首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The development of second‐generation energy crops on marginal land relies on the identification of plants with suitable physiological properties. In this study, we measured and compared leaf photosynthesis and water use efficiency of 22 populations from three Miscanthus species, M. lutarioriparius, M. sacchariflorus, and M. sinensis, planted in two experimental fields located in Qingyang of the Gansu Province (QG) and Jiangxia of the Hubei Province (JH) in China. QG is located in the Loess Plateau, one of the world's most seriously eroded regions particularly abundant in semiarid marginal land. At both locations, M. lutarioriparius produced the highest biomass and had the highest photosynthetic rates (A), with the growing‐season average of A reaching nearly 20 μmol m?2 s?1. Native to JH, M. lutarioriparius maintained a relatively high photosynthetic rate into the late growing stage in QG, for example, 15 μmol m?2 s?1 at temperature as low as 11.6 °C in October. All three species had higher water use efficiency (WUE) in semiarid QG than in warmer and wetter JH. In the late growing stage of M. lutarioriparius, instantaneous WUE (A/E) of the species nearly tripled in QG comparing to JH. Being able to maintain remarkably high photosynthetic rates when transplanted to a colder and drier location, these M. lutarioriparius populations serve as suitable wild progenitors for energy crop domestication in the Loess Plateau and other areas with the similar climates.  相似文献   

2.
    
Sweetcane (Erianthus arundinaceus [Retzius] Jeswiet) is an ecologically dominant warm‐season perennial grass native to southern China. It traditionally plays an important role in sugarcane breeding due to its excellent biological traits and genetic relatedness to sugarcane. Recent studies have shown that sweetcane has a great potential in bioenergy and environmental remediation. The objective of this paper is to review the current research on sweetcane biology, phenology, biogeography, agronomy, and conversion technology, in order to explore its development as a bioenergy crop with environmental remediation potential. Sweetcane is resistant to a variety of stressors and can adapt to different growth environments. It can be used for ecological restoration, soil and water conservation, contaminated land repairing, nonpoint source pollutants barriers in buffer strips along surface waters, and as an ornamental and remediation plant on roadsides and in wetlands. Sweetcane exhibits higher biomass yield, calorific value and cellulose content than other bioenergy crops under the same growth conditions, thereby indicating its superior potential in second‐generation biofuel production. However, research on sweetcane as a bioenergy plant is still in its infancy. More works need be conducted on breeding, cultivation, genetic transformation, and energy conversion technologies.  相似文献   

3.
    
Vegetation exerts large control on global biogeochemical cycles through the processes of photosynthesis and transpiration that exchange CO2 and water between the land and the atmosphere. Increasing atmospheric CO2 concentrations exert direct effects on vegetation through enhanced photosynthesis and reduced stomatal conductance, and indirect effects through changes in climatic variables that drive these processes. How these direct and indirect CO2 impacts interact with each other to affect plant productivity and water use has not been explicitly analysed and remains unclear, yet is important to fully understand the response of the global carbon cycle to future climate change. Here, we use a set of factorial modelling experiments to quantify the direct and indirect impacts of atmospheric CO2 and their interaction on yield and water use in bioenergy short rotation coppice poplar, in addition to quantifying the impact of other environmental drivers such as soil type. We use the JULES land‐surface model forced with a ten‐member ensemble of projected climate change for 2100 with atmospheric CO2 concentrations representative of the A1B emissions scenario. We show that the simulated response of plant productivity to future climate change was nonadditive in JULES, however this nonadditivity was not apparent for plant transpiration. The responses of both growth and transpiration under all experimental scenarios were highly variable between sites, highlighting the complexity of interactions between direct physiological CO2 effects and indirect climate effects. As a result, no general pattern explaining the response of bioenergy poplar water use and yield to future climate change could be discerned across sites. This study suggests attempts to infer future climate change impacts on the land biosphere from studies that force with either the direct or indirect CO2 effects in isolation from each other may lead to incorrect conclusions in terms of both the direction and magnitude of plant response to future climate change.  相似文献   

4.
    
