共查询到20条相似文献,搜索用时 15 毫秒
1.
蒸散(ET)是生态系统水分平衡和能量平衡的重要组分,中国人工林对区域水分循环及平衡发挥着重要作用。本文基于2007—2008年涡度相关观测资料,分析了华北低丘山地近30年生栓皮栎-刺槐-侧柏人工林生态系统蒸散的变化特征及其环境影响要素。结果表明,2007—2008年实验区气候较常年偏暖、偏旱。ET表现出单峰季节变化特征,秋冬季节较低,春夏季节(4—9月)蒸散旺盛。全年最高值出现在每年5月份,日峰值出现于午后13时左右。2007—2008年平均蒸散量为546.1 mm,降水量为354.1 mm,夏季(7—8月)和冬季(12—1月)的日蒸散量分别为2.19 mm/d和0.44 mm/d。温度是驱动ET季节变化的主要环境因子,饱和差也是影响蒸散季节变化的重要环境要素。土壤含水量对ET季节变化的影响并不显著,有近1/3日数的土壤含水量为0.16—0.18 m3/m3,期间日蒸散量平均值为1.0 mm/d。年蒸散量均高于降水量,蒸散量高于降水量的部分来自深层土壤水分的供给。 相似文献
2.
利用涡度相关系统、土壤水分TDR传感器,于2014年7月—2015年6月连续测定了民勤绿洲荒漠过渡带退化梭梭人工林蒸散量,研究不同天气条件下梭梭人工林的蒸散对外界环境因子的响应.结果表明: 梭梭人工林晴天蒸散量日变化具有明显的季节变化规律.梭梭人工林蒸散量日变化幅度在生长季初期逐渐增大,在生长旺盛期达到最大峰值(0.07 mm·h-1), 而后逐渐减小,至12月达到最低峰值(0.01 mm·h-1).不同天气条件下梭梭人工林蒸散日变化波动幅度差异较大,阴天蒸散日变化波动幅度最小,降水后蒸散波动明显增高,强降水(>9 mm·d-1)后日蒸散量显著增加至雨前的28倍,然后逐渐减少,并持续4个晴朗日后恢复至雨前蒸散量.在整个观测年,梭梭人工林蒸散总量为108 mm,占降水总量的98%,土壤水是梭梭人工林蒸散的水源,为主导因子.净辐射、光合有效辐射、空气温度、水汽压饱和差是决定植被用水和大气边界层水传输的气象动力,为显著影响梭梭人工林蒸散的主要因子.利用日蒸散量与环境因子数据建立了蒸散与土壤含水量和小气候因子的多元回归方程,拟合度(R2)高达0.80. 相似文献
3.
YANG Tian-wei ZHANG Ji Jerzy FALANDYSZ Graz·yna KRASI-SKA Martyna SABA WANG Yuan-zhong LIU Hong-gao 《生态学杂志》2015,34(12):3518
汞(Hg)是危害人类健康的主要重金属元素之一,多数食用菌对Hg有很强的富集能力,测定食用菌中Hg含量,并对其进行食用安全性评价具有重要意义。采用冷原子吸收直接测汞仪系统测定85份云南常见牛肝菌属真菌菌盖、菌柄中总Hg含量;以同一牛肝菌子实体菌盖与菌柄总Hg含量比(Q(C/S))分析牛肝菌属真菌对Hg的富集特征;根据联合国粮农组织和世界卫生组织(FAO/WHO)现行每周Hg允许摄入量(provisional tolerable weekly intake,PTWI)标准和中国GB 2762—2012规定的食用菌中Hg限量标准评价样品的食用安全性。结果表明,菌盖和菌柄中总Hg含量分别在0.13~22.00、0.20~8.40 mg·kg-1DW,不同产地、种类及不同采集年份的样品中总Hg含量存在明显差异;同一牛肝菌菌盖、菌柄总Hg含量比(Q(C/S))在0.28~4.08,92%的样品Q(C/S)1,表明多数样品中菌盖对Hg的富集能力强于菌柄。根据GB 2762—2012规定的食用菌及其制品中总Hg含量限量标准(≤0.1 mg·kg-1),发现所有测试样品的总Hg含量均超标;根据PTWI标准,假设成年人(60 kg)每周食用300 g新鲜牛肝菌,则多数样品Hg摄入量低于允许摄入量,无安全风险,而少数样品Hg摄入量高于允许摄入量,食用有一定的潜在风险。同时,牛肝菌总Hg含量与种类、产地、采集时间等因素密切相关,采食及安全评价需综合考虑这些因素。 相似文献
4.
