首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the conduction velocity of the intracranial portion of the auditory nerve in 3 patients undergoing vestibular nerve section to treat Ménière's disease. The conduction velocity varied from patient to patient, with an average value of 15.1 m/sec. The latency of peak III of the brain-stem auditory evoked potentials (BAEPs) increased by an average of 0.5 msec as a result of exposure of the eighth nerve, and if that increase is assumed to affect the entire length of the auditory nerve (2.6 cm) evenly, then the corrected estimate of conduction velocity would be 22.0 m/sec. Estimates of conduction velocity based on the interpeak latencies of peaks I and II of the BAEP, assuming that peak II is generated by the mid-portion of the intracranial segment of the auditory nerve, yielded similar values of conduction velocities (about 20 m/sec).  相似文献   

2.
Intracellular microelectrode recordings from neurons ofHelix pomatia revealed several local zones of action potential generation both on the soma and on some of the branches of the neurons. Under certain conditions the activity of individual loci of the neuron membrane was synchronized to produce a normal action potential. It is suggested that the somatic membrane of neurons is heterogeneous in structure and consists of separate loci of an electrically excitable membrane, incorporating active and latent pacemaker zones. Neurons ofH. pomatia are characterized by two types of action potential with different triggering mechanisms: one (synaptic) type is generated under the influence of the EPSP, the other (pacemaker) arises through activation of endogenous factors for the neuron (pacemaker potentials). The interaction between synaptic and pacemaker potentials during integrative activity of the neuron is discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 88–94, January–February, 1973.  相似文献   

3.
The compound action potential arising in response to supramaximal stimulation of Aδ- or C-fibers of a cat cutaneous nerve (the saphenous nerve) was investigated by methods improving the signal/noise ratio in the record of the unit evoked response. By the use of optical and computer (BÉSM-3M) methods of coherent signal accumulation followed by averaging, potentials of nerve fibers ranging in amplitude from 20 to 0.05 µV and in duration from 10 to 0.4 msec were distinguished from the apparatus noise. A continuous distribution of nerve fibers by conduction velocity was found over the range from 80 to 0.15 m/sec. The conditions of appearance of low-amplitude action potentials of nerve fibers with a low conduction velocity are discussed.  相似文献   

4.
The bundle of tonic fibres situated at the proximal end of the locust metathoracic extensor tibialis muscle is innervated by the dorsal unpaired median neurone (DUMETi) as well as by the slow excitatory (SETi)) and common inhibitor (CI) neurones. It is not innervated by the fast excitatory neurone (FETi).These fibres contract spontaneously and rhythmically. The myogenic rhythm can be modified by neural stimulation.Spontaneous slow depolarizing potentials resembling the pacemaker potentials of insect cardiac muscle were demonstrated in these fibres.The actions of glutamate on the tonic muscle fibres are not compatible with its being a specific excitatory transmitter. Glutamate can stimulate weak contractions of the muscle, but this action is inhibited when chloride ions are removed from the saline.10?6 M Octapamine hyperpolarizes the tonic fibre membrane. Octopamine, GABA and glutamate all inhibit the myogenic contractions and reduce the force of the neurally evoked contractions.The tonic muscle is very responsive to proctolin. At 5 × 10?11 M proctolin enhances the force and increases the frequency of myogenic contractions. At 10?9 M it depolarizes the muscle membrane potential, and at that and higher concentrations it causes the muscle to contract. At 2 × 10?7 M proctolin induces contractures which resemble those evoked by sustained high-frequency neural stimulation. Iontophoretic experiments show that proctolin receptors occur at localized sites on the tonic fibre membrane.  相似文献   

