首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The number of Anopheles gambiae and Anopheles arabiensis females that used each of the 33 sampled breeding sites in west Kenya was estimated by microsatellite markers and related statistics to test the hypothesis that conspecific females share aquatic sites. Totally, 166 An. gambiae and 168 An. arabiensis larvae were identified and were genotyped. The mean number of larvae per breeding site was 8.3 for An. gambiae and 8.4 for An. arabiensis. The likelihood method estimated that, for An. gambiae, the mean number of females that would have laid eggs per breeding site was 5.2 and ranged from 2 to 9, and for An. arabiensis, the mean was 5.0 with a range of 2–10. The clustering method estimated that the mean number of females laying eggs per breeding site was 6.8 for An. gambiae. The results provide molecular evidence that females of one or both species share breeding sites.  相似文献   

2.
The relative efficacy of a mechanical (Prokopack) collection method vs. manual aspiration in the collection of resting mosquitoes was evaluated in northern Tanzania before and after an intervention using indoor residual spraying and longlasting insecticide‐treated nets. In smoke‐free houses mosquitoes were collected from the roof and walls, but in smoky houses mosquitoes were found predominantly on the walls. Anopheles gambiae (Diptera: Culicidae) constituted 97.7% of the 312 An. gambiae complex specimens identified before but only 19.3% of the 183 identified after the intervention. A single sampling with the Prokopack collected a third of the available insects. Anopheles gambiae completed its gonotrophic development indoors, whereas Anopheles arabiensis did so outdoors. In both species gonotrophic development took 2 days. Most unfed resting An. arabiensis collected outdoors were virgins, whereas the majority of engorged insects were parous (with well‐contracted sacs). Daily survival was estimated to be 80.0%. Only 9.4% of the engorged An. arabiensis collected outdoors and 47.1% of those collected indoors had fed on humans. Using the Prokopack sampler is more efficient than manual methods for the collection of resting mosquitoes. Malaria transmission may have been affected by a change in vector composition resulting from a change in feeding, rather than reduced survival. Monitoring the proportions of members of the An. gambiae complex may provide signals of an impending breakdown in control.  相似文献   

3.
Long‐lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control. However, the effectiveness of these control tools depends on vector ecology and behaviour, which also largely determine the efficacy of certain Anopheles mosquitoes (Diptera: Culicidae) as vectors. Malaria vectors in sub‐Saharan Africa are primarily species of the Anopheles gambiae complex, which present intraspecific differences in behaviour that affect how they respond to vector control tools. The focus of this study is the change in species composition in the An. gambiae complex after the implementation of LLINs in Dielmo, Senegal. The main findings referred to dramatic decreases in the proportions of Anopheles coluzzii and An. gambiae after the introduction of LLINs, and an increase in the proportion of Anopheles arabiensis. Two years after LLINs were first introduced, An. arabiensis remained the most prevalent species and An. gambiae had begun to rebound. This indicated a need to develop additional vector control tools that can target the full range of malaria vectors.  相似文献   

4.
Abstract. Identification of species within the Anopheles gambiae Giles species complex is essential for the correct evaluation of malaria vector ecology studies and control programmes. The development of DNA probes to distinguish species of the An.gambiae complex is described. Genomic libraries were prepared for four members of the An.gambiae complex. These were screened using radiolabeled DNA from different species of An. gambiae sensu lato and a number of clones selected on the basis of their species specificity. These clones could be divided into two groups, each containing homologous sequences. Sequences homologous to group 1 inserts are highly reiterated in the genomes of Anopheles arabiensis Patton and Anopheles merus Dönitz, present in low copy number in Anopheles melas Theobald, but were not detected in Anopheles gambiae sensu stricto. Studies on the organization of this sequence in the genome of An.arabiensis show that homologous sequences are male specific and interspersed within the chromatin. Sequences homologous to group 2 inserts are highly repeated in the genomes of An.merus and An.melas, but present in low copy number in An.gambiae s.s. and An.arabiensis. Group 2 homologous sequences are not sex-specific in the species tested and appear to be tandemly repeated. When used as hybridization probes, these sequences provide a sensitive means for the identification of species within the Anopheles gambiae complex.  相似文献   

