首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants that grow and thrive under abiotic stress often do so with the help of endophytic microorganisms. Although nitrogen‐fixing (diazotrophic) endophytes colonize many wild plants, these natural relationships may be disrupted in cultivated crop species where breeding and genotype selection often occur under conditions of intensive fertilization and irrigation. Many energy crops including corn may still benefit from diazotrophic endophyte inoculations allowing for more efficient biomass production with less input of petroleum‐derived fertilizer. A selection of diazotrophic endophytes isolated from willow (Salix sitchensis, Sitka willow) and poplar (Populus trichocarpa, black cottonwood) growing in nutrient‐poor river sides were used as inoculum in three experiments testing the effect on plant growth and leaf level physiology of a sweet corn variety under various levels of applied nitrogen fertilizer. We report substantial growth promotion with improved leaf physiology of corn plants in response to diazotrophic endophyte inoculations. Significant gains of early biomass with a greater root : shoot ratio were found for plants receiving endophytic inocula over the uninoculated control groups regardless of the nitrogen level. Furthermore, inoculated plants exhibited consistently higher rates of net CO2 assimilation than did those without endophytic inoculation. These results have beneficial implications for enhanced plant growth in a low‐input system on nutrient‐poor sites. The immediate increase of root mass observed in endophyte inoculated plants has the potential to provide better establishment and early growth in resource‐limited environments. The initial results of this study also indicate that the beneficial effect from endophytes isolated from poplar and willow species is not restricted to the species from which they were initially isolated.  相似文献   

2.
For effective remediation of contaminants, plant-endophyte partnership is a promising field to be explored. Generally endophytic bacteria assist their host plant by withstanding the stress induced by the contaminants. The objective of this study was to explore the suitability of plant-bacterial partnership for chlorpyrifos (CP) remediation using ryegrass and a CP degrading endophyte, Mesorhizobium sp. HN3 which belongs to plant growth promoting rhizobia. The inoculated yfp-tagged Mesorhizobium sp. HN3 efficiently colonized in the rhizosphere, enhanced plant growth and degradation of CP and its metabolite 3,5,6 trichloro-2-pyridinol (TCP). Significantly lower CP residues were observed in the roots and shoots of plants vegetated in inoculated soil which might be attributed to the efficient root colonization of HN3yfp. These results suggest the involvement of Mesorhizobium sp. HN3yfp in CP degradation inside the roots and rhizosphere of plants and further emphasize on the effectiveness of endophytic bacteria in stimulating the remediation of pesticide contaminants. This is the first report which demonstrates the efficacy of bacterial endophyte for degradation of CP residues taken up by the plant and enhanced remediation of chlorpyrifos contaminated soil.  相似文献   

3.
This study was planned to enhance the growth and productivity of common bean plants (Phaseolus vulgaris L.) grown under different water stress level by using different microorganisms as bio-fertilizer agents. Water stress is a international problem that effects on morphological, functional and chemical processes of plants occasioning in altering growth, yield and water relations of economic plants like common bean plants. The interaction effect between water stress (WW as recommended irrigation after 6 days, WS1 after 12 days and WS2 after 18 days) and inoculation with different microorganisms [AMF (Glomus mosseae) and endophytic bacteria, (Bacillus amyloliquefaciens)] used alone or in mixed was examined on the development and productivity of common bean plants. Mutual application of AMF and endophytic bacteria significantly increased the average values of most of growth, water relations (photosynthetic rate, transpiration rate and stomatal conductance) and yield parameters of common bean plants grown at WS1 and WS2 comparing with non-colonized plants. In this connection, colonization with AMF and endophytic bacteria with WS1 are the greater pods number, pod length, pods weight, 100 seeds weight, Yield by ton /Fed and water-use efficiency (WUE) by ton/ m3 than other treatments. Common bean yielded seeds had significantly increased nutrients content (nitrogen, potassium, phosphorus, magnesium and calcium), vitamin B1, Folic acid, crude protein and crude fibers at AMF + endophytic bacteria under second water stress (WS1) when compared to other treatments.  相似文献   