A method and tool have been developed to assess future developments in land availability for bioenergy crops in a spatially explicit way, while taking into account both the developments in other land use functions, such as land for food, livestock and material production, and the uncertainties in the key determinant factors of land use change (LUC). This spatiotemporal LUC model is demonstrated with a case study on the developments in the land availability for bioenergy crops in Mozambique in the timeframe 2005–2030. The developments in the main drivers for agricultural land use, demand for food, animal products and materials were assessed, based on the projected developments in population, diet, GDP and self‐sufficiency ratio. Two scenarios were developed: a business‐as‐usual (BAU) scenario and a progressive scenario. Land allocation was based on land use class‐specific sets of suitability factors. The LUC dynamics were mapped on a 1 km2 grid level for each individual year up to 2030. In the BAU scenario, 7.7 Mha and in the progressive scenario 16.4 Mha could become available for bioenergy crop production in 2030. Based on the Monte Carlo analysis, a 95% confidence interval of the amount of land available and the spatially explicit probability of available land was found. The bottom‐up approach, the number of dynamic land uses, the diverse portfolio of LUC drivers and suitability factors, and the possibility to model uncertainty mean that this model is a step forward in modelling land availability for bioenergy potentials.  相似文献   

5.
    
In the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha?1 and 26.83 ± 8.08 Mg C ha?1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.  相似文献   

6.
    
The European Commission has a mandate from the EU's Renewable Energy and Fuel Quality Directives to propose a methodology, consistent with the best available science, to address indirect land use change (iLUC). One proposed solution to the iLUC problem is the application of iLUC factors in European fuels policy – it is widely expected that should the EU adopt such iLUC factors, they would be based on iLUC modelling using the International Food Policy Research Institute's (IFPRI) MIRAGE model. Taking the iLUC factors from IFPRI MIRAGE as our central estimate, we use Monte Carlo analysis on a simple model of potential biofuel pathways for Europe to assess the likely average carbon saving from three possible European biofuel policy scenarios: no action on iLUC; raised GHG thresholds for direct emissions savings; and the introduction of iLUC factors. We find that without iLUC factors (or some other effective iLUC minimization approach) European biofuel mandates are unlikely to deliver significant GHG emissions benefits in 2020, and have a substantial probability of increasing net GHG emissions. In contrast, the implementation of iLUC factors is likely to significantly increase the carbon savings from EU biofuel policy. With iLUC factors, it is likely that most permitted pathways would conform to the Renewable Energy Directive requirement for a minimum 50% GHG reduction compared to fossil fuels.  相似文献   

7.
    
The Nobel environmental productivity index (EPI) was used as a framework for the development of a predictive geospatial model to estimate the bioethanol yield potential of four crassulacean acid metabolism (CAM) candidates in Australia (Agave fourcroydes, Agave salmiana, Agave tequilana, and Opuntia ficus‐indica). GIS software was used to integrate climate datasets with titratable acidity responses to changes in photosynthetically active radiation (PAR), temperature, and water availability. Additional refinements to Nobel's approach were made to accommodate spatial and temporal fluctuations in soil water potential (ψs) as a function of soil particle size distribution and precipitation, and CO2 uptake response to a range of day and night temperatures. A scalar factor for CO2 persistence during periods of drought was also introduced to model the capacity of succulent species of Agave to buffer against fluctuations in ψs. Macro‐scale criteria were applied to estimate environmentally responsible (ER) bioethanol yield potential on lands that are not suitable for food production. Consideration was given to indigenous vascular plant species richness and endemism scores at ER sites of interest. The highest mean ER bioethanol yield was achieved by A. fourcroydes (μ: 3.89, max. 7.17 kL ha‐1 yr‐1) while the highest maximum yield was achieved by A. tequilana (μ: 3.78, max. 7.63 kL ha‐1 yr‐1). This research indicated the CAM pathway may produce significant yields (≥≥ 5 kL ha‐1 yr‐1) at ER sites totalling 57,700 km2 (0.7% land area of Australia).  相似文献   

8.
    
