共查询到20条相似文献,搜索用时 234 毫秒
1.
Feathers are the most complex epidermal derivatives among vertebrates. The present review deals with the origin of feathers from archosaurian reptiles, the cellular and molecular aspects of feather morphogenesis, and focus on the synthesis of keratins and associated proteins. Feathers consist of different proteins among which exists a specialized group of small proteins called beta-keratins. Genes encoding these proteins in the chick genome are distributed in different chromosomes, and most genes encode for feather keratins. The latter are here recognized as proteins associated with the keratins of intermediate filaments, and functionally correspond to keratin-associated proteins of hairs, nails and horns in mammals. These small proteins possess unique properties, including resistance and scarce elasticity, and were inherited and modified in feathers from ancestral proteins present in the scales of archosaurian progenitors of birds. The proteins share a common structural motif, the core box, which was present in the proteins of the reptilian ancestors of birds. The core box allows the formation of filaments with a different molecular mechanism of polymerization from that of alpha-keratins. Feathers evolved after the establishment of a special morphogenetic mechanism gave rise to barb ridges. During development, the epidermal layers of feathers fold to produce barb ridges that produce the ramified structure of feathers. Among barb ridge cells, those of barb and barbules initially accumulate small amounts of alpha-keratins that are rapidly replaced by a small protein indicated as “feather keratin”. This 10 kDa protein becomes the predominant form of corneous material of feathers. The main characteristics of feather keratins, their gene organization and biosynthesis are similar to those of their reptilian ancestors. Feather keratins allow elongation of feather cells among supportive cells that later degenerate and leave the ramified microstructure of barbs. In downfeathers, barbs are initially independent and form plumulaceous feathers that rest inside a follicle. Stem cells remain in the follicle and are responsible for the regeneration of pennaceous feathers. New barb ridges are produced and they merge to produce a rachis and a flat vane. The modulation of the growth pattern of barb ridges and their fusion into a rachis give rise to a broad variety of feather types, including asymmetric feathers for flight. Feather morphogenesis suggests possible stages for feather evolution and diversification from hair-like outgrowths of the skin found in fossils of pro-avian archosaurians. 相似文献
2.
Summary Morphology plays an important role in the computational properties of neural systems, affecting both their functionality and
the way in which this functionality is developed during life. In computer-based models of neural networks, artificial evolution
is often used as a method to explore the space of suitable morphologies. In this paper we critically review the most common
methods used to evolve neural morphologies and argue that a more effective, and possibly biologically plausible, method consists
of genetically encoding rules of synaptic plasticity along with rules of neural morphogenesis. Some preliminary experiments
with autonomous robots are described in order to show the feasibility and advantages of the approach. 相似文献
3.
Shuo Wang Wei-Ling Chang Qiyue Zhang Menglu Ma Feng Yang De Zhuo Harn I-Chen Hans Rui Yang Ping Wu Michael Habib Wen-Tau Juan Cheng-Ming Chuong 《Evolution; international journal of organic evolution》2020,74(9):2121-2133
The rachises of extant feathers, composed of dense cortex and spongy internal medulla, are flexible and light, yet stiff enough to withstand the load required for flight, among other functions. Incomplete knowledge of early feathers prevents a full understanding of how cylindrical rachises have evolved. Bizarre feathers with unusually wide and flattened rachises, known as “rachis-dominated feathers” (RDFs), have been observed in fossil nonavian and avian theropods. Newly discovered RDFs embedded in early Late Cretaceous Burmese ambers (about 99 million year ago) suggest the unusually wide and flattened rachises mainly consist of a dorsal cortex, lacking a medulla and a ventral cortex. Coupled with findings on extant feather morphogenesis, known fossil RDFs were categorized into three morphotypes based on their rachidial configurations. For each morphotype, potential developmental scenarios were depicted by referring to the rachidial development in chickens, and relative stiffness of each morphotype was estimated through functional simulations. The results suggest rachises of RDFs are developmentally equivalent to a variety of immature stages of cylindrical rachises. Similar rachidial morphotypes documented in extant penguins suggest that the RDFs are not unique to Mesozoic theropods, although they are likely to have evolved independently in extant penguins. 相似文献
4.