5.
A DNA–DNA hybridization method, reverse dot blot analysis (RDBA), was used to identify Anopheles gambiae s.s. and Anopheles arabiensis (Diptera: Culicidae) hosts. Of 299 blood‐fed and semi‐gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; of these, 69.5% were An. arabiensis and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable with those of conventional polymerase chain reaction (PCR) followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome b gene. Of the 174 amplicon‐producing samples used to compare these two methods, 147 were identifiable by direct sequencing and 139 of these were identifiable by RDBA. Anopheles arabiensis bloodmeals were mostly (94.6%) bovine in origin, whereas An. gambiae s.s. fed upon humans more than 91.8% of the time. Tests by RDBA detected that two of 112 An. arabiensis contained blood from more than one host species, whereas PCR and direct sequencing did not. Recent use of insecticide‐treated bednets in Kisian is likely to have caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. Reverse dot blot analysis provides an opportunity to study changes in host‐feeding by members of the An. gambiae complex in response to the broadening distribution of vector control measures targeting host‐selection behaviours.  相似文献   

6.
Insecticide resistance in the malaria vector Anopheles gambiae s.l. (Diptera: Culicidae) threatens insecticide‐based control efforts, necessitating regular monitoring. We assessed resistance in field‐collected An. gambiae s.l. from Jinja, Uganda using World Health Organization (WHO) biosassays. Only An. gambiae s.s. and An. arabiensis (?70%) were present. Female An. gambiae exhibited extremely high pyrethroid resistance (permethrin LT50 > 2 h; deltamethrin LT50 > 5 h). Female An. arabiensis were resistant to permethrin and exhibited reduced susceptibility to deltamethrin. However, while An. gambiae were DDT resistant, An. arabiensis were fully susceptible. Both species were fully susceptible to bendiocarb and fenitrothion. Kdr 1014S has increased rapidly in the Jinja population of An. gambiae s.s. and now approaches fixation (?95%), consistent with insecticide‐mediated selection, but is currently at a low frequency in An. arabiensis (0.07%). Kdr 1014F was also at a low frequency in An. gambiae. These frequencies preclude adequately‐powered tests for an association with phenotypic resistance. PBO synergist bioassays resulted in near complete recovery of pyrethroid susceptibility suggesting involvement of CYP450s in resistance. A small number (0.22%) of An. gambiae s.s. ×An. arabiensis hybrids were found, suggesting the possibility of introgression of resistance alleles between species. The high levels of pyrethroid resistance encountered in Jinja threaten to reduce the efficacy of vector control programmes which rely on pyrethroid‐impregnated bednets or indoor spraying of pyrethroids.  相似文献   

7.
The relationship between mosquito 4th instar larval desiccation and survival to adulthood was explored by three methods in the laboratory. Two colonies of Anopheles arabiensis and one of Anopheles gambiae were studied. We found significant differences in tolerance to desiccation among all three stocks suggesting an intra‐ and interspecific genetic component to desiccation tolerance. An. arabiensis KGB, originating from Zimbabwe about 1975, had a much‐reduced desiccation tolerance compared to An. gambiae G3, colonized in the Gambia in 1975, and An. arabiensis DONGOLA which originated in Sudan in 2004. Individuals of the G3 stock survived desiccation of times up to 40 min with survival of 0.52. The degree of difference in tolerance between G3 and DONGOLA was smallest and was detected by one of three experimental methods. Mass losses of individuals that were weighed individually and survived to adulthood averaged 27% and 29% for G3 and DONGOLA and 20% for the less tolerant KGB stock, respectively. Such differences in survival in transiently dry larval habitats may account in part for differences in the distribution of these species and karyotypes.  相似文献   

8.
Malaria transmission was monitored in two villages in the Sahel zone of Niger over 4 years. During this period, a nationwide vector control programme was carried out in which insecticide‐treated bednets were distributed free to mothers of children aged <5 years. Anopheles gambiae and Anopheles arabiensis (Diptera: Culicidae) were found to be the major malaria vectors. The dynamics of An. gambiae s.l. did not vary dramatically over the study period although the proportion of female mosquitoes found resting indoors decreased in both villages and, in one village, the parity rate and sporozoite index were significantly reduced after bednet distribution. By contrast with An. gambiae, the dynamics of Anopheles funestus altered greatly after the bednet distribution period, when adult density, endophagous rate and sporozoite rates decreased dramatically. Our observations highlight the importance of quantifying and monitoring the dynamics and infections of malaria vectors during large‐scale vector control interventions.  相似文献   