A life‐cycle assessment (LCA) of a low‐input, short rotation coppice (SRC) willow grown on different Danish lands was performed. Woodchips are gasified, producer gas is used for cogeneration of heat and power (CHP), and the ash–char output is applied as soil amendment in the field. A hybrid model was developed for the estimation of greenhouse gas (GHG) emissions from indirect land‐use changes (iLUC) induced by willow cropping on arable land (iLUCfood). For this, area expansion results from a general equilibrium economic model were combined with global LUC trends to differentiate between land transformation (as additional agricultural expansion, in areas with historical deforestation) and occupation (as delayed relaxation, DR, in areas with historical land abandonment) impacts. A biophysical approach was followed to determine the iLUCfeed emissions factor from marginal grassland. Land transformation impacts were derived from latest world deforestation statistics, while a commercial feed mix of equivalent nutritive value was assumed to substitute the displaced grass as fodder. Intensification effects were included in both iLUC factors as additional N‐fertilizer consumption. Finally, DR impacts were considered for abandoned farmland, as a relative C stock loss compared to natural regeneration. ILUC results show that area related GHG emissions are dominant (93% of iLUCfood and 80% of iLUCfeed), transformation being more important (82% of iLUCfood) than occupation (11%) impacts. LCA results show that CHP from willow emits 4047 kg CO2‐eq (or 0.8 gCO2‐eq MJ?1) when grown on arable land, while sequestering 43 745 kg CO2‐eq (or ?10.4 gCO2‐eq MJ?1) when planted on marginal pastureland, and 134 296 kg CO2‐eq (or ?31.8 gCO2‐eq MJ?1) when marginal abandoned land is cultivated. Increasing the bioenergy potential without undesirable iLUC effects, especially relevant regarding biodiversity impacts, requires that part of the marginally used extensive grasslands are released from their current use or energy cropping on abandoned farmland incentivized.  相似文献   

9.
    
Miscanthus lutarioriparius is an endemic species that grows along the middle and lower reaches of the Yangtze River and is a valuable source of germplasm for the development of second‐generation energy crops. The plant that propagates via seeds, stem nodes, and rhizomes shows high phenotypic variation and strong local adaptation. Here, we examined the magnitude and spatial distribution of genetic variation in M. lutarioriparius across its entire distributional range and tested underlying factors that shaped its genetic variation. Population genetic analyses were conducted on 644 individuals from 25 populations using 16 microsatellite markers. M. lutarioriparius exhibited a high level of genetic variation (HE = 0.682–0.786; A= 4.74–8.06) and a low differentiation (FST = 0.063; Dest = 0.153). Of the total genetic variation, 10% was attributed to the differences among populations (df = 24, < 0.0001), whereas 90% was attributed to the differences among individuals (df = 619, ≤ 0.0001). Genetic diversity did not differ significantly across longitudes and did not increase in the populations growing downstream of the Yangtze River. However, significant associations were found between genetic differentiation and spatial distance. Six genetic discontinuities were identified, which mostly distributed among downstream populations. We conclude that anthropogenic factors and landscape features both contributed to shaping the pattern of gene flow in M. lutarioriparius, including long‐distance bidirectional dispersal. Our results explain the genetic basis of the high degree of adaptability in M. lutarioriparius and identify potential sources of new germplasm for the domestication of this potential second‐generation energy crop.  相似文献   

10.
    