Lorenzo Alibardi 《Acta zoologica》2011,92(1):89-100
Alibardi, L. 2011. Cell junctions during morphogenesis of feathers: general ultrastructure with emphasis on adherens junctions. —Acta Zoologica (Stockholm) 92 : 89–100. The present ultrastructural and immunocytochemical study analyzes the cell junctions joining barb/barbule cells versus cell junctions connecting supportive cells in forming feathers. Differently from the epidermis or the sheath, desmosomes are not the prevalent junctions among feather cells. Numerous adherens junctions, some gap junctions and fewer tight junctions are present among differentiating barb/barbule cells during early stages of their differentiation. Adherens junctions are frequent also among differentiating supportive cells and show weak immunolabeling for both N‐cadherin and neural‐cell adhesion molecule (N‐CAM). Differentiating barb and barbule cells do not show labeled junctions for N‐cadherin and N‐CAM. The labeling occurs at patches in the cytoplasm of supportive cells but is more frequently seen in the external cytoplasm and along the extra‐cellular space (glycocalix) covering the plasma membrane of supportive cells. Labeling for N‐cadherin is also found in medium‐dense 0.1‐ to 0.3‐μm granules present in supportive cells and sometimes is associated with coarse filaments or periderm granules. The study indicates that adherens junctions form most of the transitional connections among supportive cells before their degeneration. Keratinizing barb and barbule cells loose the labeling for adherens junctions (N‐CAM and N‐chaderin) while their adhesion is strengthened by the incorporation of cell junctions in the corneous mass forming the barbules. 相似文献
5.
Alibardi L 《Journal of experimental zoology. Part B. Molecular and developmental evolution》2004,302(4):365-383
The dermal influence on the epidermis during scale formation in reptiles is poorly known. Cells of the superficial dermis are not homogeneously distributed beneath the epidermis, but are instead connected to specific areas of the epidermis. Dermal cells are joined temporarily or cyclically through the basement membrane, with the reactive region of the epidermis forming specific regions of dermo-epidermal interactions. In these regions morphoregulatory molecules may be exchanged between the dermis and the connected epidermis. Possible changes in the localization of these regions in the skin may result in the production of different appendages, in accordance with the genetic makeup of the epidermis in each species. Regions of dermo-epidermal interactions seem to move their position during development. A hypothesis on the development and evolution of scales, hairs, and feathers from sarcopterigian fish to amniotes is presented, based on the different localization and extension of regions of dermo-epidermal interactions in the skin. It is hypothesized that, during phylogenesis, possible variations in the localization and extension of these regions, from the large scales of basic amniotes to those of sauropsid amniotes, may have originated scales with hard (beta)-keratin. In extant reptiles, extended regions of dermo-epidermal interaction form most of the expanse of outer scale surface. It is hypothesized that the reduction of large regions of dermo-epidermal interactions into small areas in the skin were the origin of dermal condensations. In mammals, small regions of dermo-epidermal interactions have invaginated, forming the dermal papilla with the associated hair matrix epidermis. In birds, small regions of dermo-epidermal interactions have reduced the original scale surface of archosaurian scales, forming the dermal papilla. The latter has invaginated in association with the collar epidermis from which feathers were produced. 相似文献
6.