9.
The host preferences of the anthropophilic mosquito species in the Anopheles gambiae complex (Diptera: Culicidae) are mediated by skin bacterial volatiles. However, it is not known whether these mosquitoes respond differentially to skin bacterial volatiles from non‐human host species. In this study, the responses of two malaria mosquito species in the An. gambiae complex, Anopheles gambiae s.s. (hereafter, An. gambiae) and Anopheles arabiensis, with different host preferences, to volatiles released from skin bacteria were tested. Skin bacteria collected from human, cow and chicken skin significantly increased trap catches; traps containing bacteria collected from human skin caught the highest proportions of An. gambiae and An. arabiensis. Traps with bacteria of human origin caught a significantly higher proportion of An. gambiae than of An. arabiensis, whereas bacterial volatiles from the chicken attracted significantly higher numbers of An. arabiensis than of An. gambiae. Additionally, An. gambiae showed a specialized response to volatiles from four specific bacteria, whereas An. arabiensis responded equally to all species of bacteria tested. Skin bacterial volatiles may therefore play important roles in guiding mosquitoes with different host preferences. The identification of these bacterial volatiles can contribute to the development of an odour blend that attracts mosquitoes with different host preferences.  相似文献   

10.
This study provides data on malaria vector species composition and insecticide susceptibility status from three localities in Guinea Conakry. A total of 497 mosquitoes were collected resting indoors and morphologically identified as belonging to the Anopheles gambiae complex. The majority of these were An. gambiae s.s. (99.6%), but a small percentage (0.4%) were identified as Anopheles arabiensis. Thirty‐four Anopheles funestus s.s. were also collected. The molecular S form of An. gambiae s.s. was predominant over the M form in Siguiri (95%) and Boffa (97.4%), whereas at Mt Nimba the M form was more abundant (61.4%) than the S form (38.1%). One hybrid M/S specimen was recorded from Mt Nimba. Siguiri populations showed high levels of resistance to DDT, dieldrin and bendiocarb. Anopheles gambiae from Boffa were largely susceptible to the insecticides tested. At Mt Nimba, resistance to DDT and bendicocarb was detected. Biochemical enzyme analysis showed that an altered acetylcholinesterase is operating in the field at low levels. The frequency of the 1014F kdr allele in the An. gambiae S form was 0.24 at Siguiri and 0.14 at Mt Nimba. A single RR specimen was found in the M form. The heterogeneity in species composition and resistance profiles between sites requires vector control interventions to be tailored to each site based on the data collected from ongoing monitoring and surveillance.  相似文献   

11.
C Liu  MG Mauk  R Hart  M Bonizzoni  G Yan  HH Bau 《PloS one》2012,7(8):e42222

Background

Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30–40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission.

Methodology/Principal Findings

An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark.

Conclusions/Significance

The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to track the geographical distribution of mosquito populations and community structure alterations due to environmental changes and malaria intervention measures.  相似文献   

12.
Population genetic structures of the two major malaria vectors Anopheles gambiae s.s. and An. arabiensis, differ markedly across Sub-Saharan Africa, which could reflect differences in historical demographies or in contemporary gene flow. Elucidation of the degree and cause of population structure is important for predicting the spread of genetic traits such as insecticide resistance genes or artificially engineered genes. Here the population genetics of An. gambiae s.s. and An. arabiensis in the central, eastern and island regions of Tanzania were compared. Microsatellite markers were screened in 33 collections of female An. gambiae s.l., originating from 22 geographical locations, four of which were sampled in two or three years between 2008 and 2010. An. gambiae were sampled from six sites, An. arabiensis from 14 sites, and both species from two sites, with an additional colonised insectary sample of each species. Frequencies of the knock-down resistance (kdr) alleles 1014S and 1014F were also determined. An. gambiae exhibited relatively high genetic differentiation (average pairwise FST = 0.131), significant even between nearby samples, but without clear geographical patterning. In contrast, An. arabiensis exhibited limited differentiation (average FST = 0.015), but strong isolation-by-distance (Mantel test r = 0.46, p = 0.0008). Most time-series samples of An. arabiensis were homogeneous, suggesting general temporal stability of the genetic structure. An. gambiae populations from Dar es Salaam and Bagamoyo were found to have high frequencies of kdr 1014S (around 70%), with almost 50% homozygote but was at much lower frequency on Unguja Island, with no. An. gambiae population genetic differentiation was consistent with an island model of genetic structuring with highly restricted gene flow, contrary to An. arabiensis which was consistent with a stepping-stone model of extensive, but geographically-restricted gene flow.  相似文献   

