首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma membrane of polarized cells consists of distinct domains, the apical and basolateral membrane, that are characterized by a distinct lipid and protein content. Apical protein transport is largely mediated by (glyco)sphingolipid--cholesterol enriched membrane microdomains, so called rafts. In addition changes in the direction of polarized sphingolipid transport appear instrumental in cell polarity development. Knowledge is therefore required of the mechanisms that mediate sphingolipid sorting and the complexity of the trafficking pathways that are involved in polarized transport of both sphingolipids and proteins. Here we summarize specific biophysical properties that underly mechanisms relevant to sphingolipid sorting, cargo recruitment and polarized trafficking, and discuss the central role of a subapical compartment, SAC or common endosome (CE), as a major intracellular site involved in polarized sorting of sphingolipids, and in development and maintenance of membrane polarity.  相似文献   

2.
The possession of apical-basal polarity is a common feature of epithelia and neural stem cells, so-called neuroblasts (NBs). In Drosophila, an evolutionarily conserved protein complex consisting of atypical protein kinase C and the scaffolding proteins Bazooka/PAR-3 and PAR-6 controls the polarity of both cell types. The components of this complex localize to the apical junctional region of epithelial cells and form an apical crescent in NBs. In epithelia, the PAR proteins interact with the cellular machinery for polarized exocytosis and endocytosis, both of which are essential for the establishment of plasma membrane polarity. In NBs, many cortical proteins show a strongly polarized subcellular localization, but there is little evidence for the existence of distinct apical and basolateral plasma membrane domains, raising the question of whether vesicular trafficking is required for polarization of NBs. We analyzed the polarity of NBs mutant for essential regulators of the main exocytic and endocytic pathways. Surprisingly, we found that none of these mutations affected NB polarity, demonstrating that NB cortical polarity is independent of plasma membrane polarity and that the PAR proteins function in a cell type-specific manner.  相似文献   

3.
Freshly isolated human hematopoietic stem and progenitor cells (HSPCs) are small and round cells which upon cultivation adopt a polarized morphology and redistribute certain cell surface antigens. To functionally dissect this polarization process, we addressed impacts of protein synthesis, HSPC trafficking, cytoskeleton organization or lipid raft integrity on the establishment and maintenance of the cell polarity of human HSPCs. Effects on the morphology, sub-cellular distribution of lipid raft-associated molecular polarization markers (Flotillin-1, Flotillin-2, ICAM-3) and in vitro migration capabilities of treated cells were studied. We could distinguish two levels of cellular polarization, a molecular and a morphological level. Our data suggest that protein synthesis, lipid raft integrity and enzymatic activities of PI3K and aPKC are required to organize the molecular cell polarity. The morphological cell polarization process, however, also depends on actin polymerization and rho-GTPase activities. In summary, our data qualify HSPC polarization processes as new pharmaceutical target to interfere with migratory and with homing capabilities of HSPCs.  相似文献   

4.
Membrane trafficking is central to establishing and maintaining epithelial cell polarity. One open question is to what extent the mechanisms regulating membrane trafficking are conserved between nonpolarized and polarized cells. To answer this question, we examined the dynamics of domain-specific plasma membrane (PM) proteins in three classes of hepatic cells: polarized and differentiated WIF-B cells, nonpolarized and differentiated Fao cells, and nonpolarized and nondifferentiated Clone 9 cells. In nonpolarized cells, mature apical proteins were uniformly distributed in the PM. Surprisingly, they were also in an intracellular compartment. Double labeling revealed that the compartment contained only apical proteins. By monitoring the dynamics of antibody-labeled molecules in nonpolarized cells, we further found that apical proteins rapidly recycled between the compartment and PM. In contrast, the apical PM residents in polarized cells showed neither internalization nor return to the basolateral PM from which they had originally come. Cytochalasin D treatment of these polarized cells revealed that the retention mechanisms are actin dependent. We conclude from these data that both polarized and nonpolarized cells selectively sort apical proteins from the PM and transport them to specific, but different cellular locations. We propose that the intracellular recycling compartment in nonpolarized cells is an intermediate in apical surface formation.  相似文献   

5.
Membrane trafficking plays a crucial role in cell polarity by directing lipids and proteins to specific subcellular locations in the cell and sustaining a polarized state. The Golgi apparatus, the master organizer of membrane trafficking, can be subdivided into three layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi matrix, and the Golgi membranes. First, the outer regions of the Golgi apparatus interact with cytoskeletal elements, mainly actin and microtubules, which shape, position, and orient the organelle. Closer to the Golgi membranes, a matrix of long coiled–coiled proteins not only selectively captures transport intermediates but also participates in signaling events during polarization of membrane trafficking. Finally, the Golgi membranes themselves serve as active signaling platforms during cell polarity events. We review here the recent findings that link the Golgi apparatus to cell polarity, focusing on the roles of the cytoskeleton, the Golgi matrix, and the Golgi membranes.  相似文献   