Bettina Strasser Veronika Mlitz Marcela Hermann Erwin Tschachler Leopold Eckhart 《BMC evolutionary biology》2015,15(1):82
Background
Feathers and hair consist of cornified epidermal keratinocytes in which proteins are crosslinked via disulfide bonds between cysteine residues of structural proteins to establish mechanical resilience. Cysteine-rich keratin-associated proteins (KRTAPs) are important components of hair whereas the molecular components of feathers have remained incompletely known. Recently, we have identified a chicken gene, named epidermal differentiation cysteine-rich protein (EDCRP), that encodes a protein with a cysteine content of 36%. Here we have investigated the putative role of EDCRP in the molecular architecture and evolution of feathers.Results
Comparative genomics showed that the presence of an EDCRP gene and the high cysteine content of the encoded proteins are conserved among birds. Avian EDCRPs contain a species-specific number of sequence repeats with the consensus sequence CCDPCQ(K/Q)(S/P)V, thus resembling mammalian cysteine-rich KRTAPs which also contain sequence repeats of similar sequence. However, differences in gene loci and exon-intron structures suggest that EDCRP and KRTAPs have not evolved from a common gene ancestor but represent the products of convergent sequence evolution. mRNA in situ hybridization demonstrated that chicken EDCRP is expressed in the subperiderm layer of the embryonic epidermis and in the barbule cells of growing feathers. This expression pattern supports the hypothesis that feathers are evolutionarily derived from the subperiderm.Conclusions
The results of this study suggest that convergent sequence evolution of avian EDCRP and mammalian KRTAPs has contributed to independent evolution of feathers and hair, respectively.7.
E. M. Lord 《The Botanical review》1981,47(4):421-449
Cleistogamy—the production of open (chasmogamous—CH) and closed (cleistogamous—CL) floral forms by a species—is widespread among the angiosperms. While the CL flower is autogamous, the CH flower may provide a means for outcrossing. The term “cleistogamy” has also been used to describe other phenomena. A classification of types of cleistogamy is proposed. In this review, a restricted definition of cleistogamy is used to refer to species which show real floral dimorphisms, with divergent developmental pathways leading to CL and CH as well as intermediate floral forms. Reductions in the androecium and corolla are the most common feature of the CL flowers. The structural, developmental, and functional aspects of cleistogamy are reviewed. Evidence is presented to show that the CL flowers have modifications in their development which ensure self pollination. A proposal is made for using this phenomenon of dimorphic flower production as a system for the study of floral morphogenesis, function and evolution. 相似文献
8.
Pax 6: mastering eye morphogenesis and eye evolution. 总被引:22,自引:0,他引:22
Pax 6 genes from various animal phyla are capable of inducing ectopic eye development, indicating that Pax 6 is a master control gene for eye morphogenesis. It is proposed that the various eye-types found in metazoa are derived from a common prototype, monophyletically, by a mechanism called intercalary evolution. 相似文献
9.
Perrichot V Marion L Néraudeau D Vullo R Tafforeau P 《Proceedings. Biological sciences / The Royal Society》2008,275(1639):1197-1202
The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur. 相似文献
10.
11.
Chanut-Delalande H Ferrer P Payre F Plaza S 《Seminars in cell & developmental biology》2012,23(3):341-349
One of the most challenging problems in biology resides in unraveling the molecular mechanisms, hardwired in the genome, that define and regulate the multiscale tridimensional organization of organs, tissues and individual cells. While works in cultured cells have revealed the importance of cytoskeletal networks for cell architecture, in vivo models are now required to explore how such a variety in cell shape is produced during development, in interaction with neighboring cells and tissues. The genetic analysis of epidermis development in Drosophila has provided an unbiased way to identify mechanisms remodeling the shape of epidermal cells, to form apical trichomes during terminal differentiation. Since hearing in vertebrates relies on apical cell extensions in sensory cells of the cochlea, called stereocilia, the mapping of human genes causing hereditary deafness has independently identified several factors required for this peculiar tridimensional organization. In this review, we summarized recent results obtained toward the identification of genes involved in these localized changes in cell shape and discuss their evolution throughout developmental processes and species. 相似文献
12.