Biorefining agro‐industrial biomass residues for bioenergy production represents an opportunity for both sustainable energy supply and greenhouse gas (GHG) emissions mitigation. Yet, is bioenergy the most sustainable use for these residues? To assess the importance of the alternative use of these residues, a consequential life cycle assessment (LCA) of 32 energy‐focused biorefinery scenarios was performed based on eight selected agro‐industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land‐use changes (iLUC) induced by the competing feed/food sector, a deterministic iLUC model, addressing global impacts, was developed. A dedicated biochemical model was developed to establish detailed mass, energy, and substance balances for each biomass conversion pathway, as input to the LCA. The results demonstrated that, even for residual biomass, environmental savings from fossil fuel displacement can be completely outbalanced by iLUC, depending on the feed value of the biomass residue. This was the case of industrial residues (e.g. whey and beet molasses) in most of the scenarios assessed. Overall, the GHGs from iLUC impacts were quantified to 4.1 t CO2‐eq.ha?1demanded yr?1 corresponding to 1.2–1.4 t CO2‐eq. t?1 dry biomass diverted from feed to energy market. Only, bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat and power production was the best performing pathway, in a short‐term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro‐industrial residues cannot be considered burden‐free simply because they are a residual biomass and careful accounting of alternative utilization is a prerequisite to assess the sustainability of a given use. In this endeavor, the iLUC factors and biochemical model proposed herein can be used as templates and directly applied to any bioenergy consequential study involving demand for arable land.  相似文献   

11.
    
Planting the perennial biomass crop Miscanthus in the UK could offset 2–13 Mt oil eq. yr?1, contributing up to 10% of current energy use. Policymakers need assurance that upscaling Miscanthus production can be performed sustainably without negatively impacting essential food production or the wider environment. This study reviews a large body of Miscanthus relevant literature into concise summary statements. Perennial Miscanthus has energy output/input ratios 10 times higher (47.3 ± 2.2) than annual crops used for energy (4.7 ± 0.2 to 5.5 ± 0.2), and the total carbon cost of energy production (1.12 g CO2‐C eq. MJ?1) is 20–30 times lower than fossil fuels. Planting on former arable land generally increases soil organic carbon (SOC) with Miscanthus sequestering 0.7–2.2 Mg C4‐C ha?1 yr?1. Cultivation on grassland can cause a disturbance loss of SOC which is likely to be recovered during the lifetime of the crop and is potentially mitigated by fossil fuel offset. N2O emissions can be five times lower under unfertilized Miscanthus than annual crops and up to 100 times lower than intensive pasture. Nitrogen fertilizer is generally unnecessary except in low fertility soils. Herbicide is essential during the establishment years after which natural weed suppression by shading is sufficient. Pesticides are unnecessary. Water‐use efficiency is high (e.g. 5.5–9.2 g aerial DM (kg H2O)?1, but high biomass productivity means increased water demand compared to cereal crops. The perennial nature and belowground biomass improves soil structure, increases water‐holding capacity (up by 100–150 mm), and reduces run‐off and erosion. Overwinter ripening increases landscape structural resources for wildlife. Reduced management intensity promotes earthworm diversity and abundance although poor litter palatability may reduce individual biomass. Chemical leaching into field boundaries is lower than comparable agriculture, improving soil and water habitat quality.  相似文献   

12.
    
There are posited links between the establishment of perennial bioenergy, such as short rotation coppice (SRC) willow and Miscanthus × giganteus, on low carbon soils and enhanced soil C sequestration. Sequestration provides additional climate mitigation, however, few studies have explored impacts on soil C stocks of bioenergy crop removal; thus, the permanence of any sequestered C is unclear. This uncertainty has led some authors to question the handling of soil C stocks with carbon accounting, for example, through life cycle assessments. Here, we provide additional data for this debate, reporting on the soil C impacts of the reversion (removal and return) to arable cropping of commercial SRC willow and Miscanthus across four sites in the UK, two for each bioenergy crop, with eight reversions nested within these sites. Using a paired‐site approach, soil C stocks (0–1 m) were compared between 3 and 7 years after bioenergy crop removal. Impacts on soil C stocks varied, ranging from an increase of 70.16 ± 10.81 Mg C/ha 7 years after reversion of SRC willow to a decrease of 33.38 ± 5.33 Mg C/ha 3 years after reversion of Miscanthus compared to paired arable land. The implications for carbon accounting will depend on the method used to allocate this stock change between current and past land use. However, with published life cycle assessment values for the lifetime C reduction provided by these crops ranging from 29.50 to 138.55 Mg C/ha, the magnitude of these changes in stock are significant. We discuss the potential underlying mechanisms driving variability in soil C stock change, including the age of bioenergy crop at removal, removal methods, and differences in the recalcitrant of the crop residues, and highlight the need to design management methods to limit negative outcomes.  相似文献   