5.
We used a combination of eddy flux, chamber and environmental measurements with an integrated suite of models to analyse the seasonality of net ecosystem carbon uptake (FCO2) in an 8-year-old, closed canopy Pinus radiata D.Don plantation in New Zealand (42°52′ S, 172°45′ E). The analyses utilized a biochemically based, big-leaf model of tree canopy photosynthesis (Ac), coupled to multiplicative environmental-constraint functions of canopy stomatal conductance (Gc) via environmental measurements, a temperature-dependent model of ecosystem respiration (Reco), and a soil water balance model. Available root zone water storage capacity at the measurement site is limited to about 50 mm for the very stony soil, and annual precipitation is only 660 mm, distributed evenly throughout the year. Accordingly the site is prone to soil moisture deficit throughout the summer. G c and Ac obtained maximum rates early in the growing season when plentiful soil water supply was associated with sufficient quantum irradiance (Qabs), and moderate air saturation deficit (D) and temperature (T). From late spring onwards, soil water deficit and D confined Gc and Ac congruously, which together with the solely temperature dependency of Reco resulted in the pronounced seasonality in FCO2. Reflecting a light-limitation of Ac in the closed canopy, modelled annual carbon (C) uptake was most sensitive to changes in Qabs. However, Qabs did not vary significantly between years, and changes in annual FCO2 were mostly due to variability in summer rainfall and D. Annual C-uptake of the forest was 717 g C m–2 in a near-average rainfall year, exceeding by one third the net uptake in a year with 20% less than average rainfall (515 g C m–2). 相似文献
6.
运用涡度相关(Eddy covariance,EC)开路系统和微气象观测系统,于2007年对位于北京市大兴区永定河沙地杨树(Populus euramertcana)人工林与大气间碳、水和能量交换进行了连续测定.通过分析总生态系统生产力(GEP)、蒸发散(ET)以及水分利用效率(WUE=GEP/ET)随相对土壤含水量(REW)的变化趋势,探讨杨树人工林不同土壤水分条件下水分利用效率对气象因子以及下垫面因素的响应,为杨树人工林经营管理提供理论依据.研究结果表明:当REW<0.1时,GEP和ET受到严重水分胁迫的影响维持在较低水平,环境因子对GEP、ET和WUE的影响较小;当0.1<REW<0.4时,GEP和ET随着土壤体积含水量(VWC)的增加而增大,WUE随VWC的增大而减小;REW>0.4时,气象因子是影响碳固定和水分损耗的主要原因,由于ET对气象因子变化的响应较GEP更为敏感,因此,WUE随空气饱和水汽压差(VPD)的增大而减小.沙地土壤保水能力较差,不能保证土壤水分被植物有效利用,因此当VWC处于5.2%-8.8%(0.1<REW<0.4)范围时,碳固定与水分消耗达到最高效率.研究表明杨树人工林WUE随降水变化而变化,未来气候变化和变异有可能影响杨树林耗水和生产力之间的关系. 相似文献
7.
为了解位于北京大兴区林场杨树人工林在不同的土壤水分环境条件下的水汽交换过程和能量的分配差异及其与环境因子关系,运用涡度相关(Eddy covariance,EC)法开路系统、常规微气象观测系统及土壤热通量板等设施对生态系统生长季内典型水分胁迫和无水分胁迫条件下蒸散日变化、能量分配以及与各环境因子的关系进行了测定分析和比较。结果表明,在水分严重胁迫日(以7月7日为例),蒸散日变化过程为单峰曲线,全天(24h)蒸散量为2.4mm;而在无水分胁迫典型日(以7月25日为例),蒸散日变化过程呈多峰曲线,全天蒸散量为4.5mm。能量平衡分析显示,无水分胁迫条件下潜热通量(LE)占净辐射通量(Rn)的比例远高于水分胁迫条件下潜热通量占净辐射通量的比例,说明水分充足时,能量的大部分用于蒸散。水分胁迫条件下蒸散速率与各环境因子的相关性均低于无水分胁迫条件下蒸散速率与环境因子的相关性。水分胁迫条件下,蒸散速率主要与净辐射和下垫面因子关系显著,而与其它因子的相关性较小;无水分胁迫条件下,蒸散速率与下垫面土体含水量和各气象因子均表现出较强的相关性。大气温度对于两个典型日蒸散速率的影响均很小;土壤含水量与水分胁迫日的蒸散速率几乎没有相关性,反应出土壤水分含量低至对蒸散几乎没有贡献了。 相似文献
8.