6.
Bhat P  Snooks MJ  Anderson DA 《Journal of virology》2011,85(23):12474-12481
Viruses commonly utilize the cellular trafficking machinery of polarized cells to effect viral export. Hepatocytes are polarized in vivo, but most in vitro hepatocyte models are either nonpolarized or have morphology unsuitable for the study of viral export. Here, we investigate the mechanisms of trafficking and export for the hepadnaviruses hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) in polarized hepatocyte-derived cell lines and primary duck hepatocytes. DHBV export, but not replication, was dependent on the development of hepatocyte polarity, with export significantly abrogated over time as primary hepatocytes lost polarity. Using Transwell cultures of polarized N6 cells and adenovirus-based transduction, we observed that export of both HBV and DHBV was vectorially regulated and predominantly basolateral. Monitoring of polarized N6 cells and nonpolarized C11 cells during persistent, long-term DHBV infection demonstrated that newly synthesized sphingolipid and virus displayed significant colocalization and fluorescence resonance energy transfer, implying cotransportation from the Golgi complex to the plasma membrane. Notably, 15% of virus was released apically from polarized cells, corresponding to secretion into the bile duct in vivo, also in association with sphingolipids. We conclude that DHBV and, probably, HBV are reliant upon hepatocyte polarity to be efficiently exported and this export is in association with sphingolipid structures, possibly lipid rafts. This study provides novel insights regarding the mechanisms of hepadnavirus trafficking in hepatocytes, with potential relevance to pathogenesis and immune tolerance.  相似文献   

7.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are a conserved family of soluble cytoplasmic proteins that can bind sterols, translocate between membrane compartments, and affect sterol trafficking. These properties make ORPs attractive candidates for lipid transfer proteins (LTPs) that directly mediate nonvesicular sterol transfer to the plasma membrane. To test whether yeast ORPs (the Osh proteins) are sterol LTPs, we studied endoplasmic reticulum (ER)-to-plasma membrane (PM) sterol transport in OSH deletion mutants lacking one, several, or all Osh proteins. In conditional OSH mutants, ER-PM ergosterol transport slowed ~20-fold compared with cells expressing a full complement of Osh proteins. Although this initial finding suggested that Osh proteins act as sterol LTPs, the situation is far more complex. Osh proteins have established roles in Rho small GTPase signaling. Osh proteins reinforce cell polarization and they specifically affect the localization of proteins involved in polarized cell growth such as septins, and the GTPases Cdc42p, Rho1p, and Sec4p. In addition, Osh proteins are required for a specific pathway of polarized secretion to sites of membrane growth, suggesting that this is how Osh proteins affect Cdc42p- and Rho1p-dependent polarization. Our findings suggest that Osh proteins integrate sterol trafficking and sterol-dependent cell signaling with the control of cell polarization.  相似文献   

8.
Interactions between proteins are an essential part of biology, and the desire to identify these interactions has led to the development of numerous technologies to systematically map protein–protein interactions at a large scale. As in most cellular processes, protein interactions are central to the control of cell polarity, and a full understanding of polarity will require comprehensive knowledge of the protein interactions involved. At its core, cell polarity is established through carefully regulated mutually inhibitory interactions between several groups of cortical proteins. While several interactions have been identified, the dynamics and molecular mechanisms that control these interactions are not well understood. Cell polarity also needs to be integrated with cellular processes including junction formation, cytoskeletal organization, organelle positioning, protein trafficking, and functional specialization of membrane domains. Moreover, polarized cells need to respond to external cues that coordinate polarity at the tissue level. Identifying the protein–protein interactions responsible for integrating polarity with all of these processes remains a major challenge, in part because the mechanisms of polarity control vary in different contexts and with developmental times. Because of their unbiased nature, systematic large-scale protein–protein interaction mapping approaches can be particularly helpful to identify such mechanisms. Here, we discuss methods commonly used to generate proteome-wide interactome maps, with an emphasis on advances in our understanding of cell polarity that have been achieved through application of such methods.  相似文献   