13.
    
Conversion of large areas of agricultural grassland is inevitable if European and UK domestic production of biomass is to play a significant role in meeting demand. Understanding the impact of these land‐use changes on soil carbon cycling and stocks depends on accurate predictions from well‐parameterized models. Key considerations are cultivation disturbance and the effect of autotrophic root input stimulation on soil carbon decomposition under novel biomass crops. This study presents partitioned parameters from the conversion of semi‐improved grassland to Miscanthus bioenergy production and compares the contribution of autotrophic and heterotrophic respiration to overall ecosystem respiration of CO2 in the first and second years of establishment. Repeated measures of respiration from within and without root exclusion collars were used to produce time‐series model integrations separating live root inputs from decomposition of grass residues ploughed in with cultivation of the new crop. These parameters were then compared to total ecosystem respiration derived from eddy covariance sensors. Average soil surface respiration was 13.4% higher in the second growing season, increasing from 2.9 to 3.29 g CO2‐C m?2 day?1. Total ecosystem respiration followed a similar trend, increasing from 4.07 to 5.4 g CO2‐C m?2 day?1. Heterotrophic respiration from the root exclusion collars was 32.2% lower in the second growing season at 1.20 g CO2‐C m?2 day?1 compared to the previous year at 1.77 g CO2‐C m?2 day?1. Of the total respiration flux over the two‐year time period, aboveground autotrophic respiration plus litter decomposition contributed 38.46% to total ecosystem respiration while belowground autotrophic respiration and stimulation by live root inputs contributed 46.44% to soil surface respiration. This figure is notably higher than mean figures for nonforest soils derived from the literature and demonstrates the importance of crop‐specific parameterization of respiration models.  相似文献   

14.
    
Perennial grasses have been proposed as viable bioenergy crops because of their potential to yield harvestable biomass on marginal lands annually without displacing food and to contribute to greenhouse gas (GHG) reduction by storing carbon in soil. Switchgrass, miscanthus, and restored native prairie are among the crops being considered in the corn and agricultural regions of the Midwest and eastern United States. In this study, we used an extensive dataset of site observations for each of these crops to evaluate and improve the DayCent biogeochemical model and make predictions about how both yield and GHG fluxes would respond to different management practices compared to a traditional corn‐soy rotation. Using this model‐data integration approach, we found 30–75% improvement in our predictions over previous studies and a subsequent evaluation with a synthesis of sites across the region revealed good model‐data agreement of harvested yields (r2 > 0.62 for all crops). We found that replacement of corn‐soy rotations would result in a net GHG reduction of 0.5, 1.0, and 2.0 Mg C ha?1 yr?1 with average annual yields of 3.6, 9.2, and 17.2 Mg of dry biomass per year for native prairie, switchgrass, and miscanthus respectively. Both the yield and GHG balance of switchgrass and miscanthus were affected by harvest date with highest yields occurring near onset of senescence and highest GHG reductions occurring in early spring before the new crops emergence. Addition of a moderate length rotation (10–15 years) caused less than a 15% change to yield and GHG balance. For policy incentives aimed at GHG reduction through onsite management practices and improvement of soil quality, post‐senescence harvests are a more effective means than maximizing yield potential.  相似文献   

15.
    