Alibardi L 《Journal of experimental zoology. Part B, Molecular and developmental evolution》2012,318(5):325-343
Hair evolution contributed to the biological success of mammals. Hair origin from synapsid scales is speculative and requires extensive modifications of the morphogenetic process transforming lens-shaped dermis of scales into small dermal papillae in hair. Hair evolution from glands is hypothetical but is supported from studies on the signaling control of hair vs. glandular morphogenesis. Based on immunocytochemical and comparative studies, it is hypothesized that the onion-like organization of hair derived from glandular pegs which central part produced lipids and some keratin. In a following stage, involucrin, trichohyalin, and keratins were produced in the central cells of the gland and formed a solid medulla surrounded by keratinocytes of the inner root sheath. The origin of this protohair was possibly related to increased concentration of beta-catenin and other signaling molecules in epithelial cells following the evolution of a dermal papilla. The latter activated the keratogenic genes, already utilized in cells of the claws, in concentric layers of cells of the glandular peg. Lipidogenic genes were depressed. As new genes evolved in the genome of synapsids, new circular layers of keratinocytes containing specialized hard keratins and keratin-associated proteins were formed around medullary cells. The new keratinocytes probably originated the cortex separating medulla from the external cells that became the inner root sheath. The hypothesis indicates that in a following stage, the medulla was obliterated or replaced by cortical cells while the external part of the cortex formed a cuticular surface due to the different growth rate with inner root sheath cells. 相似文献
13.
Shook DR Keller R 《Journal of experimental zoology. Part B. Molecular and developmental evolution》2008,310(1):85-110
Chordate embryos show an evolutionary trend in the mechanisms they use to internalize presumptive mesoderm, relying predominantly on invagination in the basal chordates, varying combinations of involution and ingression in the anamniote vertebrates and reptiles, and predominantly on ingression in birds and mammals. This trend is associated with variations in epithelial type and changes in embryonic architecture as well as variations in the type of blastopore formed by an embryo. We also note the surprising conservation of the involution, during gastrulation, of at least a subset of the notochordal cells throughout the chordates, and suggest that this indicates a constraint on morphogenic evolution based on a functional linkage between architecture and patterning. Finally, we propose a model for the evolutionary transitions from gastrulation through a urodele amphibian-type blastopore to gastrulation through a primitive streak, as in chick or mouse. 相似文献
14.
L. Alibardi 《Acta zoologica》2007,88(2):101-117
This ultrastructural study on the regenerating feathers of quail describes the cellular organization of the barb ridges responsible for the ramification of adult feathers. Bilateral symmetry of the barb ridges determines the organization of feather cells into feather branching. The length of the barb ridges, derived from the number of cells associated to form the barbule plates, determines the length of the barbule branching. Long chains of barb cells form long barbs that branch from the rachis with an increase of feather size. Supportive cells function as spacers between the barbule cells. New cells derive from stem cells localized in the collar region of the feather follicle, as indicated from the re‐organization of collar cells into barb ridges (a morphogenetic process inherited from that of embryonic feathers), production of an embryonic type of keratin (feather keratin), permanence of periderm granules (typical embryonic organelles) in barb vane ridge cells. Variations in the process of barb ridge morphogenesis allow the fusion of ridges into a rachis. The differentiation of hooklets contributes to the origin of planar feathers. Separation between rachis and merging barb ridges is by supportive cells, derived from the marginal plates of the barb ridges. Speculations on the evolution and diversification of feathers are presented. 相似文献
15.
Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers 总被引:5,自引:0,他引:5
Chang CH Jiang TX Lin CM Burrus LW Chuong CM Widelitz R 《Mechanisms of development》2004,121(2):157-171
Skin morphogenesis occurs in successive stages. First, the skin forms distinct regions (macropatterning). Then skin appendages with particular shapes and sizes form within each region (micropatterning). Ectopic DKK expression inhibited dermis formation in feather tracts and individual buds, implying the importance of Wnts, and prompted the assessment of individual Wnt functions at different morphogenetic levels using the feather model. Wnt 1, 3a, 5a and 11 initially were expressed moderately throughout the feather tract then were up-regulated in restricted regions following two modes: Wnt 1 and 3a became restricted to the placodal epithelium, then to the elongated distal bud epidermis; Wnt 5a and 11 intensified in the inter-tract region and interprimordia epidermis or dermis, respectively, then appeared in the elongated distal bud dermis. Their role in feather tract formation was determined using RCAS mediated misexpression in ovo at E2/E3. Their function in periodic feather patterning was examined by misexpression in vitro using reconstituted E7 skin explant cultures. Wnt 1 reduced spinal tract size, but enhanced feather primordia size. Wnt 3a increased dermal thickness, expanded the spinal tract size, reduced interbud domain spacing, and produced non-tapering "giant buds". Wnt 11 and dominant negative Wnt 1 enhanced interbud spacing, and generated thinner buds. In cultured dermal fibroblasts, Wnt 1 and 3a stimulated cell proliferation and activated the canonical beta-catenin pathway. Wnt 11 inhibited proliferation but stimulated migration. Wnt 5a and 11 triggered the JNK pathway. Thus distinctive Wnts have positive and negative roles in forming the dermis, tracts, interbud spacing and the growth and shaping of individual buds. 相似文献
16.