5.
Beroe muscle fibers are single cells which may be 20-40 micrometer in diameter in mature specimens. Longitudinal muscles may be 6 cm or more long. There is no striation pattern and the muscles were observed to contract in a tonic fashion when stretched. They are innervated by a nerve net, and external recording revealed what are probably nerve net impulses. Intracellular stimulation of the muscles themselves was found to initiate large propagating action potentials which were recorded intracellularly. The action potentials were insensitive to tetrodotoxin (10(-5) g/ml), tetraethylammonium ions (50 mM), MnCl2 (25 mM), and low concentrations of verapamil (2 X 10(-6) g/ml). Full-size action potentials were recorded in sodium- or calcium-deficient salines, but were small and graded in salines deficient in both sodium and calcium. Cable analysis yielded mean values for lambda (1.95 mm), Ri (154 omega cm), Rm (9,253 omega cm2), and tau m (13.9 ms). The conduction velocity depended primarily on fiber diameter and maximum rate of rise of the action potential and could be predicted from the theoretical analysis of Hunter et al. (1975 Prog. Biophys. Mol. Biol. 30: 99-144). The calculated membrane capacity (less than microF/cm2) indicates little infolding of the surface membrane, a conclusion which is in agreement with anatomical studies.  相似文献   

6.
Tonic electrical activity of different groups of afferent fibers of the intact vagus nerve arising in stretch receptors of the lungs was investigated in acute experiments on cats. The method of coincidence of recorded action potentials was used: Recordings were taken from two points of the nerve, the flow of impulses was delayed by the time taken for their conduction along the nerve between the channels in the one that received it first, and impulses from both channels were then led to a coincidence unit. Fibers with a range of conduction velocities from 8 to 65 m/sec were shown to participate in the transmission of tonic activity from stretch receptors of the lungs to the CNS. Two groups of most active afferent fibers with conduction velocities within the range 35–46 m/sec (mean 41±2.5 m/sec) and 26–34 m/sec (mean 29.4±1.4 m/sec) were distinguished.  相似文献   

7.
Pyriformis muscles of Rana temporaria were completely or partially denervated by cutting the sciatic nerve or some of the small nerve branches entering the muscle. One stimulating and one to three recording microelectrodes were inserted along the fibres in order to compare the electrical activity at these points. In an early period following denervation action potentials of variable size and shape could be observed; these action potentials were often composed of two, sometimes of three or four, components. The size of individual components depended on the position of the recording microelectrode. Individual components could occasionally be triggered separately by adjusting the strength of the stimulating current pulse; propagation of these "all or none" responses was absent. In other fibres one component of the action potential could trigger another one several millimetres apart, thus indicating propagation. Conduction velocities were approximately 0.4 m/s. In partially denervated slow fibres, endplate potentials were confined to one lateral segment of the fibres, while the action potential occupied the denervated part of the membrane. The amplitudes of endplate and action potentials varied inversely with distance. Rough estimates of the length constant of the slow fibre membrane were calculated from the spatial decay of action potentials, endplate potentials and hyperpolarizing electrotonic potentials; mean values obtained were 2.5, 4.8 and 7.7 mm respectively. The results suggest that following denervation Na channels are built into discrete areas of the slow fibre membrane and that this process depends on the amount of denervation in individual fibres.  相似文献   

8.
This study explores in detail the functional consequences of subtle retraction and detachment of myelin around the nodes of Ranvier following mild-to-moderate crush or stretch mediated injury. An equivalent electrical circuit model for a series of equally spaced nodes of Ranvier was created incorporating extracellular and axonal resistances, paranodal resistances, nodal capacitances, time varying sodium and potassium currents, and realistic resting and threshold membrane potentials in a myelinated axon segment of 21 successive nodes. Differential equations describing membrane potentials at each nodal region were solved numerically. Subtle injury was simulated by increasing the width of exposed nodal membrane in nodes 8 through 20 of the model. Such injury diminishes action potential amplitude and slows conduction velocity from 19.1 m/sec in the normal region to 7.8 m/sec in the crushed region. Detachment of paranodal myelin, exposing juxtaparanodal potassium channels, decreases conduction velocity further to 6.6 m/sec, an effect that is partially reversible with potassium ion channel blockade. Conduction velocity decreases as node width increases or as paranodal resistance falls. The calculated changes in conduction velocity with subtle paranodal injury agree with experimental observations. Nodes of Ranvier are highly effective but somewhat fragile devices for increasing nerve conduction velocity and decreasing reaction time in vertebrate animals. Their fundamental design limitation is that even small mechanical retractions of myelin from very narrow nodes or slight loosening of paranodal myelin, which are difficult to notice at the light microscopic level of observation, can cause large changes in myelinated nerve conduction velocity.  相似文献   