4.
High densities of endophytic bacteria were found in plant material from poplar, larch and spruce that had been micropropagated for at least 5 years. The majority of these bacteria were assigned to the genus Paenibacillus based on the sequencing of the 16S rRNA genes. Other endophytic bacteria such as Methylobacterium, Stenotrophomonas or Bacillus could also be found but only in some tissue cultures. Certain species or strains of Paenibacillus, especially those with a close relationship to P. humicus, seemed to accumulate under in vitro conditions without visible negative influences on the plant’s development. Poplar microcuttings inoculated with the endophytic Paenibacillus isolate 22 showed significantly more roots per cutting and higher root length in comparison to the control plants after 3 weeks.  相似文献   

5.
Colonization ability of the two endophytic bacteria, isolated from surface sterilized roots of upland cultivated rice viz., Rhizobium sp. and Burkholderia sp., was compared after genetically tagging them with a constitutively expressing green fluorescent protein gene (gfp/gusA). Confocal laser scanning microscopy (CLSM) of gnotobiotically grown seedlings of Narendradhan 97, inoculated with gfp/gusA-tagged endophytes, revealed that both Rhizobium sp. and Burkholderia sp. colonized the intercellular spaces in the root cortex when inoculated separately. Colonization by gfp/gusA-tagged Rhizobium sp. was severely inhibited when co-inoculated with an equal number (106 cfu ml−1) of wild type Burkholderia sp. Burkholderia sp. was a more aggressive endophytic colonizer of rice than Rhizobium sp. The potential of using gfp/gusA reporter and CLSM as tools in evaluating competitive ability of colonization among endophytes is demonstrated in this study.  相似文献   

6.
The association of endophytic bacteria with their plant hosts has a beneficial effect for many different plant species. Our goal is to identify endophytic bacteria that improve the biomass production and the carbon sequestration potential of poplar trees (Populus spp.) when grown in marginal soil and to gain an insight in the mechanisms underlying plant growth promotion. Members of the Gammaproteobacteria dominated a collection of 78 bacterial endophytes isolated from poplar and willow trees. As representatives for the dominant genera of endophytic gammaproteobacteria, we selected Enterobacter sp. strain 638, Stenotrophomonas maltophilia R551-3, Pseudomonas putida W619, and Serratia proteamaculans 568 for genome sequencing and analysis of their plant growth-promoting effects, including root development. Derivatives of these endophytes, labeled with gfp, were also used to study the colonization of their poplar hosts. In greenhouse studies, poplar cuttings (Populus deltoides × Populus nigra DN-34) inoculated with Enterobacter sp. strain 638 repeatedly showed the highest increase in biomass production compared to cuttings of noninoculated control plants. Sequence data combined with the analysis of their metabolic properties resulted in the identification of many putative mechanisms, including carbon source utilization, that help these endophytes to thrive within a plant environment and to potentially affect the growth and development of their plant hosts. Understanding the interactions between endophytic bacteria and their host plants should ultimately result in the design of strategies for improved poplar biomass production on marginal soils as a feedstock for biofuels.Endophytic bacteria are bacteria that reside within the living tissue of their host plants without substantively harming it (19, 26). They are ubiquitous in most plant species, latently residing or actively colonizing the tissues. The diversity of cultivable bacterial endophytes is exhibited not only in the variety of plant species colonized but also in the many taxa involved, with most being members of common soil bacterial genera such as Enterobacter, Pseudomonas, Burkholderia, Bacillus, and Azospirillum (21, 23). Endophytic bacteria have several mechanisms by which they can promote plant growth and health. These mechanisms are of prime importance for the use of plants as feedstocks for biofuels and for carbon sequestration through biomass production. This is vital when considering the aim of improving biomass production of marginal soils, thus avoiding competition for agricultural resources, which is one of the critical socioeconomic issues of the increased use of biofuels.Like rhizosphere bacteria, endophytic bacteria have been shown to have plant growth-promoting activity that can be due to the production of phytohormones, enzymes involved in growth regulator metabolism, such as ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, auxins, indole-3-acetic acid (IAA), acetoin, 2,3-butanediol, cytokinins (3, 13-15, 20, 30), or combinations thereof. They can also improve plant growth via the fixation of nitrogen (diazotrophy) (9, 38).Typical examples of marginal soils include soils that have deteriorated due to the presence of heavy metals or organic contaminants. These are often soils with a history of industrial, military, or mining activities. Endophytic bacteria can assist their host plants in overcoming phytotoxic effects caused by environmental contamination (5, 11, 12, 36), which is of direct relevance for waste management and pollution control via phytoremediation technologies. When nonsterile poplar cuttings (Populus trichocarpa × deltoides cv. Hoogvorst) were inoculated with the endophyte Burkholderia cepacia VM1468, a derivative of B. cepacia Bu72 which possesses the pTOM-Bu61 plasmid coding for a constitutively expressed toluene degradation pathway, it was observed that in addition to decreasing the phytotoxicity and releasing toluene, strain VM1468 also considerably improved the growth of poplar trees in the absence of toluene (36). This observation, which was the first of its kind for poplar trees, prompted us to further study the poplar tree-associated beneficial endophytic bacteria in order to improve the overall performance of poplar trees, as it can enhance multiple applications, including biomass production, carbon sequestration, and phytoremediation. This was done by screening endophytic bacteria for their plant growth-promoting capabilities toward poplar trees by performing colonization studies with gfp-labeled strains, by examining their metabolic properties, and by initiating the genome sequencing of several strains.  相似文献   

