共查询到20条相似文献,搜索用时 15 毫秒
1.
Silvia Nietsche Wagner A. Vendrame Jonathan H. Crane Marlon C. T. Pereira Anne Costa Sidnei T. Reis 《Global Change Biology Bioenergy》2015,7(1):122-134
Variability in floral, fruit, and seed characteristics, and oil content of 15 accession of Jatropha curcas during early development were assessed during two flowering periods in south Florida subtropical climate. The two flowering periods had leaf flushing in March. Field evaluation using 18 quantitative traits showed significant variation among accessions. The number of female flowers and female : male flower ratio ranged from 1 to 15 and 1 : 8.8 to 1 : 67.8, respectively. Fruit set by natural pollination was 89 and 66% during the first (1st) and second (2nd) flowering periods, respectively. A higher number of female‐type inflorescences were observed during summer. There were significant differences in seed traits, except for number of seeds per fruit. Accession TREC 31 had the highest individual seed dry weight and 100‐seed weight (0.83 g and 79.7 g, respectively). The oil content varied from 19.30% to 35.62%. Seed dry weight had positive correlation with seed fresh weight, seed length, seed thickness, seed width, and 100‐seed weight, but negative correlation with oil content. Based on the cluster analysis using 15 morphological traits, jatropha accessions were grouped into five main clusters and accessions from different geographic regions grouped together in a cluster. Principal component analyses (PCA) revealed morphological variation. The first three components explained 73.5% of the total variation and seed dry weight, 100‐seed weight, total flowers per inflorescence, male flowers per inflorescence and fruit set can be used to distinguish accessions. The PCA also indicated that flowering traits were more influenced by seed origin while seed traits were affected by flowering spans. Although evaluations were performed in plants during the juvenile phase, accessions TREC 31 and TREC 55 had superior averages for almost all characters evaluated. These results provide a preliminary assessment of the high variability in jatropha accessions evaluated and their potential for use in breeding and genetic improvement programs. 相似文献
2.
能源木薯高淀粉抗逆分子育种研究进展与展望 总被引:2,自引:0,他引:2
木薯(Manihot esculenta Crantz)是全球重要的粮食作物,也是我国非粮生物质能源发展的主要原材料。长期以来,传统杂交育种是木薯新品种培育的主要手段。随着全球生态的变化和木薯产业发展的推进,需要加速培育抗逆能力强、高淀粉的木薯新品种,因此,利用基因工程针对特定性状开展品种创新表现出巨大的潜力。随着组学技术的发展,在木薯基础研究领域,特别是针对储藏根发育、淀粉富集、逆境响应与调控等方面的研究逐步深入。强化木薯基础理论研究和发展应用技术,对推动能源木薯的产业化发展具有重要意义。 相似文献
3.
木薯中的纤维素成分约占木薯干重的10%(W/W).文中以木薯燃料乙醇生产的木薯纤维素酒渣为原料,从纤维素酶成本角度评估了三种利用木薯纤维素组分发酵生产乙醇的方法,包括木薯纤维素酒渣的直接糖化和乙醇发酵、木薯纤维素酒渣预处理后的糖化与乙醇发酵、木薯乙醇发酵中同步淀粉与纤维素糖化以及乙醇发酵.结果表明,前两种方法的纤维素利用效率不高,酶成本分别达到13602、11659元/吨乙醇.第三种方法,即在木薯乙醇发酵过程同时加入糖化酶和纤维素酶,进行同步淀粉与纤维素糖化,进而进行乙醇发酵,木薯纤维素乙醇的收益最高.发酵结束时的乙醇浓度从101.5g/L提高到107.0g/L,纤维素酶成本为3 589元/吨乙醇.此方法利用木薯纤维素与木薯淀粉同时进行,不会带来额外的设备及操作投入,酶成本低于产品乙醇价格,可实现盈利,因此第三种方法为木薯纤维用于乙醇发酵的最适方法,本研究结果将为木薯乙醇产业深度利用木薯纤维提供依据. 相似文献
4.
