首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activities of enzymes representative of glycolytic and β-oxidative pathways and citric acid and glycerophosphate cycles were measured in the developing flight muscles of three species: Calliphora erythrocephala, Locusta migratoria, and Philosamia cynthia. The activities were measured in vitro under optimal conditions.The enzyme pattern of young flight muscles is quite different from the adult pattern. In the second half of the developmental period final differentiation towards the adult metabolic pattern takes place, in Calliphora leading to exclusively carbohydrate-oxidizing capacities, in Locusta to properties enabling both aerobic glycolytic and β-oxidative processes, whereas Philosamia becomes oriented to fatty acid oxidation. This differentiation starts after a temporary rise of lactate dehydrogenase activity, a phenomenon that seems to be connected with invagination of tracheoblasts into the muscle fibres. This tracheolization might be necessary for differentiation towards the species specific metabolic properties of the adult flight muscle.Theoretical aspects of the enzyme activities, as they were measured in the in vitro assays, are discussed and related to the physiological qualities of the flight muscles of the three species investigated.  相似文献   

2.
Since insect flight muscles are among the most active muscles in nature, their extremely high rates of fuel supply and oxidation pose interesting physiological problems. Long-distance flights of species like locusts and hawkmoths are fueled through fatty acid oxidation. The lipid substrate is transported as diacylglycerol in the blood, employing a unique and efficient lipoprotein shuttle system. Following diacylglycerol hydrolysis by a flight muscle lipoprotein lipase, the liberated fatty acids are ultimately oxidized in the mitochondria. Locust flight muscle cytoplasm contains an abundant fatty acid-binding protein (FABP). The flight muscle FABP ofLocusta migratoria is a 15 kDa protein with an isoelectric point of 5.8, binding fatty acids in a 1:1 molar stoichiometric ratio. Binding affinity of the FABP for longchain fatty acids (apparent dissociation constant Kd=5.21±0.16 M) is however markedly lower than that of mammalian FABPs. The NH2-terminal amino acid sequence shares structural homologies with two insect FABPs recently purified from hawkmoth midgut, as well as with mammalian FABPs. In contrast to all other isolated FABPs, the NH2 terminus of locust flight muscle FABP appeared not to be acetylated. During development of the insect, a marked increase in fatty acid binding capacity of flight muscle homogenate was measured, along with similar increases in both fatty acid oxidation capacity and citrate synthase activity. Although considerable circumstantial evidence would support a function of locust flight muscle FABP in intracellular uptake and transport of fatty acids, the finding of another extremely well-flying migratory insect, the hawkmothAcherontia atropos, which employs the same lipoprotein shuttle system, however contains relatively very low amounts of FABP in its flight muscles, renders the proposed function of FABP in insect flight muscles questionable.  相似文献   

3.
Metabolic pathways of proline consumption in working flight muscles and its resynthesis were investigated in the African fruit beetle, Pachnoda sinuata.Mitochondria isolated from flight muscles oxidise proline, pyruvate and α-glycerophosphate, but not palmitoyl-carnitine. At low proline concentrations, the respiration rate during co-oxidation of proline and pyruvate is additive, while at high proline concentrations it is equal to the respiration rates of proline oxidation.Flight muscles have high activities of alanine aminotransferase and NAD+-dependent malic enzyme which are involved in proline metabolism. Glycogen phosphorylase and glyceraldehyde-3-phosphate dehydrogenase (carbohydrate breakdown) also display high activities, whilst 3-hydroxyacyl-CoA dehydrogenase (fatty acid oxidation) showed low activity.During the oxidation of proline, mitochondria isolated from flight muscles produce equimolar amounts of alanine. The rates of oxygen consumption by the mitochondria during this process lead to the conclusion that proline is partially oxidised. This is confirmed by the incorporation of radiolabel from pre-injected [U-14C] proline into alanine during a flight experiment with P. sinuata.Proline is resynthesised, in vitro, from alanine and acetyl-CoA in the fat body. High activities of enzymes catalysing such pathways (alanine aminotransferase, 3-hydroxyacyl-CoA dehydrogenase and NADP+-dependent malic enzyme) were found. The in vitro production of proline from alanine is equimolar suggesting that resynthesis of one proline molecule is accomplished from one alanine molecule and one acetyl-CoA molecule. One source of the acetyl-CoA for the in vitro synthesis of proline is the lipid stores of the fat body.Proline synthesis by fat body tissue is controlled by feedback. Alanine aminotransferase is competitively inhibited by high proline concentrations.  相似文献   