7.
The small cactus Mammillaria fraileana is a pioneer rock-colonizing plant harboring endophytic bacteria with the potential for nitrogen fixation and rock weathering (phosphate solubilization and rock degradation). In seeds, only a combination of culture-independent methods, such as fluorescence in situ hybridization, scanning electron microscopy, and fluorescence vital staining, detected significant amounts of non-culturable, but living, endophytic bacteria distributed underneath the membrane covering the embryo, in the undifferentiated tissue of the embryo, and in the vascular tissue. Large populations of culturable endophytic bacteria were detected in stems and roots of wild plants colonizing rocks in the southern Sonoran Desert, but not in seeds. Among 14 endophytic bacterial isolates found in roots, four isolates were identified by full sequencing of their 16S rRNA gene. In vitro tests indicated that Azotobacter vinelandii M2Per is a potent nitrogen fixer. Solubilization of inorganic phosphate was exhibited by Pseudomonas putida M5TSA, Enterobacter sakazakii M2PFe, and Bacillus megaterium M1PCa, while A. vinelandii M2Per, P. putida M5TSA, and B. megaterium M1PCa weathered rock by reducing the size of rock particles, probably by changing the pH of the liquid media. Cultivated seedlings of M. fraileana, derived from disinfected seeds and inoculated with endophytic bacteria, showed re-colonization 105 days after inoculation. Their densities decreased from the root toward the stem and apical zones. Functional traits in planta of culturable and non-culturable endophytic bacteria in seeds remain unknown.  相似文献   

8.
The use of constructed wetlands (CWs) is a promising approach for the remediation of wastewater. The present study aims to develop a plant–bacteria system within CWs for the efficient remediation of tannery effluent. In a vertical-flow CW vegetated with Leptochloa fusca (Kallar grass), a consortium of three different endophytic bacteria, Pantoea stewartii ASI11, Microbacterium arborescens HU33, and Enterobacter sp. HU38, was used for bioaugmentation. CWs vegetated with only L. fusca had the potential to remediate tannery effluent, but augmentation with endophytic bacteria enhanced the growth of L. fusca while aiding in the removal of both organic and inorganic pollutants from the tannery effluent. Moreover, the bacterial augmentation decreased toxicity in the effluent as well. A higher number of chromium (Cr)-resistant bacteria were isolated from the rhizosphere and endosphere of L. fusca inoculated with the endophytes than from uninoculated plants. Due to promising bioremediation and detoxification potential of L. fusca, it is reported for the first time as a potential candidate to develop effective CWs for the remediation of polluted effluents in combination with pollutant-degrading endophytic bacteria.  相似文献   