Amanda J. Holder Jon P. McCalmont Niall P. McNamara Rebecca Rowe Iain S. Donnison 《Global Change Biology Bioenergy》2018,10(5):353-366
The bioenergy crop Miscanthus × giganteus has a high water demand to quickly increase biomass with rapid canopy closure and effective rainfall interception, traits that are likely to impact on hydrology in land use change. Evapotranspiration (ET, the combination of plant and ground surface transpiration and evaporation) forms an important part of the water balance, and few ET models have been tested with Miscanthus. Therefore, this study uses field measurements to determine the most accurate ET model and to establish the interception of precipitation by the canopy (Ci). Daily ET estimates from 2012 to 2016 using the Hargreaves–Samani, Priestley–Taylor, Granger–Gray, and Penman–Monteith (short grass) models were calculated using data from a weather station situated in a 6 ha Miscanthus crop. Results from these models were compared to data from on‐site eddy covariance (EC) instrumentation to determine accuracy and calculate the crop coefficient (Kc) model parameter. Ci was measured from June 2016 to March 2017 using stem‐flow and through‐flow gauges within the crop and rain gauges outside the crop. The closest estimated ET to the EC data was the Penman‐Monteith (short grass) model. The Kc values proposed are 0.63 for the early season (March and April), 0.85 for the main growing season (May to September), 1.57 for the late growing season (October and November), and 1.12 over the winter (December to February). These more accurate Kc values will enable better ET estimates with the use of the Penman‐Monteith (short grass) model improving estimates of potential yields and hydrological impacts of land use change. Ci was 24% and remained high during the autumn and winter thereby sustaining significant levels of canopy evaporation and suggesting benefits for winter flood mitigation. 相似文献
9.
Nicola Di Virgilio Osvaldo Facini Andrea Nocentini Marianna Nardino Federica Rossi Andrea Monti 《Global Change Biology Bioenergy》2019,11(3):466-482
Switchgrass (Panicum virgatum L.) is a perennial lignocellulosic crop that has gained large interest as a feedstock for advanced biofuels. Using an eddy covariance system, we monitored the net ecosystem gas exchange in a 5‐ha rainfed switchgrass crop located in the Po River Valley for four consecutive years after land‐use change from annual food crops. Switchgrass absorbed 58.2 Mg CO2 ha?1 year?1 (GPP—gross primary production), of which 24.5 (42%) were fixed by the ecosystem (NEE—net ecosystem exchange). Cumulated NEE was negative (i.e. C sink) even in the establishment year when biomass and canopy photosynthesis are considerably lower compared to the following years. Taking into account the last 3 years only (postestablishment years), mean NEE was ?26.9 Mg CO2 ha?1 year?1. When discounted of the removed switchgrass biomass, ecosystem CO2 absorption was still high and corresponded to ?8.4 Mg CO2 ha?1 year?1. The estimation of the life cycle global warming effect made switchgrass an even greater sink (?12.4 Mg CO2 ha?1 year?1), thanks to the credits obtained with fossil fuels displacement. Water use efficiency (WUE), that is the ratio of NEE to the water used by the crop as the flux of transpiration (ET), corresponded to 1.6 mg C g?1 of H2O, meaning that, on average, 170 m3 of water was needed to fix 1 Mg of CO2. Again, considering only the postestablishment years, WUE was 1.7 mg C g?1 of H2O. In the end, about half of annual precipitation was used by the crop every year. We conclude that switchgrass can be a valuable crop to capture significant amount of atmospheric CO2 while preserving water reserves and estimated that its potential large‐scale deployment in the Mediterranean could lead to an annual greenhouse gas emission reduction up to 0.33% for the EU. 相似文献
10.