4.
Exceptionally large amounts of lipid are stored in flight muscles of Rhodnius prolixus and Triatoma infestans (197 and 90 μmoles glyceride glycerol per g fresh weight respectively). The bulk of this lipid is in the form of triacylglycerol.A significant decrease in the muscle lipid occurs during the first hour of flight. Over the same period there is an increase in haemolymph lipid (particularly of diacylglycerol) which is taken to indicate the use of lipid from the fat body. The carbohydrate content of muscle and haemolymph is low, so it is likely that the supply of energy for flight is provided almost exclusively by the oxidation of fat. Oleate and palmitate are the major fatty acid components of lipid from both Triatoma and Rhodnius and are probably also the major fatty acids used for oxidation.Maturation of flight ability is temporally associated with the development of flight muscle size and increase in glyceride content.  相似文献   

5.
The haemolymph lipid of the southern armyworm moth, Prodenia eridania, is chiefly diglyceride with smaller amounts of triglyceride, monoglyceride, and free fatty acid also present. The stored lipid of moth fat body is almost all triglyceride. Although flight muscle contains a very active monoglyceride lipase, its ability to hydrolyse tri- and diglycerides is very low. The fat body contains enzymes able to hydrolyse tri-, di-, and monoglycerides. These data do not support the suggestion that fat body triglyceride is converted to diglyceride, which is carried in the haemolymph to the flight muscle and then hydrolysed to free fatty acid for oxidation during flight; rather, they indicate that triglyceride can be completely hydrolysed in the fat body, and the resulting free fatty acid is carried to the flight muscle to provide energy for flight.  相似文献   

6.
In adult male Schistocerca 20 min of tethered flight causes a halving of the haemolymph carbohydrate concentration. Injection of a proteinaceous emulsion of diglyceride 30 min before flight reduces both flight speed and carbohydrate utilisation. This effect can be overcome by the injection of trehalose immediately before the flight. If, in addition to the diglyceride, a dilute extract of the glandular lobes of the corpora cardiaca is injected immediately before flight, either with or without additional trehalose, carbohydrate utilisation is drastically reduced whereas flight speed is unaffected. It is argued that diglyceride competes with trehalose as a substrate for the flight muscles and that adipokinetic hormone from the glandular lobes of the corpora cardiaca stimulates the oxidation of diglyceride in these muscles during flight. This brings about a more complete (non-competitive) inhibition of trehalose utilisation by the flight muscles.  相似文献   

7.
It was found that the succinate oxidation rate in mitochondria of flight muscles of Bombus terrestris L. increased by a factor of 2.15 after flying for 1 h. An electrophoretically homogenous preparation of succinate dehydrogenase with a specific activity of 7.14 U/mg protein and 81.55-fold purity was isolated from B. terrestris flight muscles. It is shown that this enzyme is represented in the muscle tissue by only one isoform with R f = 0.24. The molecular weight of the native molecule and its subunits A and B was determined. The kinetic characteristics of succinate dehydrogenase (K m = 0.33 mM) and the optimal concentration of hydrogen ions (pH 7.8) were established, and the effect of salts on the enzyme activity was studied. The role of succinate as a respiratory substrate in stress and the structural and functional characteristics of the succinate dehydrogenase system in the flight muscles of insects are discussed.  相似文献   

8.
Changes in acid phosphatase activity were used to estimate flight muscle degeneration in Dendroctonus pseudotsugae. Acid phosphatase positive sites increased numerically as well as in size in flight muscles of beetles attacking the host logs and those maintained on host bark chips. Topical treatment of beetles with a juvenile hormone analogue further increased the phosphatase activity. Juvenile hormone produced similar effects when applied to insects injected with eserine. An increase in the activity of acid phosphatases was also observed after incubation in culture medium with added juvenile hormone. The rôle of nerves and hormones in the degenerating muscles of D. pseudotsugae is compared with that in the permanently degenerating muscles during metamorphosis of some moths.  相似文献   