Eckart Petig Andreas Rudi Elisabeth Angenendt Frank Schultmann Enno Bahrs 《Global Change Biology Bioenergy》2019,11(1):304-325
Diminishing fossil carbon resources, global warming, and increasing material and energy needs urge for the rapid development of a bioeconomy. Biomass feedstock from agro‐industrial value chains provides opportunities for energy and material production, potentially leading to competition with traditional food and feed production. Simulation and optimization models can support the evaluation of biomass value chains and identify bioeconomy development paths, potentials, opportunities, and risks. This study presents the linkage of a farm model (EFEM) and a techno‐economic location optimization model (BIOLOCATE) for evaluating the straw‐to‐energy and the innovative straw‐to‐chemical value chains in the German federal state of Baden‐Wuerttemberg taking into account the spatially distributed and price‐sensitive nature of straw supply. The general results reveal the basic trade‐off between economies of scale of the energy production plants and the biorefineries on the one hand and the feedstock supply costs on the other hand. The results of the farm model highlight the competition for land between traditional agricultural biomass utilization such as food and feed and innovative biomass‐to‐energy and biomass‐to‐chemical value chains. Additionally, farm‐modeling scenarios illustrate the effect of farm specialization and regional differences on straw supply for biomass value chains as well as the effect of high straw prices on crop choices. The technological modeling results show that straw combustion could cover approximately 2% of Baden‐Wuerttemberg's gross electricity consumption and approximately 35% of the district heating consumption. The lignocellulose biorefinery location and size are affected by the price sensitivity of the straw supply and are only profitable for high output prices of organosolv lignin. The location optimization results illustrate that economic and political framework conditions affect the regional distribution of biomass straw conversion plants, thus favoring decentralized value chain structures in contrast to technological economies of scale. 相似文献
5.
Miguel Pinedo-Vasquez Daniel J. Zarin Kevin Coffey Christine Padoch Fernando Rabelo 《Human ecology: an interdisciplinary journal》2001,29(2):219-239
Recent analyses of timber exploitation in Amazonia conclude that a variety of socioeconomic and ecological factors in the region make a stable and profitable logging industry virtually impossible. Most of these studies focus on large-scale timber industries and their dependence on over-exploitation of a small number of high-value timbers. In this article we discuss the economic, ecological, and social aspects of Amazonian logging in a region where the timber industry appeared to have collapsed after stocks of high-value timber were exhausted. We show that forestry in a post-boom phase, currently found in many areas of Amazonia, differs from the better-described boom period in its scale of operations, in the range of timbers cut, in management practices employed, and in the costs and benefits of production. Results of a seven-year study show that when sawtimber, poles and firewood are produced in a management system that combines forestry and agriculture they can provide significant additional income for Amazonian smallholders. 相似文献
6.
We combined economic and life‐cycle analyses in an integrated framework to ascertain greenhouse gas (GHG) intensities, production costs, and abatement costs of GHG emissions for ethanol and electricity derived from three woody feedstocks (logging residues only, pulpwood only, and pulpwood and logging residues combined) across two forest management choices (intensive and nonintensive) and 31 harvest ages (year 10–year 40 in steps of 1 year) on reforested and afforested lands at the production level for slash pine (Pinus elliottii) in the Southern United States. We assumed that wood chips and wood pellets will be used to produce ethanol and generate electricity, respectively. Production costs and GHG intensities of ethanol and electricity were lowest for logging residues at the optimal rotation age for both forest management choices. Opportunity cost related with the change in rotation age was a significant determinant of the variability in the overall production cost. GHG intensity of feedstocks obtained from afforested land was lower than reforested land. Relative savings in GHG emissions were higher for ethanol than electricity. Abatement cost of GHG emissions for ethanol was lower than electricity, especially when feedstocks were obtained from a plantation whose rotation age was close to the optimal rotation age. A carbon tax of at least $25 and $38 Mg?1 CO2e will be needed to promote production of ethanol from wood chips and electricity from wood pellets in the US, respectively. 相似文献
7.