13.
Abstract Environmental relationships were investigated among three species of the Anopheles gambiae complex of mosquitoes associated with the geothermal springs located in Bwamba County, Uganda. The degree of ecological isolation between An.gambiae and An. bwambae, a sibling species known only from the geothermal springs environment, was assessed on the basis of adult distribution and abundance as well as differences in larval habitats. Field data were gathered during June 1995 without knowing which of the species were being collected. Specimens identified subsequently by rDNA-PCR were used to interpret the ecological data. Ten of twenty aquatic sites sampled were found positive for immature stages of the An.gambiae complex. Larvae of An.bwambae were associated with ‘springwater’ habitats having much higher conductivity, much greater concentrations of dissolved solids and slightly higher temperature and pH than ‘normal’ fresh water sites inhabited by larvae of An.gambiae. Larval habitats of both species were unshaded: An.bwambae occurred among dense sedge (Cyperus laevigatus) whereas those of An.gambiae were almost devoid of vegetation. One mixed sample showed that larvae of both species occur together in peripheral aquatic sites with intermediate physical and ecological characteristics. In water preference tests, free-flying females were reluctant to lay eggs on bowls of water in cages; gravid females (with one wing amputated) placed on the surface of water in a cup laid eggs on seasoned rainwater (12/51 An.bwambae; 2/3 An.gambiae) as well as spring-water (39/51 An.bwambae; 1/3 An.gambiae). All three An.gambiae oviposited on the first water option, whereas 86% of An. bwambae witheld oviposition until being moved to the other type of water after 5–6 h, and 82% (36/44) of these laid eggs on geothermal water in preference to rainwater. Larval and adult collections showed that An.gambiae occurs sympatrically with An.bwambae throughout its range in the humid foothill environment of the geothermal springs, whereas the distribution of An.arabiensis overlaps only slightly with An.bwambae towards the savanna environment north of the springs.  相似文献   

14.
15.
16.
The malaria control programme of KwaZulu‐Natal Province, South Africa, includes Mamfene and Mlambo communities. Western‐type houses there are currently sprayed with deltamethrin, whereas traditional houses are sprayed with DDT for malaria control. In 2002, mosquitoes of the Anopheles gambiae complex (Diptera: Culicidae) were collected from DDT‐sprayed houses, by window exit traps, and from man‐baited nets outdoors. Larval collections were also carried out at Mzinweni Pan near Mlambo. Species of the An. gambiae complex were identified by rDNA polymerase chain reaction assay. The majority of samples collected by window trap and baited nets were identified as the malaria vector An. arabiensis Patton, with a few An. merus Dönitz and An. quadriannulatus (Theobald). The larval collections were predominantly An. quadriannulatus with a small number of An. arabiensis. Standard WHO insecticide susceptibility tests using 4% DDT and 0.05% deltamethrin were performed on both wild‐caught females and laboratory‐reared progeny from wild‐caught females. Wild‐caught An. arabiensis samples from window traps gave 63% and 100% mortality 24‐h post‐exposure to DDT or deltamethrin, respectively. Wild‐caught An. arabiensis samples from man‐baited net traps gave 81% mortality 24‐h post‐exposure to DDT. The F1 progeny from 22 An. arabiensis females showed average mortality of 86.5% 24‐h post‐exposure to DDT. Less than 80% mortality was recorded from five of these families. Biochemical analyses of samples from each of the families revealed comparatively high levels of glutathione‐S‐transferases and non‐specific esterases in some families, but without significant correlation to bioassay results. Wild‐caught An. quadriannulatus larvae were reared through to adults and assayed on 4% DDT, giving 47% (n = 36) mortality 24‐h post‐exposure. Finding DDT resistance in the vector An. arabiensis, close to the area where we previously reported pyrethroid‐resistance in the vector An. funestus Giles, indicates an urgent need to develop a strategy of insecticide resistance management for the malaria control programmes of southern Africa.  相似文献   

17.
Abstract. The way that the malaria vectors Anopheles arabiensis and An.gambiae survive the dry season in sub-saharan Sahel or northern Savanna areas of Africa remains enigmatic. We examined this problem by calculating the effective sizes (Ne) of An.arabiensis populations for several locations in West Africa. An indirect/genetic procedure was used, comparing gene frequencies at several time intervals. The amount of drift which occurred provides an estimate of Ne. Most estimates of Ne were approximately 2000 individuals, probably close to the yearly minimum. This supports the hypothesis that populations of An.arabiensis in this region are continuous throughout the year, with many individuals surviving through the dry season, perhaps in a physiologically altered state, rather than extinction or severe bottlenecks during the dry season, followed by recolonization by a few individual survivors or immigrants in the subsequent rainy season.  相似文献   