9.
The concentration of glycerol in locust haemolymph increases 10-fold during 1 hr flight but decreases rapidly when flight ceases. [14C]Glycerol is rapidly metabolized by locusts in vivo. Trehalose and diacyl glycerol are the main products to appear in the haemolymph but the proportion of diacyl glycerol is increased in flown insects or when adipokinetic hormone is injected. Trehalose and diacyl glycerol are also the main products formed when isolated fat body is incubated with [14C]glycerol. Adipokinetic hormone increases the proportion of diacyl glycerol formed.It is proposed that during flight glycerol is produced by hydrolysis of diacyl glycerol in the flight muscles. It is then transported to fat body for esterification with fatty acid produced during conversion of triacyl glycerol stores to diacyl glycerol.  相似文献   

10.
A nutrient associated with animal-derived phospholipids has previously been found essential for newly-emerged adults of the mosquito Culex pipiens to fly and survive more than a few days. Pure arachidonic acid was completely effective in supporting the emergence of viable flying adults; in combination with synthetic dipalmitoyl lecithin, which slightly improves larval growth rate without inducing adult flight, it wholly adequately replaces animal phospholipids. Linoleic and linolenic acids, which have satisfied the needs of all insects hitherto shown to require an essential fatty acid, were ineffective for C. pipiens, with or without synthetic lecithin. An optimal effect on adult flight was obtained with 0.05 mg of arachidonic acid per 100 ml of dietary medium, a concentration much lower than the linoleic/linolenic concentrations needed by other insects with an essential fatty acid requirement. The relationship of this unique mosquito fatty acid requirement to the essential fatty acid needs of both vertebrates and insects in general is discussed.  相似文献   

11.
Although birds use fat as the primary fuel for migratory flights, carbohydrate and protein catabolism could be significant in the early stages of flight while pathways of fatty acid transport and oxidation are induced. The fuel mixture of long distance migrant birds can also be affected by the rate of water loss, where birds catabolize more protein to increase endogenous water production under dehydrating flight conditions. Despite many studies investigating flight metabolism, few have focused on the metabolic response to flight during the switchover to fat catabolism in migrants, and none have examined the effect of ambient conditions on fuel selection during early flight. We investigated the effect of water loss on the metabolic response to short duration flight in the American robin (Turdus migratorius). Birds were flown in a climatic wind tunnel and changes in body composition and plasma metabolites were measured. As flight duration increased, there was a gradual switchover from carbohydrate and protein catabolism to fat catabolism. Plasma metabolite profiles indicate that the mobilization of fat occurred within 20 min of initiating flight. Plasma glucose decreased and uric acid increased with flight duration. Ambient humidity did not affect fuel mixture. Thus, it seems that the utilization of fat may be delayed as migrants initiate flight. Short-hop migrants may exploit high rates of endogenous water production resulting from carbohydrate and protein catabolism early in flight to offset high water loss associated with low humidity. Rapid catabolism of lean body components at the start of a flight also reduces mass quickly, and may reduce energy costs.  相似文献   

12.
13.
Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. Free fatty acids (FFAs) can enter peroxisomes through passive diffusion or by means of ATP binding cassette (ABC) transporters, including HsABCD1 (ALDP, adrenoleukodystrophy protein), HsABCD2 (ALDRP) and HsABCD3 (PMP70). The physiological functions of the different peroxisomal half-ABCD transporters have not been fully determined yet, but there are clear indications that both HsABCD1 and HsABCD2 are required for the breakdown of fatty acids in peroxisomes. Here we report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired oxidation of oleic acid, cannot only be partially rescued by HsABCD1, HsABCD2, but also by HsABCD3, which indicates that each peroxisomal half-transporter can function as homodimer. Fatty acid oxidation measurements using various fatty acids revealed that although the substrate specificities of HsABCD1, HsABCD2 and HsABCD3 are overlapping, they have distinctive preferences. Indeed, most hydrophobic C24:0 and C26:0 fatty acids are preferentially transported by HsABCD1, C22:0 and C22:6 by HsABCD2 and most hydrophilic substrates like long-chain unsaturated-, long branched-chain- and long-chain dicarboxylic fatty acids by HsABCD3. All these fatty acids are most likely transported as CoA esters. We postulate a role for human ABCD3 in the oxidation of dicarboxylic acids and a role in buffering fatty acids that are overflowing from the mitochondrial β-oxidation system.  相似文献   