9.
Balloon flower (Platycodon grandiflorum) is widely cultivated vegetable and used as a remedy for asthma in East Asia. Experiments were conducted to isolate endophytic bacteria from 1-, 3-, and 6-year-old balloon flower roots and to analyze the enzymatic, antifungal, and anti-human pathogenic activities of the potential endophytic biocontrol agents obtained. Total 120 bacterial colonies were isolated from the interior of all balloon flower roots samples. Phylogenetic analysis based on 16S rRNA gene sequences showed that the population of ‘low G + C gram-positive bacteria’ (LGCGPB) gradually increased 60.0–80.0% from 1 to 6 years balloon flower sample. On the other hand, maximum hydrolytic enzyme activity showing endophytic bacteria was under LGCGPB, among the bacterial strains, Bacillus sp. (BF1-1 and BF3-8), Bacillus sp. (BF1-2 and BF3-5), and Bacillus sp. (BF1-3, BF3-6, and BF6-4) showed maximum enzyme activities. Besides, Bacillus licheniformis (BF3-5 and BF6-6) and Bacillus pumilus (BF6-1) showed maximum antifungal activity against Phytophthora capsici, Fusarium oxysporum, Rhizoctonia solani, and Pythium ultimum. Moreover, Bacillus licheniformis was found in 3 and 6 years balloon flower roots, but Bacillus pumilus was found only in 6 years sample. It is presumed that older balloon flower plants invite more potential antifungal endophytes for there protection from plant diseases. In addition, Bacillus sp. (BF1-2 and BF3-5) showed maximum anti-human pathogenic activity. So, plant age is presumed to influence diversity of balloon flower endophytic bacteria.  相似文献   

10.
Abstract

Microbe-assisted phytoremediation depends on competent root-associated microorganisms that enhance remediation efficiency of organic compounds. Endophytic bacteria are a key element of the root microbiome and may assist plant degradation of contaminants. The aim of this study was to investigate the application of four hydrocarbon-degrading endophytic strains previously isolated from an oil sands reclamation area. Strains EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 (Pantoea sp.), and EA6-5 (Pseudomonas sp.) were inoculated in white sweet clover growing on soils amended with diesel at 5,000, 10,000, and 20,000?mg·kg?1. Our results indicate that plant growth inhibition caused by diesel fuel toxicity was overcome in inoculated plants, which showed significantly higher plant biomass. Analysis of soil F2 and F3 hydrocarbon fractions also revealed that these soils were remediated by inoculated plants when diesel was applied at 10,000?mg·kg?1 and 20,000?mg·kg?1. In addition, quantification of hydrocarbon-degrading genes suggests that all bacterial strains successfully colonized sweet clover plants. Overall, the endophytic strain EA6-5 (Pseudomonas sp.), which harbored hydrocarbon-degrading genes, was the most effective candidate in phytoremediation experiments and could be a strategy to increase plant tolerance and hydrocarbon degradation in contaminated (e.g., diesel fuel) soils.  相似文献   

11.
Many characteristics make Miscanthus × giganteus an appealing bioenergy feedstock in temperate North America, but the degree to which this plant species interacts with nitrogen‐fixing bacteria remains understudied. Demonstration of associative nitrogen fixation in Miscanthus would support management with minimal fertilizer inputs that is demanded of long‐term biofuel sustainability. As a first step, we investigate the role of biological nitrogen fixation in nutrition of immature Miscanthus and temporal dynamics of plant‐associated nitrogen fixers. The contribution of biological nitrogen fixation to plant nitrogen acquisition in first year Miscanthus × giganteus was estimated using a yield‐dependent 15N isotope dilution model. Temporal changes in plant‐associated diazotroph relative abundance and community composition were analyzed with quantitative PCR and terminal restriction fragment length polymorphism of the nifH gene in rhizome and rhizosphere DNA extracts. We estimate 16% of new plant nitrogen was derived by nitrogen fixation during the growing season, despite non‐limiting soil nitrogen. Diazotroph communities from rhizome and rhizosphere changed with plant development and endophytic nitrogen fixers had significantly higher relative abundance and altered community composition at sampling dates in July and August. This study provides evidence for a small, but measurable, benefit of associative nitrogen fixation to first year Miscanthus × giganteus that underscores the potential and need for selection of breeding lines that maximize this trait.  相似文献   