Xiaodong Liu Yuelin Li Xiuzhi Chen Guoyi Zhou Jing Cheng Deqiang Zhang Ze Meng Qianmei Zhang 《Ecohydrology》2015,8(6):1037-1047
Accurate estimates and partition of evapotranspiration (ET) are difficult but critical for understanding terrestrial ecosystem processes and primary productivity. A multi‐year, multi‐technique study including the catchment water balance (12 years), a semi‐empirical ET model (9 years), eddy covariance (9 years), canopy water balance (1 year) and sap flow (1 year) techniques was conducted to measure ET and its components within an intact forested watershed in the subtropical region of southern China. Over a 9‐year period, the estimates of annual ET using the catchment water balance, eddy covariance and semi‐empirical ET model techniques were in close agreement, averaging 809.9 ± 62.8, 803.8 ± 36.6 and 801.6 ± 46.9 mm per year, respectively, amounting to an average of approximately 50.2% of the mean annual precipitation. Qualitative similarities in seasonal and diurnal variation were observed between the sap flow and eddy covariance estimates of water flux. Sap flow estimates of transpiration were approximately 60.2% of the annual ET estimated with the eddy covariance technique. Interception evaporation was 31.7% of the total ET and was demonstrated to be a main contributor of total evaporation. Soil evaporation was calculated to be approximately 8.1% of the total annual ET and 4.7% of the annual precipitation. Furthermore, daytime transpiration exhibited a logarithmic increase with increases in the vapour pressure deficit (VPD) on daily scale in both the wet and dry seasons, and tended to level off when the VPD was >1 kPa because of the stomatal regulation of transpiration. Correspondingly, nighttime sap flow amounted to an average of approximately 6% of the total daily sap flow, and no significant correlations with the VPD, air temperature or relative humidity were found. Essential differences among the mechanisms of evaporation and transpiration were demonstrated, suggesting that soil evaporation is primarily a climate‐driven process, with air temperature and wind speed as the predominant driving forces. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
《Ecohydrology》2018,11(2)
Accurately quantifying evapotranspiration (ET) is crucial to fully understanding regional water resource management and potential feedbacks to climate change in alpine grasslands. The quantitative relationships between ET and environmental controls were investigated by a continuous eddy covariance dataset from June 2014 to December 2016 over an alpine Kobresia meadow on the northeastern Qinghai‐Tibetan Plateau. The results showed that daily ET averaged 1.7± 1.5 mm/day (Mean ± 1 S.D.), with values of 2.9 ± 1.3, 1.6 ± 1.0, and 0.7± 0.6 mm/day during the growing season, seasonal transition period, and nongrowing season, respectively. Cumulative growing season ET was 63% of annual ET with little annual variability (349.9 ± 12.1 mm). Paired‐samples t‐test analysis indicated that monthly ET was larger than maximum potential ET derived from the FAO‐56 reference crop ET by 17% (p < .001, N = 12) in the growing season, likely because of high aerodynamic conductance, but was less than the minimum equilibrium ET by 19% (p < .001, N = 14) during the nongrowing season owing to limited surface moisture availability from the frozen soil. The structural equation models revealed that daily ET was mostly dominated by net radiation (the standardized coefficient of the total effect was 0.78). Soil surface moisture and leaf area index played secondary roles in daily ET variability during the nongrowing season and growing season, respectively. At an annual scale, the bulk surface conductance (8.25–10.65 mm/s), decoupling coefficient (0.43–0.48, 0.61 in the growing season), and the ratio of ET to equilibrium ET (1.08–1.33) were consistent with the strongly energy‐limited conditions in the alpine meadow. This study indicated that initial vegetation rehabilitation on the severely degraded meadow would be at the risk of rapid water consumption in humid alpine regions. 相似文献
12.
Aleksander Wieckowski;Patrik Vestin;Jonas Ardö;Olivier Roupsard;Ousmane Ndiaye;Ousmane Diatta;Seydina Ba;Yélognissè Agbohessou;Rasmus Fensholt;Wim Verbruggen;Haftay Hailu Gebremedhn;Torbern Tagesson; 《Global Change Biology》2024,30(9):e17509
Monitoring the changes of ecosystem functioning is pivotal for understanding the global carbon cycle. Despite its size and contribution to the global carbon cycle, Africa is largely understudied in regard to ongoing changes of its ecosystem functioning and their responses to climate change. One of the reasons is the lack of long-term in situ data. Here, we use eddy covariance to quantify the net ecosystem exchange (NEE) and its components—gross primary production (GPP) and ecosystem respiration (Reco) for years 2010–2022 for a Sahelian semiarid savanna to study trends in the fluxes. Significant negative trends were found for NEE (12.7 ± 2.8 g C m2 year−1), GPP (39.6 ± 7.9 g C m2 year−1), and Reco (32.2 ± 8.9 g C m2 year−1). We found that NEE decreased by 60% over the study period, and this decrease was mainly caused by stronger negative trends in rainy season GPP than in Reco. Additionally, we observed strong increasing trends in vapor pressure deficit, but no trends in rainfall or soil water content. Thus, a proposed explanation for the decrease in carbon sink strength is increasing atmospheric dryness. The warming climate in the Sahel, coupled with increasing evaporative demand, may thus lead to decreased GPP levels across this biome, and lowering its CO2 sequestration. 相似文献
13.