14.
Insect flight muscles have been classified as either synchronous or asynchronous based on the coupling between excitation and contraction. In the moth Manduca sexta, the flight muscles are synchronous and do not display stretch activation, which is a property of asynchronous muscles. We annotated the M. sexta genes encoding the major myofibrillar proteins and analyzed their isoform pattern and expression. Comparison with the homologous genes in Drosophila melanogaster indicates both difference and similarities. For proteins such as myosin heavy chain, tropomyosin, and troponin I the availability and number of potential variants generated by alternative spicing is mostly conserved between the two insects. The exon usage associated with flight muscles indicates that some exon sets are similarly used in the two insects, whereas others diverge. For actin the number of individual genes is different and there is no evidence for a flight muscle specific isoform. In contrast for troponin C, the number of genes is similar, as well as the isoform composition in flight muscles despite the different calcium regulation. Both troponin I and tropomyosin can include COOH-terminal hydrophobic extensions similar to tropomyosinH and troponinH found in D. melanogaster and the honeybee respectively.  相似文献   

15.
Abstract In the field, adult males of the grasshopper Phymateus morbillosus are able to fly for up to 1 min and cover up to c. 100 m, whereas females, although fully winged, are apparently unable to get airborne. Morphometric data indicate that the males are lighter, have longer wings, a higher ratio of flight muscles to body mass, and a lower wing load value than females. It was investigated whether this inability of females to fly is related to fuel storage, flight muscle enzymatic design and/or the presence and quantitative capacity of the endocrine system to mobilize fuels. In both sexes, readily available potential energy substrates are present in the haemolymph in similar concentrations, and the amount of glycogen in flight muscles and fat bodies does not differ significantly between males and females. Mass-specific activities of the enzymes GAPDH (glycolysis), HOAD (fatty acid oxidation) and MDH (citric acid cycle) in flight muscles are significantly lower in females compared with males, and mitochondria are less abundant in the flight muscles of females. There is no significant difference between the ability of the two sexes to oxidize various important substrates. Both sexes contain three adipokinetic peptides in their corpora cardiaca; the amount of each peptide in female grasshoppers is higher than in males.
Thus, despite some differences listed above, both sexes appear to have sufficient substrates and the necessary endocrine complement to engage in flight. It seems more likely, from the morphometric data above, that the chief reason for flightlessness is that P. morbillosus females cannot produce sufficient lift for flight; alternatively, the neuronal functioning associated with the flight muscles may be impaired in females.  相似文献   

16.
Honey bees and other pollinators are exposed to fungicides that act by inhibiting fungal mitochondria. Here we test whether a common fungicide (Pristine®) inhibits the function of mitochondria of honeybees, and whether consumption of ecologically-realistic concentrations can cause negative effects on the mitochondria of flight muscles, or the capability for flight, as judged by CO2 emission rates and thorax temperatures during flight. Direct exposure of mitochondria to Pristine® levels above 5 ppm strongly inhibited mitochondrial oxidation rates in vitro. However, bees that consumed pollen containing Pristine® at ecologically-realistic concentrations (≈1 ppm) had normal flight CO2 emission rates and thorax temperatures. Mitochondria isolated from the flight muscles of the Pristine®-consuming bees had higher state 3 oxygen consumption rates than control bees, suggesting that possibly Pristine®-consumption caused compensatory changes in mitochondria. It is likely that the lack of a strong functional effect of Pristine®-consumption on flight performance and the in vitro function of flight muscle mitochondria results from maintenance of Pristine® levels in the flight muscles at much lower levels than occur in the food, probably due to metabolism and detoxification. As Pristine® has been shown to negatively affect feeding rates and protein digestion of honey bees, it is plausible that Pristine® consumption negatively affects gut wall function (where mitochondria may be exposed to higher concentrations of Pristine®).  相似文献   