9.
磷脂酰肌醇转移蛋白(phosphatidylinositol/phosphatidylcholine transfer proteins,PITP)普遍存在于真核生物细胞中,PITP能够结合并交换一分子的磷脂酰肌醇(phosphatidylinositol,PI)或磷脂酰胆碱(phosphatidylcholine,PC),并促进这两类脂分子在细胞内膜组分间的转移。PITP对细胞内膜组分间脂类的运输和代谢、分泌囊泡的形成和运输、磷脂酶C(phospholipase,PLC)调节的信号传导以及神经退化等生理生化过程具有重要的影响。综述了近年来PITP的研究进展,并对目前研究中存在的一些问题进行探讨。  相似文献   

10.
Cell polarity is essential for cell division, cell differentiation, and most differentiated cell functions including cell migration. The small G protein Cdc42 controls cell polarity in a wide variety of cellular contexts. Although restricted localization of active Cdc42 seems to be important for its distinct functions, mechanisms responsible for the concentration of active Cdc42 at precise cortical sites are not fully understood. In this study, we show that during directed cell migration, Cdc42 accumulation at the cell leading edge relies on membrane traffic. Cdc42 and its exchange factor βPIX localize to intracytosplasmic vesicles. Inhibition of Arf6-dependent membrane trafficking alters the dynamics of Cdc42-positive vesicles and abolishes the polarized recruitment of Cdc42 and βPIX to the leading edge. Furthermore, we show that Arf6-dependent membrane dynamics is also required for polarized recruitment of Rac and the Par6-aPKC polarity complex and for cell polarization. Our results demonstrate influence of membrane dynamics on the localization and activation of Cdc42 and consequently on directed cell migration.  相似文献   

11.
Research carried out in mammalian epithelial cell systems over the past 25 years has delineated pathways and sorting signals involved in polarized delivery of plasma membrane proteins. Recently some progress has been made in the identification of mechanisms underlying this polarized trafficking and in the visualization of trafficking routes in live cells. A promising area of research is the study of trafficking functions of novel polarity genes identified in Drosophila and Caenorhabditis elegans.  相似文献   

12.
Cellular morphogenesis, including polarized outgrowth, promotes tissue shape and function. Polarized vesicle trafficking has emerged as a fundamental mechanism by which protein and membrane can be targeted to discrete subcellular domains to promote localized protrusions. Frizzled (Fz)/planar cell polarity (PCP) signaling orchestrates cytoskeletal polarization and drives morphogenetic changes in such contexts as the vertebrate body axis and external Drosophila melanogaster tissues. Although regulation of Fz/PCP signaling via vesicle trafficking has been identified, the interplay between the vesicle trafficking machinery and downstream terminal PCP-directed processes is less established. In this paper, we show that Drosophila CK1-γ/gilgamesh (gish) regulates the PCP-associated process of trichome formation through effects on Rab11-mediated vesicle recycling. Although the core Fz/PCP proteins dictate prehair formation broadly, CK1-γ/gish restricts nucleation to a single site. Moreover, CK1-γ/gish works in parallel with the Fz/PCP effector multiple wing hairs, which restricts prehair formation along the perpendicular axis to Gish. Our findings suggest that polarized Rab11-mediated vesicle trafficking regulated by CK1-γ is required for PCP-directed processes.  相似文献   

13.
Segregation of the apical and basolateral plasma membrane domains is the key distinguishing feature of epithelial cells. A series of interrelated cues and processes follow this primary polarization event, resulting in the morphogenesis of the mammalian epithelium. This review focuses on the role of the interactions between the extracellular matrix and neighbouring cells during the initiation and establishment of epithelial polarity, and the role that membrane transport and polarity complexes play in this process. An overview of the formation of the apical junctional complexes is given in relation to the generation of distinct membrane domains characterized by the asymmetric distribution of phosphoinositides and proteins. The mechanisms and machinery utilized by the trafficking pathways involved in the generation and maintenance of this apical-basolateral polarization are expounded, highlighting processes of apical-directed transport. Furthermore, the current proposed mechanisms for the organization of entire networks of cells into a structured, polarized three-dimensional structure are described, with an emphasis on the proposed mechanisms for the formation and expansion of the apical lumen.  相似文献   