The introduction of new crops to agroecosystems can change the chemical composition of the atmosphere by altering the amount and type of plant‐derived biogenic volatile organic compounds (BVOCs). BVOCs are produced by plants to aid in defense, pollination, and communication. Once released into the atmosphere, they have the ability to influence its chemical and physical properties. In this study, we compared BVOC emissions from three potential bioenergy crops and estimated their theoretical impacts on bioenergy agroecosystems. The crops chosen were miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), and an assemblage of prairie species (mix of ~28 species). The concentration of BVOCs was different within and above plant canopies. All crops produced higher levels of emissions at the upper canopy level. Miscanthus produced lower amounts of volatiles compared with other grasses. The chemical composition of volatiles differed significantly among plant communities. BVOCs from miscanthus were depleted in terpenoids relative to the other vegetation types. The carbon flux via BVOC emissions, calculated using the flux‐gradient method, was significantly higher in the prairie assemblage compared with miscanthus and switchgrass. The BVOC carbon flux was approximately three orders of magnitude lower than the net fluxes of carbon measured over the same fields using eddy covariance systems. Extrapolation of our findings to the landscape scale leads us to suggest that the widespread adoption of bioenergy crops could potentially alter the composition of BVOCs in the atmosphere, thereby influencing its warming potential, the formation of atmospheric particulates, and interactions between plants and arthropods. Our data and projections indicate that, among at least these three potential options for bioenergy production, miscanthus is likely to have lower impacts on atmospheric chemistry and biotic interactions mediated by these volatiles when miscanthus is planted on the landscape scale.  相似文献   

16.
    
An increase in renewable energy and the planting of perennial bioenergy crops is expected in order to meet global greenhouse gas (GHG) targets. Nitrous oxide (N2O) is a potent greenhouse gas, and this paper addresses a knowledge gap concerning soil N2O emissions over the possible “hot spot” of land use conversion from established pasture to the biofuel crop Miscanthus. The work aims to quantify the impacts of this land use change on N2O fluxes using three different cultivation methods. Three replicates of four treatments were established: Miscanthus x giganteus (Mxg) planted without tillage; Mxg planted with light tillage; a novel seed‐based Miscanthus hybrid planted with light tillage under bio‐degradable mulch film; and a control of uncultivated established grass pasture with sheep grazing. Soil N2O fluxes were recorded every 2 weeks using static chambers starting from preconversion in April 2016 and continuing until the end of October 2017. Monthly soil samples were also taken and analysed for nitrate and ammonium. There was no significant difference in N2O emissions between the different cultivation methods. However, in comparison with the uncultivated pasture, N2O emissions from the cultivated Miscanthus plots were 550%–819% higher in the first year (April to December 2016) and 469%–485% higher in the second year (January to October 2017). When added to an estimated carbon cost for production over a 10 year crop lifetime (including crop management, harvest, and transportation), the measured N2O conversion cost of 4.13 Mg CO2‐eq./ha represents a 44% increase in emission compared to the base case. This paper clearly shows the need to incorporate N2O fluxes during Miscanthus establishment into assessments of GHG balances and life cycle analysis and provides vital knowledge needed for this process. This work therefore also helps to support policy decisions regarding the costs and benefits of land use change to Miscanthus.  相似文献   

17.
    