Alibardi L 《Journal of morphology》2004,261(3):345-363
The fine structure of hairs in the most ancient extant mammals, the monotremes, is not known. The present study analyzes the ultrastructure and immunocytochemistry for keratins, trichohyalin, and transglutaminase in monotreme hairs and compares their distribution with that present in hairs of the other mammals. The overall ultrastructure of the hair and the distribution of keratins is similar to that of marsupial and placental hairs. Acidic and basic keratins mostly localize in the outer root sheath. The inner root sheath (IRS) comprises 4-8 cell layers in most hairs and forms a tile-like sheath around the hair shaft. No cytological distinction between the Henle and Huxley layers is seen as cells become cornified about at the same time. Externally to the last cornified IRS cells (homologous to the Henle layer), the companion layer contains numerous bundles of keratin. Occasionally, some granules in the companion layer show immunoreactivity for the trichohyalin antibody. This further suggests that the IRS in monotremes is ill-defined, as the companion layer of placental hairs studied so far does not express trichohyalin. A cross-reactivity with an antibody against sheep trichohyalin is present in the IRS of monotremes, suggesting conserved epitopes across mammalian trichohyalin. Trichohyalin granules in the IRS consist of a framework of immunolabeled coarse filaments of 10-12 nm. The latter assume a parallel orientation and lose the immunoreactivity in fully cornified cells. Transglutaminase immunolabeling is diffuse among trichohyalin granules and among the parallel 10-12 nm filaments of maturing inner root cells. Transglutaminase is present where its substrate, trichohyalin, is modified as matrix protein. Cornification of IRS is different from that of hair fiber cuticle and from that of the cornified layer of the epidermis above the follicle. The different consistency among cuticle, IRS, and corneous layer of the epidermis determines separation between hair fiber, IRS, and epidermis. This allows the hair to exit on the epidermal surface after shedding from the IRS and epidermis. Based on comparative studies of reptilian and mammalian skin, a speculative hypothesis on the evolution of the IRS and hairs from the skin of synapsid reptiles is presented. 相似文献
17.
18.
Łoza E 《Polski tygodnik lekarski (Warsaw, Poland : 1960)》1953,8(17):640-2; contd
19.
LOZA E 《Polski tygodnik lekarski (Warsaw, Poland : 1960)》1953,8(16):609-11; contd
20.
Graeme D. Ruxton W. Scott Persons IV Philip J. Currie 《Evolution; international journal of organic evolution》2017,71(3):797-799
Persons and Currie (2015) argued against either flight, thermoregulation, or signaling as a functional benefit driving the earliest evolution of feathers; rather, they favored simple feathers having an initial tactile sensory function, which changed to a thermoregulatory function as density increased. Here, we explore the relative merits of early simple feathers that may have originated as tactile sensors progressing instead toward a signaling, rather than (or in addition to) a thermoregulatory function. We suggest that signaling could act in concert with a sensory function more naturally than could thermoregulation. As such, the dismissal of a possible signaling function and the presumption that an initial sensory function led directly to a thermoregulatory function (implicit in the title “bristles before down”) are premature. 相似文献