14.
The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking contributes to cell polarization through delivery of polarity determinants and regulators to the plasma membrane.Cell polarity is essential in most if not all eukaryotes for their development and physiological functions at the tissue and organism level. Although there are significant differences in gross morphology and function among various tissues and organisms, at the cellular level, the establishment and maintenance of cell polarity tend to follow common themes.A basic feature of cell polarity is the asymmetric organization of the plasma membrane (see McCaffrey and Macara 2009; Nelson 2009). This is mostly achieved through membrane trafficking along cytoskeleton tracks under the control of signaling molecules. In general, membrane trafficking occurs through sequential budding, transport, and fusion of vesicles from donor membranes to acceptor membranes (for recent reviews, see Bonifacino and Glick 2004; Cai et al. 2007). During budding, protein complexes interact with phospholipids to induce membrane curvature and generate vesicular carriers that capture different cargos from the donor compartments. After vesicles form, they are delivered to their acceptor compartments, most often along the cytoskeletons. Vesicle fusion at the acceptor membrane is mediated by the assembly of SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) complexes. Before membrane fusion, proteins or protein complexes tether the vesicles to the acceptor membranes and likely promote SNARE assembly. The Arf and Rab family of small GTPases are localized to different membrane compartments and regulate various stages of membrane trafficking.Polarized distribution of proteins at the plasma membrane often results from a balance of vesicle delivery and fusion with the plasma membrane (“exocytosis”), two-dimensional spread through the plasma membrane (“diffusion”), and internalization and membrane recycling (“endocytosis”). There are two main layers of regulation that control polarized protein transport and incorporation to the plasma membrane. The first involves sorting at the trans-Golgi network (TGN) and endosomal compartments, such as the recycling endosomes. Protein sorting involves recognition of sorting signals in the cargo proteins by the adaptor protein (AP) complexes. There are a number of different AP complexes, and each is localized to different membrane compartments and captures distinct sets of cargo proteins before targeting to their correct destination. Protein sorting before delivery to different domains of the plasma membrane has been best characterized in epithelial cells, which have distinctive basolateral and apical domains separated by junctional complexes. This layer of regulation has been discussed in a recent review (Mellman and Nelson 2008) and is further discussed by Nelson (Nelson 2009), so it will not be discussed further here. The second layer of regulation of membrane protein polarization is through the polarized tethering and docking of vesicles at specific domains of the plasma membrane (Fig. 1). Tethering proteins (i.e., the exocyst) target secretory vesicles to specific domains of the plasma membrane and SNARE assembly eventually drives membrane fusion. Proteins at the plasma membrane can be retrieved back into the cell via endocytosis. These proteins are internalized via clathrin-coated pits, and transported through different endosomal compartments either for degradation in the lysosomes or for recycling back to the plasma membrane. The endosomal compartment that mediates the transport of internalized plasma membrane proteins back to the cell surface is called the “recycling endosome.” Recycling endosomes are major sources of cargo destined to the plasma membrane for exocytosis in many types of cells.Open in a separate windowFigure 1.Membrane trafficking to the plasma membrane. Schematic of the endocytic and exocytic routes involving trans-Golgi network (TGN), endosomal compartments, and the plasma membrane. During exocytosis, cargo leaves the TGN or recycling endosomes in vesicular carriers to the plasma membrane. Once on the membrane, proteins can be internalized and transported to early endosomes, and then either travel through late endosomes to the lysosome to be degraded or return to the plasma membrane through the recycling endosomes. Early endosomes may serve as sorting stations for the next stages of cargo transport.Signaling molecules such as the Rho family of small GTPases spatially and kinetically regulate membrane trafficking during cell polarization (see McCaffrey and Macara 2009; Slaughter et al. 2009). Reversely, vesicular trafficking is required for the polarized deposition and accrual of these regulators. In the first part of this article, we examine the membrane organization and dynamics of cell polarity, focusing on the polarized tethering and docking of vesicles at the plasma membrane. We highlight key components and regulators of polarized exocytosis including the exocyst, small GTPases, and phospholipids. We also use different organisms and systems to show analogous mechanisms during cell polarization. In the second part of this article, we focus on the aforementioned reciprocal effects of cell polarity and membrane trafficking using two representative examples, one from yeast (Cdc42 polarization) and one in mammalian epithelial cells (E-cadherin trafficking).  相似文献   

15.
Establishment and maintenance of a polarized epithelium relies on the integration of signaling cascades, acquisition of specialized trafficking circuits and establishment of a unique cytoarchitecture. Defects in any of these processes can adversely affect cell polarity and cause defects in specific organs and systemic disease. Mutations that disrupt the proper transport of individual plasma membrane proteins, or inactivate components of the epithelial-specific trafficking machinery, have severe functional consequences. Links between renal diseases and defects in trafficking, differentiation or signaling, highlight the delicate balance between these parameters which, when altered, precipitates a loss of renal function.  相似文献   