12.
Very little is known about the physiological interactions between plants and endophytic bacteria. We investigated the impact of three endophytic bacteria, Bacillus pumilus 2-1, Chryseobacterium indologene 2-2, and Acinetobacter johnsonii 3-1, on the photosynthetic capacity and growth of sugar beet. Endophyte-free plants were obtained first and infected with the bacteria. Measurements of total chlorophyll content revealed very significant differences between endophyte-free beet plants and some infected by endophytic bacteria. The maximum photochemical yield (Fv/Fm) was used to determine any photosynthetic effect on plants caused by biotic or abiotic factors. After 30 days of growth, there was significantly higher Fv/Fm for endophyte-infected than endophyte-free plants. The light response curves of beet showed that photosynthetic capacity was significantly increased in endophyte-infected plants. Photosynthesis of endophyte-free plants was saturated at 1,300 μmol m−2 s−1, whereas endophyte-infected plants were not saturated at the irradiance used. The effect seemed to be due to promotion of electron transport in the thylakoid membranes. Promotion of photosynthetic capacity in sugar beet was due to increased chlorophyll content, leading to a consequent increased carbohydrate synthesis. It is possible that the increased maximum yield of photosynthesis in sugar beet was promoted by phytohormones and produced by the bacteria.  相似文献   

13.
Koval'skaya  N. Yu.  Lobakova  E. S.  Umarov  M. M. 《Microbiology》2001,70(5):606-612
The treatment of rape plants grown in nonsterile soil with 2,4-dichlorophenoxyacetic acid (auxin-like growth-promoting substance) or their inoculation with the bacterial association Micrococcussp. + Rhodococcussp. and/or with the mixed nitrogen-fixing culture Azotobacter nigricans+ Bacillussp. led to the formation of paranodules on the rape roots. The introduced bacteria were detected both in the intercellular space and inside the cells of the paranodules and the rape roots. The nitrogen-fixing activity of the paranodulated plants was two times higher than that of the inoculated plants lacking paranodules and five times higher than that of the control (i.e., not inoculated) plants. The paranodulation led to a 40% increase in the crop yield of rape plants and provided for a statistically significant increase in the total nitrogen as well as protein nitrogen contents of the plants.  相似文献   

14.
Soybean plants require high amounts of nitrogen, which are mainly obtained from biological nitrogen fixation. A field experiment was conducted by soybean (Glycine max) genotypes, growing two varieties (Shohag and BARI Soybean6) and two advanced lines (MTD10 and BGM02026) of soybean with or without Rhizobium sp. BARIRGm901 inoculation. Soybean plants of all genotypes inoculated with Rhizobium sp. BARIRGm901 produced greater nodule numbers, nodule weight, shoot and root biomass, and plant height than non-inoculated plants. Similarly, inoculated plants showed enhanced activity of nitrogenase (NA) enzyme, contributing to higher nitrogen fixation and assimilation, compared to non-inoculated soybean plants in both years. Plants inoculated with Rhizobium sp. BARIRGm901 also showed higher pod, stover, and seed yield than non-inoculated plants. Therefore, Rhizobium sp. BARIRGm901 established an effective symbiotic relationship with a range of soybean genotypes and thus increased the nodulation, growth, and yield of soybean grown in gray terrace soils in Bangladesh.  相似文献   