广西是我国桉树种植的主要区域,桉树产业已成为广西的优势产业、特色产业、民生产业。新世纪推进广西桉树产业发展,不仅对广西经济社会的全面发展具有重要作用,而且对促进全国桉树产业及整个经济社会的可持续发展具有重要意义。通过调查研究回顾了广西桉树种植的历史,认为19世纪初广西即开始从法国引种桉树,但面积小、发展慢。新中国成立后,广西桉树种植经历了3个发展阶段,即:起步阶段(1949—1977年)、推广阶段(1978—2000年)和大发展阶段(2001年至今)。当前,广西桉树种植的现状是:分布广、产量高、效益好、贡献巨大、地位突出。但广西大面积种植桉树人工林,也面临着耗水、耗肥、\"有毒\"、\"沙漠\"、\"退化\"、灾害六个突出问题亟待研究解决。为使新世纪广西桉树产业的又好又快发展,应遵循3大原则:可持续发展原则、因地制宜原则和循序渐进原则,同时,应采取以下6项具体措施:一是科学规划;二是合理布局;三是优化结构;四是产业带动;五是改善条件;六是发展科技。 相似文献
8.
Wei Jiang Katherine Y. Zipp Matthew H. Langholtz Michael G. Jacobson 《Global Change Biology Bioenergy》2019,11(9):1086-1097
This paper investigates the spatial heterogeneity of landowners’ willingness to supply three bioenergy crops: switchgrass, Miscanthus, and willow, in the northeastern United States. Spatial heterogeneity might arise for several reasons. For example, landowners closer to bioenergy processing plants might be more likely to be willing to supply bioenergy crops, and landowners who are more willing to supply bioenergy crops may be spatially clustered because they share similar land attributes, demographics, experiences, and/or values. Using high‐resolution GIS data related to the location of pellet plants utilizing bioenergy crops and survey data related to landowners’ characteristics including spatial location, we estimate a spatial probit model to explain the variation in individual‐specific reservation prices (RPs)—the feedstock price at which landowners become willing to supply a bioenergy crop. We find that respondents’ RP is lower the closer they live to their nearest pellet plant and spatial dependency is only present for switchgrass supply. We also identify three economic hotspots (areas with high potential supply and low RPs) for each bioenergy crop. We believe that bioenergy supply chains could be developed around these hotspots. 相似文献
9.
Walter Rossi Cervi Rubens Augusto Camargo Lamparelli Joaquim Eugênio Abel Seabra Martin Junginger Sierk de Jong Floor van der Hilst 《Global Change Biology Bioenergy》2020,12(2):136-157
It is expected that Brazil could play an important role in biojet fuel (BJF) production in the future due to the long experience in biofuel production and the good agro‐ecological conditions. However, it is difficult to quantify the techno‐economic potential of BJF because of the high spatiotemporal variability of available land, biomass yield, and infrastructure as well as the technological developments in BJF production pathways. The objective of this research is to assess the recent and future techno‐economic potential of BJF production in Brazil and to identify location‐specific optimal combinations of biomass crops and technological conversion pathways. In total, 13 production routes (supply chains) are assessed through the combination of various biomass crops and BJF technologies. We consider temporal land use data to identify potential land availability for biomass production. With the spatial distribution of the land availability and potential yield of biomass crops, biomass production potential and costs are calculated. The BJF production cost is calculated by taking into account the development in the technological pathways and in plant scales. We estimate the techno‐economic potential by determining the minimum BJF total costs and comparing this with the range of fossil jet fuel prices. The techno‐economic potential of BJF production ranges from 0 to 6.4 EJ in 2015 and between 1.2 and 7.8 EJ in 2030, depending on the reference fossil jet fuel price, which varies from 19 to 65 US$/GJ across the airports. The techno‐economic potential consists of a diverse set of production routes. The Northeast and Southeast region of Brazil present the highest potentials with several viable production routes, whereas the remaining regions only have a few promising production routes. The maximum techno‐economic potential of BJF in Brazil could meet almost half of the projected global jet fuel demand toward 2030. 相似文献
10.
广西中粮20万吨/年木薯燃料乙醇装置建成后经历多次工艺改造,为了评估广西装置的能量投入/产出,利用国内已有的全生命周期模型进行了净能量分析。计算结果表明,广西装置的净能量为9.56 MJ/L乙醇。其中乙醇转化环节的能量投入占总能量投入的51.3%,而其中精馏工序仅蒸汽消耗即占乙醇转化总能耗的61.5%。副产品提供的能量可补偿5.03 MJ/L乙醇。因此,原料的综合利用是广西装置提高能源利用效率的重要措施,精馏工序的节能改造对净能量具有重要影响。最后展望了木薯燃料乙醇的发展前景。 相似文献
11.