9.
The membrane potentials of single smooth muscle fibers of various regions of the stomach were measured, and do not differ from those measured in intestinal muscle. Spontaneous slow waves with superimposed spikes could be recorded from the longitudinal and circular muscle of the antrum. The development of tension was preceded by spikes but often tension appeared only when the slow waves were generated. Contracture in high K solution developed at a critical membrane potential of -42 mv. MnCl2 blocked the spike generation, then lowered the amplitude of the slow wave. On the other hand, withdrawal of Na+, or addition of atropine and tetrodotoxin inhibited the generation of most of the slow waves but a spike could still be elicited by electrical stimulation. Prostigmine enhanced and prolonged the slow wave; acetylcholine depolarized the membrane without change in the frequency of the slow waves. Chronaxie for the spike generation in the longitudinal muscle of the antrum was 30 msec and conduction velocity was 1.2 cm/sec. The time constant of the foot of the propagated spike was 28 msec. The space constants measured from the longitudinal and circular muscles of the antrum were 1.1 mm and 1.4 mm, respectively.  相似文献   

10.
A functional muscle free flap with multiple muscle segments that could be oriented independently to produce different force vectors would be beneficial in facial reanimation and upper extremity reconstruction. The serratus anterior muscle has this potential because two or more individual muscle slips can be transferred on a single vascular pedicle. Although serratus anterior muscular anatomy has been studied previously, little attention has been given to the intramuscular anatomy. Muscle slips 5 through 9 (and 10, if present) in 50 specimens from 27 cadavers were studied following intraarterial latex injection. Eight specimens were injected with a radiopaque material (latex/diatrizoate/lead mixture) for x-ray delineation of the intramuscular vascular pattern. Slips 5 through 9 are consistently supplied by a single dominant branch of the thoracodorsal artery and innervated by the long thoracic nerve. Dissection revealed that the long thoracic nerve and its branches invariably follow the artery and divide proximal to the corresponding arterial division. There is a consistent vascular pattern to each muscle slip, in which the serratus artery gives rise to common slip arteries, each of which supplies adjacent muscle slips. The mean length of a muscle slip from its origin on the rib periosteum to the division of the common slip artery is 9.6 cm. These findings imply that the slips may be separated to the level of these common slip arteries, with up to five slips transferred on a single neurovascular pedicle and each slip oriented independently to provide multiple muscle force vectors. With these possibilities, the reconstructive surgeon may be able to restore more natural facial animation and better intrinsic muscle function in the upper extremity.  相似文献   

11.
Previous histological studies showed that in addition to a sinus node, an atrioventricular (AV) node, an AV bundle, left and right bundle branches, birds also possess a right AV‐Purkinje ring that is located in the atrial sheet of the right muscular AV‐valve along all its base length. The functionality of the AV‐Purkinje ring is unknown. In this work, we studied the topology of pacemaker myocytes in the atrial side of the isolated chicken spontaneously contracting right muscular AV‐valve using the method of microelectrode mapping of action potentials. We show that AV‐cells having the ability to show pacemaking reside in the right muscular AV‐valve. Pacemaker action potentials were exclusively recorded close to the base of the valve along its whole length from dorsal to the ventral attachment to the interventricular septum. These action potentials have much slower rate of depolarization, lower amplitude, and higher diastolic depolarization than action potentials of Purkinje (conducting) cells. We conclude the right AV‐valve has a ring bundle of pacemaker cells (but not Purkinje cells) in the adult chicken heart. J. Morphol. 277:363–369, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Touch (T) sensory neurons in the leech innervate defined regions of skin and synapse on other neurons, including other T cells, within the ganglionic neuropil. The cells' receptive fields in the periphery are comprised of a central region, innervated by thick axons, and adjoining regions (minor fields) innervated by thinner axons. Secondary branches, known to be sites of synapses, emerge from the thinner and thicker axons. Pairs of T cells appear to make up to 200 separate contacts distributed within the neuropil. When the T cell is hyperpolarized, as occurs during natural stimulation of the cell, action potentials generated in the minor field and travelling into the ganglion along the thin axons may fail to conduct at central branch points. Evidence is presented, using axon conduction block and laser axotomy of cells filled with 6-carboxy-fluorescein, that synapses between separate groups of branches can function independently. Thus, selective activation of branches of the thin anterior axon produced a synaptic potential 36 +/- 6% of control amplitude, which was consistent with counts of 39 +/- 6% of contacts made by these branches. Laser axotomy of postsynaptic neurons showed that the anterior contacts indeed made the principal or only contacts activated during anterior conduction block. The results show that conduction block can modulate transmission within the ganglion, and it operates by silencing particular contacts between cells.  相似文献   