15.
Poplar canker is a kind of serious disease of poplar branches in China and all over the world. In China, the poplar canker is mainly caused by three pathogens of Cytospora chrysosperma, Phomopsis macrospora and Fusicoccum aesculi, which is hard to control. A collection of 1,013 bacterial isolates obtained from the poplar stems in 9 regions of China. Of all the strains tested, 13 bacterial isolates inhibiting three pathogens (C. chrysosperma, P. macrospora and F. aesculi) growth were selected, whose inhibition zone width were more than 15 mm. Strain JK-SH007 exhibited the most obvious antagonistic activity. Besides, this strain also produced extracellular hydrolytic enzymes (β-1, 3-glucanases, proteases and chitinases). This bacterium had no pathogenicity and was identified as Burkholderia cepacia complex (Bcc) genomovar IX: B. pyrrocinia by the Biolog identification system combined with 16S rDNA and recA gene sequence analysis and morphological, physiological and biochemical methods characteristics. B. pyrrocinia JK-SH007 exhibited the highest biocontrol and colonization capabilities. After 3 months, plant height and ground diameter in poplar seedlings inoculated with JK-SH007 were significantly (P < 0.05) higher than in control (non-inoculated) plants. The selected B. cepacia isolate colonized poplar stems and leaves endophytically, promoting plant growth and suppressing pathogenic activities of C. chrysosperma, P. macrospora and F. aesculi on seedling of poplar. This is one of the few reports dealing with isolation and characterization of B. cepacia strains with biocontrol activity against the poplar canker. The endophytic isolate also has the potential to perform as plant growth promoter.  相似文献   

16.
Phytoextraction is a technique using a hyperaccumulator to remove heavy metals from soil. The efficiency of heavy metal uptake can be enhanced by the inoculation of endophytes. In this study, we isolated and identified 23 endophytes from Chromolaena odorata, a cadmium (Cd) hyperaccumulator that consisted of 19 bacteria, 2 actinomycetes and 2 fungi. All bacteria and fungi could produce at least 1 plant growth promoting factors. However, only 4 bacterial isolates; Paenibacillus sp. SB12, Bacillus sp. SB31, Bacillus sp. LB51, and Alcaligenes sp. RB54 showed the highest minimum inhibitory concentration (MIC) value (2.9 mM), followed by Exiguobacterium sp.RB51 (1.7 mM). Then, these 5 high-MIC bacteria and 1 low-MIC bacterium, Bacillus sp. LB15 were inoculated onto sunflower grown in soil supplemented with 250 mg/kg of Cd. After 60 days, all inoculated plants accumulated significantly higher Cd concentration than the non-inoculated counterparts, and those inoculated with strain LB51 showed the highest Cd accumulation and growth. Interestingly, strain LB15 with low MIC also enhanced Cd accumulation in plants. The results suggest that these bacteria, particularly strain LB51, could be applied to improve Cd accumulation in plants, and that bacteria with low MIC also have the potential to enhance the efficiency of phytoextraction.  相似文献   

17.
We report the isolation of nitrogen fixing, phytohormone producing bacteria from sugarcane and their beneficial effects on the growth of micropropagated sugarcane plantlets. Detection of the nitrogen fixing bacteria by ARA-based MPN (acetylene reduction assay-based most probable number) method indicated the presence of up to 106 bacteria per gram dry weight of stem and 107 bacteria per gram dry weight of root of field-grown sugarcane. Two nitrogen fixing bacterial isolates were obtained from stem (SC11, SC20) and two from the roots (SR12, SR13) of field-grown plants. These isolates were identified as Enterobacter sp. strains on the basis of their morphological characteristics and biochemical tests. The isolate SC20 was further characterized by 16S rRNA sequence analysis, which showed high sequence similarity to the sequence of Enterobacter cloacae and Klebsiella oxytoca. All the isolates produced the phytohormone indoleacetic acid (IAA) in pure culture and this IAA production was enhanced in growth medium containing tryptophan. The bacterial isolates were used to inoculate micro-propagated sugarcane in vitro where maximum increase in the root and shoot weight over control was observed in the plantlets inoculated with strain SC20. By using the15N isotope dilution technique, maximum nitrogen fixation contribution (28% of total plant nitrogen) was detected in plantlets inoculated with isolate SC20.  相似文献   