Carlos A. Zárate-Chaves Diana Gómez de la Cruz Valérie Verdier Camilo E. López Adriana Bernal Boris Szurek 《Molecular Plant Pathology》2021,22(12):1520-1537
Xanthomonas phaseoli pv. manihotis (Xpm) and X. cassavae (Xc) are two bacterial pathogens attacking cassava. Cassava bacterial blight (CBB) is a systemic disease caused by Xpm, which might have dramatic effects on plant growth and crop production. Cassava bacterial necrosis is a nonvascular disease caused by Xc with foliar symptoms similar to CBB, but its impacts on the plant vigour and the crop are limited. In this review, we describe the epidemiology and ecology of the two pathogens, the impacts and management of the diseases, and the main research achievements for each pathosystem. Because Xc data are sparse, our main focus is on Xpm and CBB. 相似文献
12.
To determine the occurrence of variants of African cassava mosaic virus, 316 cassava leaf samples were collected from mosaic‐affected cassava plants in 254 farmers. fields in 1997 and 1998, covering the humid forest, coastal/derived, southern Guinea and northern Guinea savannas and arid and semi‐arid agroecologies of Nigeria. The samples were tested in triple antibody sandwich enzyme‐linked immunosorbent assay using a panel of 10 monoclonal antibodies (MAbs) against the virus in which 29 reaction patterns were observed. In cluster analysis, nine serotypes were obtained at 0.80 Jaccard similarity coefficient index in which at least 50% of isolates of each serotype reacted alike. The serotypes ranged between two extremes: serotype 1 with 90% isolates reacting with the 10 MAbs and serotype 8 in which 90% of its isolates failed to react with the antibodies. Isolates of serotypes 1, 2, 4 and 8 were widely distributed while those of the other serotypes were estricted to certain agroecologies. Four representative isolates 227 (serotype 1), 231 (serotype 2), 235 and 283 (serotype 8) elicited different responses in Nicotiana, benthamiana, with isolate 283 not able to infect this and other test plants used. The serological variations did not necessarily reflect the biological variations. In polymerase chain reaction tests, one out of the five pairs of ACMV primers tested distinguished only isolate 283. The humid forest, derived/coastal and southern Guinea savannas where most of the crop is grown in Nigeria had a high number of variants, which makes the agroecologies suitable for the selection of resistant cassava clones against ACMV. 相似文献
13.
Katie R. Tomlinson José Luis Pablo-Rodriguez Hamidun Bunawan Sarah Nanyiti Patrick Green Josie Miller Titus Alicai Susan E. Seal Andy M. Bailey Gary D. Foster 《Molecular Plant Pathology》2019,20(8):1080-1092
Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), which both encode atypical Ham1 proteins with highly conserved inosine triphosphate (ITP) pyrophosphohydrolase (ITPase) domains. ITPase proteins are widely encoded by plant, animal, and archaea. They selectively hydrolyse mutagenic nucleotide triphosphates to prevent their incorporation into nucleic acid and thereby function to reduce mutation rates. It has previously been hypothesized that U/CBSVs encode Ham1 proteins with ITPase activity to reduce viral mutation rates during infection. In this study, we investigate the potential roles of U/CBSV Ham1 proteins. We show that both CBSV and UCBSV Ham1 proteins have ITPase activities through in vitro enzyme assays. Deep-sequencing experiments found no evidence of the U/CBSV Ham1 proteins providing mutagenic protection during infections of Nicotiana hosts. Manipulations of the CBSV_Tanza infectious clone were performed, including a Ham1 deletion, ITPase point mutations, and UCBSV Ham1 chimera. Unlike severely necrotic wild-type CBSV_Tanza infections, infections of Nicotiana benthamiana with the manipulated CBSV infectious clones do not develop necrosis, indicating that that the CBSV Ham1 is a necrosis determinant. We propose that the presence of U/CBSV Ham1 proteins with highly conserved ITPase motifs indicates that they serve highly selectable functions during infections of cassava and may represent a euphorbia host adaptation that could be targeted in antiviral strategies. 相似文献
14.
