich outer epicuticle layer appears to be abnormal. This newly formed cuticle of the treated larvae is apparently defective in its role as a water permeability barrier (compared with that of normal larvae), since it permits the free movement of water in both directions. Thus, treated larvae die most probably as a direct result of dehydration. Larvae fed toxic levels of α-methyl DOPA can be rescued from death by simultaneously adding N-acetyldopamine (the cuticular sclerotizing agent) to the food. The rescued larvae are apparently normal in all respects. This suggests that sclerotization is required for the formation of a normal outer epicuticle. Diflubenzuron, which is known to inhibit chitin deposition in the cuticles of a number of different species of insect, also apparently affects chitin deposition in the larval cuticle of L. cuprina. Thus, in electron micrographs of cuticle from larvae fed toxic levels of diflubenzuron the ultrastructure of the chitin-containing endocuticle layer appears to be abnormal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号