16.
17.
On treatment with chemoattractant, the neutrophil plasma membrane becomes organized into detergent-resistant membrane domains (DRMs), the distribution of which is intimately correlated with cell polarization. Plasma membrane at the front of polarized cells is susceptible to extraction by cold Triton X-100, whereas membrane at the rear is resistant to extraction. After cold Triton X-100 extraction, DRM components, including the transmembrane proteins CD44 and CD43, the GPI-linked CD16, and the lipid analog, DiIC(16), are retained within uropods and cell bodies. Furthermore, CD44 and CD43 interact concomitantly with DRMs and with the F-actin cytoskeleton, suggesting a mechanism for the formation and stabilization of DRMs. By tracking the distribution of DRMs during polarization, we demonstrate that DRMs progress from a uniform distribution in unstimulated cells to small, discrete patches immediately after activation. Within 1 min, DRMs form a large cap comprising the cell body and uropod. This process is dependent on myosin in that an inhibitor of myosin light chain kinase can arrest DRM reorganization and cell polarization. Colabeling DRMs and F-actin revealed a correlation between DRM distribution and F-actin remodeling, suggesting that plasma membrane organization may orient signaling events that control cytoskeletal rearrangements and, consequently, cell polarity.  相似文献   

18.
Microtubules are hollow tubes essential for many cellular functions such as cell polarization and migration, intracellular trafficking and cell division. They are polarized polymers composed of α and β tubulin that are, in most cells, nucleated at the centrosome at the center of the cell. Microtubule plus-ends are oriented towards the periphery of the cell and explore the cytoplasm in a very dynamic manner. Microtubule alternate between phases of growth and shrinkage in a manner described as dynamic instability. Their dynamics is highly regulated by multiple factors: tubulin post-translational modifications such as detyrosination or acetylation, and microtubule-associated proteins, among them the plus-tip tracking proteins. This regulation is necessary for microtubule functions in the cell. In this review, we will focus on the role of microtubules in intracellular organization. After an overview of the mechanisms responsible for the regulation of microtubule dynamics, the major roles of microtubules dynamics in organelle positioning and organization in interphase cells will be discussed. Conversely, the role of certain organelles, like the nucleus and the Golgi apparatus as microtubule organizing centers will be reviewed. We will then consider the role of microtubules in the establishment and maintenance of cell polarity using few examples of cell polarization: epithelial cells, neurons and migrating cells. In these cells, the microtubule network is reorganized and undergoes specific and local regulation events; microtubules also participate in the intracellular reorganization of different organelles to ensure proper cell differentiation.  相似文献   

19.
Polarized exocytosis is important for morphogenesis and cell growth. The exocyst is a multiprotein complex implicated in tethering secretory vesicles at specific sites of the plasma membrane for exocytosis. In the budding yeast, the exocyst is localized to sites of bud emergence or the tips of small daughter cells, where it mediates secretion and cell surface expansion. To understand how exocytosis is spatially controlled, we systematically analyzed the localization of Sec15p, a member of the exocyst complex and downstream effector of the rab protein Sec4p, in various mutants. We found that the polarized localization of Sec15p relies on functional upstream membrane traffic, activated rab protein Sec4p, and its guanine exchange factor Sec2p. The initial targeting of both Sec4p and Sec15p to the bud tip depends on polarized actin cable. However, different recycling mechanisms for rab and Sec15p may account for the different kinetics of polarization for these two proteins. We also found that Sec3p and Sec15p, though both members of the exocyst complex, rely on distinctive targeting mechanisms for their localization. The assembly of the exocyst may integrate various cellular signals to ensure that exocytosis is tightly controlled. Key regulators of cell polarity such as Cdc42p are important for the recruitment of the exocyst to the budding site. Conversely, we found that the proper localization of these cell polarity regulators themselves also requires a functional exocytosis pathway. We further report that Bem1p, a protein essential for the recruitment of signaling molecules for the establishment of cell polarity, interacts with the exocyst complex. We propose that a cyclical regulatory network contributes to the establishment and maintenance of polarized cell growth in yeast.  相似文献   

20.
Polarity is a fundamental characteristic of most eukaryotic cells. The plasma membrane of such cells consists in two structurally and functionally different domains, i.e., the basolateral and the apical membrane, separated by tight junctions. The generation of the distinct molecular identity of both domains and its maintenance in spite of the dynamics of lipids and proteins at either surface requires sophisticated sorting and trafficking mechanisms. Recent progress in the field of polarized trafficking reveals that, for a detailed understanding of its mechanism and regulation, an integrated approach that includes the flow of both lipids and proteins is imperative. In this review, some recent progress in understanding mechanisms involved in protein sorting and trafficking is discussed. We focus on the role of lipid microdomains (Rafts) in trafficking of proteins to the apical surface of polarized cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号