Oluwole A. Ariyo Alfred G.O. Dixon Gabriel I. Atiri Emma W. Gachomo Simeon O. Kotchoni 《Archives Of Phytopathology And Plant Protection》2013,46(6):504-518
Twenty-two cassava genotypes and eight controls were evaluated in two cropping seasons for resistance to cassava mosaic disease (CMD) at the International Institute of Tropical Agriculture (IITA) fields, located at different ecozones of Nigeria. Disease incidence (DI) and index of symptom severity data were obtained monthly at each location and genotype. Symptomatic leaves were also collected during evaluation at each location, and virus was indexed by amplification in polymerase chain reaction. Significant differences within and across locations were observed in the reactions of cassava genotypes to CMD. DI across cassava genotypes was significantly (p = 0.05) highest in the Ibadan (22.6%), followed by Onne (19.3%). Generally, plants of clones 96/0860, 96/1439, 96/0160, 96/1089A, 96/1632, 96/1613, 96/1708, 96/0191, 96/0249 and 96/1565 had significantly lower values of DI in each location. African cassava mosaic virus in single infection was the predominant causal agent of CMD in IITA experimental fields under study. 相似文献
15.
B D HARRISON X. ZHOU G W OTIM-NAPE Y. LIU D J ROBINSON 《The Annals of applied biology》1997,131(3):437-448
To study the cause of the current epidemic of severe mosaic in Ugandan cassava, PCR analysis was used to detect and identify African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV) and the recently reported recombinant geminivirus (UgV), which is derived from ACMV and EACMV, in leaf extracts from cassava plants grown from cuttings in the glasshouse at Dundee. The cuttings were collected from plants showing symptoms of different severities and growing at different sites in Uganda inside, at the periphery of, and outside, the area affected by the epidemic. ACMV occurred throughout the nine districts sampled but UgV was detected only in the area affected by the epidemic. EACMV was not found in Uganda. Most plants containing ACMV alone expressed mild or moderate mosaic, whereas very severe mosaic developed in most plants containing UgV plus ACMV and a few of those containing UgV only. Very severe mosaic in cassava from southern Sudan was likewise associated with co-infection by UgV and ACMV. The very severe disease was reproduced by graft-inoculating geminivirus-free cassava with UgV plus ACMV; plants inoculated with either UgV or ACMV developed severe or moderate symptoms, respectively. Unlike ACMV, Malawian EACMV did not enhance the severity of symptoms induced by UgV. However, a very severely affected plant from Ukerewe Island, Tanzania, contained ACMV and EACMV but not UgV. UgV attained a much greater concentration in cassava than did ACMV but the opposite occurred in Nicotiana benthamiana. In neither host was total virus antigen concentration affected by co-infection. Factors affecting the genesis, selection and spread of UgV are discussed. The evidence indicates that UgV is probably of relatively recent origin, that such variants do not appear often, and that the current epidemic has resulted from the rapid spread of UgV to infect plants and to invade regions in which ACMV already occurred. The novel type of virus complex so produced, consisting of an interspecific recombinant virus (UgV) and one of its parents (ACMV), typically has even more severe effects than UgV alone. 相似文献
16.
Anita Shepherd John Clifton‐Brown Jason Kam Sam Buckby Astley Hastings 《Global Change Biology Bioenergy》2020,12(7):510-523
This study investigates the condition of commercial miscanthus fields, growers’ concerns and reasons for growing the crop and also the modelling of a realistic commercial yield. Juvenile and mature Miscanthus × giganteus crops of varying age are surveyed in growers’ fields across mid‐England. We record in‐field plant density counts and the morphology of crops of different ages. Mature crops thrive on both clay and sandy soils. Plants surveyed appear robust to drought, weeds and disease, the only vulnerability is rhizome condition when planting. Mature miscanthus planted pre‐2014 continues to develop, spreading into planting gaps and growing more tillers. In stands planted post‐2014, improved planting techniques reduce planting gaps and create a reasonably consistent planting density of 12,500 plants/ha. The main reason for growers' investment in miscanthus is not financial return, but relates to its low requirement for field operations, low maintenance cost and regeneration. This offers practical solutions for difficult field access and social acceptability near public places (related to spray operations and crop vandalism). Wildlife is abundant in these fields, largely undisturbed except for harvest. This contributes to the greening of agriculture; fields are also used for gamebird cover and educational tours. This crop is solving practical problems for growers while improving the environment. Observed yield data indicate gradual yield increase with crop age, a yield plateau but no yield decrease since 2006. In stands with low planting densities, yields plateau after 9 years. Surveyed yield data are used to parameterize the MiscanFor bioenergy model. This produces options to simulate either juvenile yields or a yield for a landscape containing different aged crops. For mature English crop yields of 12 t ha?1 year?1, second‐ and third‐year juvenile harvests average 7 t ha?1 year?1 and a surrounding 10 km by 10 km area of distributed crop age would average 9 t ha?1 year?1. 相似文献
17.