13.
The feline anterior sartorius is a long strap-like muscle composed of short muscle fibers. Nerve branches that enter this muscle contain the axons of motor units whose constituent muscle fibers are distributed asymmetrically within the muscle. In the present study, twitch and tetanic isometric contractions were evoked by stimulating individual nerve branches while muscle force was recorded and intramuscular length changes were monitored optically by the movement of reflective markers on the muscle. Contractions elicited by stimulating the parent nerve produced little change in the positions of the surface markers. Contractions elicited by stimulating the proximally or distally directed nerve branches caused the muscle to shorten at the end closest to the nerve branch and lengthen at the opposite end. Some muscles were supplied by a centrally directed nerve branch whose stimulation produced variable effects: in some cases a portion of the muscle shortened whereas the rest lengthened, but in other cases, the positions of the surface markers showed little change. The intramuscular length changes produced by stimulating single nerve branches were greater during isometric contractions at short whole-muscle lengths than at long whole-muscle lengths. The twitch and tetanic length-tension relationships obtained by stimulating the individual nerve branches were not congruent with the length-tension relationship produced when the parent nerve was stimulated. At short whole-muscle lengths, stimulation of a single nerve branch generated only a small fraction of the force that could be generated by the muscle when the parent nerve was stimulated. As whole-muscle length increased, an increased fraction of total muscle force could be generated by stimulating a single nerve branch. The results suggest that a complex relationship between passive and active elements contributes to the total muscle force and depends on the distribution of active and passive muscle units throughout the muscle.  相似文献   

14.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

15.
The effects of denervation on the electrical membrane properties of fish red muscle were investigated. Forty to fifty hours after denervation, miniature endplate potentials disappeared abruptly and field stimulation of the nerve within the muscle failed to evoke endplate potentials, indicating that transmission failure occurred at this time. The membrane resistance of the red muscle fibre increased after denervation. Normally innervated fish red muscles do not generate action potentials in response to either nerve or direct muscle stimulation. However, approximately 3 weeks after nerve sectioning, action potentials could be induced in the muscles. The action potential was sodium-dependent, and was sensitive to tetrodotoxin. Actinomycin D injected in the early phase after operation suppressed the induction of the action potential. These results indicate that RNA synthesis is preliminary to the induction of the action potential mechanism, and that this mechanism is under neural control.  相似文献   

16.
Effects of reduction in potassium conductance on impulse conduction were studied in squid giant axons. Internal perfusion of axons with tetraethylammonium (TEA) ions reduces G K and causes the duration of action potential to be increased up to 300 ms. This prolongation of action potentials does not change their conduction velocity. The shape of these propagating action potentials is similar to membrane action potentials in TEA. Axons with regions of differing membrane potassium conductances are obtained by perfusing the axon trunk and one of its two main branches with TEA after the second branch has been filled with normal perfusing solution. Although the latter is initially free of TEA, this ion diffuses in slowly. Up until a large amount of TEA has diffused into the second branch, action potentials in the two branches have very different durations. During this period, membrane regions with prolonged action potentials are a source of depolarizing current for the other, and repetitive activity may be initiated at transitional regions. After a single stimulus in either axon region, interactions between action potentials of different durations usually led to rebound, or a short burst, of action potentials. Complex interactions between two axon regions whose action potentials have different durations resembles electric activity recorded during some cardiac arrhythmias.  相似文献   