18.
Three insecticides – the pyrethroid deltamethrin, the carbamate carbosulfan and the organophosphate chlorpyrifos‐methyl – were tested on mosquito nets in experimental huts to determine their potential for introduction as malaria control measures. Their behavioural effects and efficacy were examined in Anopheles gambiae Giles s.s. (Diptera: Culicidae) and Anopheles funestus Giles s.s. in Muheza, Tanzania, and in Anopheles arabiensis Patton and Culex quinquefasciatus Say in Moshi, Tanzania. A standardized dosage of 25 mg/m2 plus high dosages of carbosulfan (50 mg/m2, 100 mg/m2 and 200 mg/m2) and chlorpyrifos‐methyl (100 mg/m2) were used to compare the three types of insecticide. At 25 mg/m2, the rank order of the insecticides for insecticide‐induced mortality in wild An. gambiae and An. funestus was, respectively, carbosulfan (88%, 86%) > deltamethrin (79%, 78%) > chlorpyrifos‐methyl (35%, 53%). The rank order of the insecticides for blood‐feeding inhibition (reduction in the number of blood‐fed mosquitoes compared with control) in wild An. gambiae and An. funestus was deltamethrin > chlorpyrifos‐methyl > carbosulfan. Carbosulfan was particularly toxic to endophilic anophelines at 200 mg/m2, killing 100% of An. gambiae and 98% of An. funestus that entered the huts. It was less effective against the more exophilic An. arabiensis (67% mortality) and carbamate‐resistant Cx quinquefasciatus (36% mortality). Carbosulfan deterred anophelines from entering huts, but did not deter carbamate‐resistant Cx quinquefasciatus. Deltamethrin reduced the proportion of insects engaged in blood‐feeding, probably as a consequence of contact irritancy, whereas carbosulfan seemed to provide personal protection through deterred entry or perhaps a spatial repellent action. Any deployment of carbosulfan as an individual treatment on nets should be carried out on a large scale to reduce the risk of diverting mosquitoes to unprotected individuals. Chlorpyrifos‐methyl was inferior to deltamethrin in terms of mortality and blood‐feeding inhibition and would be better deployed on a net in combination with a pyrethroid to control insecticide‐resistant mosquitoes.  相似文献   

19.
Many malaria vector mosquitoes in Africa have an extreme preference for feeding on humans. This specialization allows them to sustain much higher levels of transmission than elsewhere, but there is little understanding of the evolutionary forces that drive this behaviour. In Tanzania, we used a semi-field system to test whether the well-documented preferences of the vectors, Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) for cattle and humans, respectively, are predicted by the fitness they obtain from host-seeking on these species relative to other available hosts. Mosquito fitness was contrasted, when humans were fully exposed and when they were protected by a typical bednet. The fitness of both vectors varied between host species. The predicted relationship between host preference and fitness was confirmed in An. arabiensis, but not in An. gambiae s.s., whose fitness was similar on humans and other mammals. Use of typical, imperfect bednets generated only minor reductions in An. gambiae s.s. feeding success and fitness on humans, but was predicted to generate a significant reduction in the lifetime reproductive success of An. arabiensis on humans relative to cows. This supports the hypothesis that such human-protective measures could additionally benefit malaria control by increasing selection for zoophily in vectors.  相似文献   

20.
Competitive interactions among the aquatic stages of the malaria mosquito Anopheles gambiae s.l. (Diptera: Culicidae) may affect the resulting adult densities and, hence, the risk of malaria. We investigated the impact of the presence of a fourth‐instar larva (An. gambiae Giles s.s. or An. arabiensis Patton), the quantity of food, and the available space on the survival and development of freshly hatched larvae of An. gambiae s.s. and An. arabiensis. To analyse the results, two proportional hazard models were constructed. The first estimated the effects of all covariates on mortality rate and the second estimated the effects of the covariates on development rate into the third larval instar (L3). A time‐dependent covariate for density, which changed during the experiment as a result of death or development to L3, was included in both models. In the presence of a fourth‐instar larva (L4), survival of the experimental larvae was significantly reduced, but no difference was detected between the presence of L4 An. gambiae and L4 An. arabiensis. The observation that the majority of dead larvae were not recovered in trays with an L4 present suggested that cannibalism and predation occurred readily. Limitation in space significantly increased mortality of larvae, whereas a limitation of food reduced larval development rate, but did not cause mortality per se. From this, we concluded that both cannibalism and predation were enhanced as a result of more frequent interactions within smaller environments, but did not occur for reasons of food shortage. This study shows that inter‐ and intraspecific interactions among larvae of the An. gambiae complex strongly affect survival and development, and that the quantity of food and the available space are important determinants of the outcome of these interactions. Implications of the results are discussed with respect to the population dynamics of both malaria vectors in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号