18.
  • The ability of plant growth‐promoting rhizobacteria (PGPR) to enhance Lathyrus sativus tolerance to lead (Pb) stress was investigated.
  • Ten consortia formed by mixing four efficient and Pb‐resistant PGPR strains were assessed for their beneficial effect in improving Pb (0.5 mM) uptake and in inducing the host defence system of L. sativus under hydroponic conditions based on various physiological and biochemical parameters.
  • Lead stress significantly decreased shoot (SDW) and root (RDW) dry weight, but PGPR inoculation improved both dry weights, with highest increases in SDW and RDW of plants inoculated with I5 (R. leguminosarum (M5) + P. fluorescens (K23) + Luteibacter sp. + Variovorax sp.) and I9 (R. leguminosarum (M5) + Variovorax sp. + Luteibacter sp. + S. meliloti) by 151% and 94%, respectively. Additionally, inoculation significantly enhanced both chlorophyll and soluble sugar content, mainly in I5 inoculated leaves by 238% and 71%, respectively, despite the fact that Pb decreased these parameters. We also found that PGPR inoculation helps to reduce oxidative damage and enhances antioxidant enzyme activity, phenolic compound biosynthesis, carotenoids and proline content. PGPR inoculation increased Pb uptake in L. sativus, with highest increase in shoots of plants inoculated with I5 and I7, and in roots and nodules of plants inoculated with I1. Moreover, PGPR inoculation enhanced mineral homeostasis for Ca, Cu and Zn under Pb stress, mainly in plants inoculated with I1, I5, I7 and I9.
  • Results of our study suggest the potential of efficient and Pb‐resistant PGPR in alleviating harmful effects of metal stress via activation of various defence mechanisms and enhancing Pb uptake that promotes tolerance of L. sativus to Pb stress.
  相似文献   

19.
Agrobacterium sp. II CCBAU 21244 isolated from root nodules of Wisteria sinensis was verified as an endophytic bacterium by inoculation and reisolation tests. However, inoculation with a mixture of this strain and a Sinorhizobium meliloti strain could induce root nodules on W. sinensis and two other woody legumes, which do not form a symbiosis with S. meliloti alone. Rod-shaped and irregular nodules were found on the inoculated plants, in which the S. meliloti strain was detected in all of the nodules; while the Agrobacterium strain was inside of the rod-shaped nodules, or occupied only the nodule surface of the irregular globe-shaped nodules. These findings revealed novel interactions among the symbiotic bacteria, endophytic bacteria and the legume plants, although the mechanisms are still unknown.  相似文献   

20.
Mammillaria fraileana is a major pioneer, small cactus that harbors endophytic bacteria that have plant growth-promoting traits, including rock-weathering capacity. Our working hypothesis was that this functional group of endophytic bacteria assists in establishing pioneer plants on rocks. When these endophytic bacteria were inoculated on seedlings grown in rock substrate, mobilization of elements from the substrate increased at variable levels across combinations of substrates and inoculants. In plants grown in the rhyodacite substrate, where these cacti naturally grow, increased mobilization occurred in plants inoculated with several strains. Promotion of plant growth, manifested as an increase in dry weight, was greater in cacti inoculated with Enterobacter sakazakii M2PFe. Accumulation of nocturnal acids, indicating photosynthesis by crassulacean acid metabolism, was superior in plants inoculated with the endophytes Azotobacter vinelandii M2Per and Pseudomonas putida M5TSA. Inoculation with endophytes can stimulate plant growth of M. fraileana by mobilizing elements from rock, which can lead to higher photosynthetic activity and accumulation of biomass. Inoculation with P. putida M5TSA also led to accumulation of more total nitrogen than plants inoculated with a control nitrogen-fixing bacteria. Evidence of endophytic colonization is provided after initial inoculation of seedlings and re-isolation and sequencing of 16S DNA of recovered bacteria from developing disinfected plants. The associative interaction between pioneer cacti and their bacterial endophytes enable the host plants to grow in places where plants do not normally grow. Through colonization and establishment of pioneer plants, soil is created, which facilitates colonization by other desert species and contributes to the diversity of dry lands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号