17.
A new method for estimating the distribution of conduction velocities (DCV) of peripheral nerve fibers has been developed. It also enables estimation of single nerve fiber action potential (SFAP), which agrees with the physiological knowledge. Two compound nerve action potentials (CAPs) elicited by electrical stimulation of a nerve bundle were recorded at different conduction distances. The distances between the stimulation and recording electrodes were measured on the skin surface along the nerve bundle. Starting with an arbitrary SFAP, the first estimated DCV was calculated from a CAP by the regularized non-negative least squares method. The next SFAP was then calculated by deconvolution of the other CAP and the estimated DCV. A lowpass filter with an appropriate cutoff frequency was used to obtain better conversion. The process was iterated until the CAP error defined as /CAP(calculated)-CAP/(2) was small enough. The conduction distances contained errors in measurement, especially in the distal segment, that distorted the estimated results. The Fibonacci search, therefore, was adopted to optimize the distance according to the CAP error. The accuracy of this method was demonstrated by a simulation study performed with two CAPs calculated from an arbitrary bimodal DCV and a biphasic SFAP to which a Gaussian white noise was added. The reliability of this method was checked in normal subjects by recording a pair of CAPs elicited by stimulation of the median nerve at the wrist and the elbow.  相似文献   

18.
Although the neurogenic nature of the heartbeat in adult Limulushas been well studied and is undisputed, we contest the reportsthat the embryonic heartbeat is myogenic. This notion, basedon histological, calorimetric, and drug studies, is challengedby evidence from transmission electron microscopy and intracellularrecording. The first, infrequent heartbeats occur at the timeof the third embryonic molt when only the anterior portion ofthe heart tube is formed and functional. Contractions extendfurther caudad concomitant with lumen formation in the rearheart segments. All lumen-containing heart sections that wehave examined, from the earliest on, have revealed neural elementsin a bundle at the dorsal midline of the heart. Axons 1/m orless in diameter are prevalent: vesicle-filled terminal-likeareas adjacent to muscle cells are often present as well, evenin the youngest beating hearts. Myocardial cells show excitatorypostsynaptic potentials as soon as heartbeat has begun, butthey often fail to summate in the earlier stages so that contractionsare few. Resting potentials remain at –65 to –70mV from the onset of heartbeat until well after the larva hashatched, but heartbeat frequency, regularity, depolarizationheight (never overshooting) and duration all increase as embryosget older, probably as innervation of muscle fibers increasesand coordination between pacemaker and follower neurons improves.We have found no evidence that embryonic Limulus heart passesthrough a myogenic phase and believe that it is neurally drivenfrom the beginning.  相似文献   

19.
Morphology and recordings of electrical activity of Kuruma shrimp (Penaeus japonicus) giant medullated nerve fibers were carried out. A pair of giant fibers with external diameter of about 120 μ and 10 μ in myelin thickness were found in the ventral nerve cord. The diameter of the axon is about 10 μ. Thus there is a wide gap between the axon and the external myelin sheath. Each axon is doubly coated directly by Schwann cells and indirectly by the myelin sheath layer which is produced by those Schwann cells. Impulse conduction velocities of these giant fibers showed a range between 90–210 m/sec at about 22°C. Large action potentials (up to 113 mV, rise time of 0.16–0.3 msec, maximum rate of rise of 650–1250 V/sec, half decay time of 0.2–0.3 msec, maximum rate of fall of 250–450 V/sec and total duration of less than 1.5 msec) could be obtained by inserting microelectrodes or by longitudinal insertion of 25 μ diameter capillary electrodes into the gap but no DC-potential difference was observed across the myelin sheath. Transmyelin electrical parameters were very favorable for fast impulse conduction: myelin resistance of 3 × 104 Ω cm2; time constant of 0.38 msec; myelin capacitance of 1.35 × 10?8 F/cm2; gap fluid resistivity of 23 Ω cm. The existence of nodes of Ranvier could not be demonstrated morphologically, but electrophysiological evidence suggests that a type of saltatory conduction occurs in these giant fibers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号