Joyce N. Njuguna Lindsay V. Clark Alexander E. Lipka Kossonou G. Anzoua Larisa Bagmet Pavel Chebukin Maria S. Dwiyanti Elena Dzyubenko Nicolay Dzyubenko Bimal Kumar Ghimire Xiaoli Jin Douglas A. Johnson Hironori Nagano Junhua Peng Karen Koefoed Petersen Andrey Sabitov Eun Soo Seong Toshihiko Yamada Ji Hye Yoo Chang Yeon Yu Hua Zhao Stephen P. Long Erik J. Sacks 《Global Change Biology Bioenergy》2023,15(11):1355-1372
Accelerating biomass improvement is a major goal of Miscanthus breeding. The development and implementation of genomic-enabled breeding tools, like marker-assisted selection (MAS) and genomic selection, has the potential to improve the efficiency of Miscanthus breeding. The present study conducted genome-wide association (GWA) and genomic prediction of biomass yield and 14 yield-components traits in Miscanthus sacchariflorus. We evaluated a diversity panel with 590 accessions of M. sacchariflorus grown across 4 years in one subtropical and three temperate locations and genotyped with 268,109 single-nucleotide polymorphisms (SNPs). The GWA study identified a total of 835 significant SNPs and 674 candidate genes across all traits and locations. Of the significant SNPs identified, 280 were localized in mapped quantitative trait loci intervals and proximal to SNPs identified for similar traits in previously reported Miscanthus studies, providing additional support for the importance of these genomic regions for biomass yield. Our study gave insights into the genetic basis for yield-component traits in M. sacchariflorus that may facilitate marker-assisted breeding for biomass yield. Genomic prediction accuracy for the yield-related traits ranged from 0.15 to 0.52 across all locations and genetic groups. Prediction accuracies within the six genetic groupings of M. sacchariflorus were limited due to low sample sizes. Nevertheless, the Korea/NE China/Russia (N = 237) genetic group had the highest prediction accuracy of all genetic groups (ranging 0.26–0.71), suggesting that with adequate sample sizes, there is strong potential for genomic selection within the genetic groupings of M. sacchariflorus. This study indicated that MAS and genomic prediction will likely be beneficial for conducting population-improvement of M. sacchariflorus. 相似文献
18.
19.
Saeyoung Lee Jonas Yun Lee Sung Chul Ha Jina Jung Dong Hae Shin Kyoung Heon Kim In‐Geol Choi 《Acta Crystallographica. Section F, Structural Biology Communications》2009,65(12):1299-1301
Many agarolytic bacteria degrade agar polysaccharide into the disaccharide unit neoagarobiose [O‐3,6‐anhydro‐α‐l ‐galactopyranosyl‐(1→3)‐d ‐galactose] using various β‐agarases. Neoagarobiose hydrolase is an enzyme that acts on the α‐1,3 linkage in neoagarobiose to yield d ‐galactose and 3,6‐anhydro‐l ‐galactose. This activity is essential in both the metabolism of agar by agarolytic bacteria and the production of fermentable sugars from agar biomass for bioenergy production. Neoagarobiose hydrolase from the marine bacterium Saccharophagus degradans 2‐40 was overexpressed in Escherichia coli and crystallized in the monoclinic space group C2, with unit‐cell parameters a = 129.83, b = 76.81, c = 90.11 Å, β = 101.86°. The crystals diffracted to 1.98 Å resolution and possibly contains two molecules in the asymmetric unit. 相似文献