The aim of this study was to evaluate the biomass production potential for the Spanish Iberian Peninsula using the Populus spp. ‘I‐214’ clone under several management regimes and land availability scenarios, and to determine its future contribution to Spanish energy demands. Empirical models were fitted to the data from a network of 144 plots located at 12 sites in the continental Mediterranean climatic regions of the Iberian Peninsula, in which yield was related to climate and soil, as well as to plantation management variables. Four models were developed considering average maximum temperature of the hottest month (TMAXH, °C), length of drought (A, months), intensity of drought (K, unitless) and soil pH. Predictions were made for the irrigated agricultural land (IAL), where the value of the independent variables were within the validity range, and for two management scenarios. Energy production capacity was evaluated by considering the alternatives for transforming poplar SRC biomass: heat, bio‐ethanol and electricity. The results indicated a mean productivity for the Spanish Iberian peninsula of between 15.3 and 10.9 Mg ha?1 yr?1 for the standard management scenario and the poorly irrigated and weeded management scenario respectively. Two IAL scenarios were considered for the calculation of biomass production potential: all IAL for which it was possible to make predictions is made available for poplar SRC (TP, maximum hypothetical production capacity), and another in which only unproductive IAL is available for poplar SRC (RP, production capacity without constricting agricultural production). The TP scenario contributes up to 6.8–9.6% of total energy demands, and the RP scenario 0.7–0.9%, depending on plantation management.  相似文献   

18.
19.
    
High irradiance arid environments are promising, yet understudied, areas for biofuel production. We investigated the productivity and environmental trade‐offs of growing sorghum (Sorghum bicolor) as a biofuel feedstock in the low deserts of California (CA). Using a 5.3 ha experimental field in the Imperial Valley, CA, we measured aboveground biomass production and net ecosystem exchange of CO2 and H2O via eddy covariance over three growing periods between February and November 2012. Environmental conditions were extreme, with high irradiance, vapor pressure deficit (VPD), and air temperature throughout the growing season. Air temperature peaked in August with a maximum of 45.7 °C. Sorghum produced an annual aboveground biomass yield of 43.7 Mg per hectare. Net ecosystem exchange (NEE) was highest during the summer growth period and reached a maximum of ?68 μmol CO2 m?2 s?1. Water use efficiency, or biomass water ratio (BWR), was high (4.0 g dry biomass kg?1 H2O) despite high seasonal evapotranspiration (1094 kg H2O m?2). The BWR of sorghum surpassed that of many C4 biofuel candidate crops in the United States, as well as that of alfalfa which is currently widely grown in the Imperial Valley. Sorghum also outperformed many US biofuel crops in terms of radiation use efficiency (RUE), achieving 1.5 g dry biomass MJ?1. We found no evidence of saturation of NEE at high levels of photosynthetically active radiation (PAR) (up to 2250 μmol m?2 s?1). In addition, we found no evidence that NEE was inhibited by either high VPD or air temperature during peak photosynthetic phases. The combination of high productivity, high BWR, and high RUE suggests that sorghum is well adapted to this extreme environment. The biomass production rates and efficiency metrics spanning three growing periods provide fundamental data for future Life Cycle Assessments (LCA), which are needed to assess the sustainability of this sorghum biofuel feedstock system.  相似文献   

20.
    
In the United States, renewable energy mandates calling for increased production of cellulosic biofuels will require a diversity of bioenergy feedstocks to meet growing demands. Within the suite of potential energy crops, plants within the genus Agave promise to be a productive feedstock in hot and arid regions. The potential distributions of Agave tequilana and Agave deserti in the United States were evaluated based on plant growth parameters identified in an extensive literature review. A geospatial suitability model rooted in fuzzy logic was developed that utilized a suite of biophysical criteria to optimize ideal geographic locations for this new crop, and several suitability scenarios were tested for each species. The results of this spatially explicit suitability model suggest that there is potential for Agave to be grown as an energy feedstock in the southwestern region of the United States – particularly in Arizona, California, and Texas and a significant portion of these areas are proximate to existing transportation infrastructure. Both Agave species showed the highest state‐level renewable energy benefit in Arizona, where agave plants have the potential to contribute 4.8–9.6% of the states' ethanol consumption, and 2.5–4.9% of its electricity consumption, for A. deserti and A. tequilana, respectively. This analysis supports the feasibility of Agave as a complementary bioenergy feedstock that can be grown in areas too harsh for conventional energy feedstocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号