17.
The oxidative modification of low-density lipoprotein (LDL) may play an important role in atherogenesis. Our understanding of the mechanism of LDL oxidation and the factors that determine its susceptibility to oxidation is still incomplete. We have isolated LDL from 45 healthy individuals and studied the relationship between LDL fatty acid, vitamin E and β-carotene composition, intrinsic phospholipase A2-like activity and parameters of LDL oxidation. LDL was exposed to a copper ion-dependent oxidising system and the kinetics of oxidation studied by monitoring formation of fatty acid conjugated dienes. The length of the lag phase of inhibited lipid peroxidation was measured as well as the rate of lipid peroxidation during the propagation phase. There was no significant correlation between LDL antioxidant vitamin or fatty acid composition and lag time to LDL oxidation. Oleic acid was negatively correlated with the rate of LDL oxidation (r = −0.41, P < 0.01) whilst linoleic acid was significantly correlated with the extent of LDL oxidation measured by the production of total dienes (r = 0.34, P < 0.05). Interestingly, LDL vitamin E content was positively correlated with both the rate (r = 0.28, P < 0.05) and extent of LDL oxidation (r = 0.43, P < 0.01). LDL isolated from this group of subjects showed significant intrinsic phospholipase-like activity. The phospholipase activity, whilst not correlated with lag time, was significantly correlated with both rate (r = 0.43, P < 0.01) and total diene production (r = 0.44, P < 0.01) of LDL oxidation. We conclude that antioxidant content, fatty acid composition and intrinsic phospholipase activity have little influence on the lag time of Cu-induced LDL oxidation. These components do however, significantly influence both the rate and extent of LDL oxidation, with increased vitamin E, linoleic acid content and phospholipase activity associated with faster and more extensive oxidation. The possible pro-oxidant effect of vitamin E has interesting implications for the postulated ‘protective’ effects of vitamin E on atherogenesis.  相似文献   

18.
19.
Cytochrome P450 (P450) 2U1 has been shown to be expressed, at the mRNA level, in human thymus, brain, and several other tissues. Recombinant P450 2U1 was purified and used as a reagent in a metabolomic search for substrates in bovine brain. In addition to fatty acid oxidation reactions, an oxidation of endogenous N-arachidonoylserotonin was characterized. Subsequent NMR and mass spectrometry and chemical synthesis showed that the main product was the result of C-2 oxidation of the indole ring, in contrast to other human P450s that generated different products. N-Arachidonoylserotonin, first synthesized chemically and described as an inhibitor of fatty acid amide hydrolase, had previously been found in porcine and mouse intestine; we demonstrated its presence in bovine and human brain samples. The product (2-oxo) was 4-fold less active than N-arachidonoylserotonin in inhibiting fatty acid amide hydrolase. The rate of oxidation of N-arachidonoylserotonin was similar to that of arachidonic acid, one of the previously identified fatty acid substrates of P450 2U1. The demonstration of the oxidation of N-arachidonoylserotonin by P450 2U1 suggests a possible role in human brain and possibly other sites.  相似文献   

20.
Obesity is a public health problem that contributes to the development of insulin resistance, which is associated with an excessive accumulation of lipids in skeletal muscle tissue. There is evidence that soy protein can decrease the ectopic accumulation of lipids and improves insulin sensitivity; however, it is unknown whether soy isoflavones, particularly genistein, can stimulate fatty acid oxidation in the skeletal muscle. Thus, we studied the mechanism by which genistein stimulates fatty acid oxidation in the skeletal muscle. We showed that genistein induced the expression of genes of fatty acid oxidation in the skeletal muscle of Zucker fa/fa rats and in leptin receptor (ObR)-silenced C2C12 myotubes through AMPK phosphorylation. Furthermore, the genistein-mediated AMPK phosphorylation occurred via JAK2, which was possibly activated through a mechanism that involved cAMP. Additionally, the genistein-mediated induction of fatty acid oxidation genes involved PGC1α and PPARδ. As a result, we observed that genistein increased fatty acid oxidation in both the control and silenced C2C12 myotubes, as well as a decrease in the RER in mice, suggesting that genistein can be used in strategies to decrease lipid accumulation in the skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号