《Ecohydrology》2018,11(7)
Increased rainfall variability due to climate change significantly impacts carbon and water cycling in ecosystems, but these impacts may be masked when using arbitrary annual reporting periods such as the calendar year, which may not have any relevance to natural annual ecosystem processes. A variety of alternative annual integration periods have been described for specific purposes or locations, but are of limited general applicability. Here, we present an eddy covariance data‐driven empirical method to determine a locally relevant annual time period. The method selects a start date for a locally relevant water year (LRWY) that maximizes correlation between annual precipitation (AP), and annual evapotranspiration (AET) and annual gross primary production. The method was tested using data from 2004 to 2013 for 2 Ameriflux sites (woodland and grassland) in Central Texas. The timeframe included periods of unusually high rainfall and periods of extreme drought. The highest correlation between AP, and AET and annual gross primary production was obtained with an LRWY beginning in mid‐September. Use of the LRWY better captured the impact of soil water recharge in the autumn on photosynthesis the following spring than did calendar years. Use of the LRWY also identified more annual periods in which AET exceeded AP, which more accurately reflected the impact of drought on ecosystems processes than did analysis based on calendar years. 相似文献
14.
基于Penman-Monteith模型的两个蒸散模型在夏玉米农田的参数修正及性能评价 总被引:3,自引:0,他引:3
利用涡度相关系统和小气象系统对2013—2015年夏玉米生长季的蒸散量和气象数据进行实时观测,基于观测数据对以Penman-Monteith模型为基础的FAO-PM模型和KP-PM模型进行分析:首先利用2013和2014年数据对两个模型中的关键参数进行校正,其次利用两个模型对2015年夏玉米农田的日蒸散量进行计算,并与测量值对比,说明两个模型在夏玉米农田的适用性;最后采用分阶段法对KP-PM模型中的经验系数进行修正.结果表明: FAO-PM模型对2015年夏玉米农田日蒸散量的计算值更加接近测量值;利用分阶段法对KP-PM模型进行修正后,模型对日蒸散量的计算效果有了很大提高,且计算值比FAO-PM模型更接近测量值.模型中关键系数与气象条件之间有很大关系,因此利用模型进行蒸散预测时,必须先对模型进行参数校正.该研究可为其他研究人员利用模型估算蒸散量提供方法上的参考. 相似文献
15.
Water-vapor flux over a planted coniferous forest ecosystem near Qianyanzhou, Jiangxi Province, China, was continuously measured with the eddy covariance technique for 2004. How environmental variables, including net radiation, air temperature, and soil moisture, affected water-vapor flux variation was studied in detail. Results showed that winter had the lowest monthly water-vapor flux value, whereas summer had the highest. The diurnal variation of water-vapor flux showed different patterns for clear and cloudy days. The annual total evapotranspiration was 736.1 mm. Regression analysis showed that daily water-vapor flux was significantly correlated with net radiation, air temperature, soil temperature, and soil heat flux on both clear and cloudy days, all in quadratic relationships. Stepwise regression analysis demonstrated that a different set of environmental factors controlled water-vapor flux on days with different weather conditions. From this study, it was clear that these environmental variables, especially net radiation and soil temperature, regulated water-vapor flux over the planted coniferous ecosystem. 相似文献
16.
Phoebe G. Aron Christopher J. Poulsen Richard P. Fiorella Ashley M. Matheny Timothy J. Veverica 《Ecohydrology》2020,13(6)
Transpiration (T) is perhaps the largest fluxes of water from the land surface to the atmosphere and is susceptible to changes in climate, land use and vegetation structure. However, predictions of future transpiration fluxes vary widely and are poorly constrained. Stable water isotopes can help expand our understanding of land–atmosphere water fluxes but are limited by a lack of observations and a poor understanding of how the isotopic composition of transpired vapour (δT) varies. Here, we present isotopic data of water vapour, terrestrial water and plant water from a deciduous forest to understand how vegetation affects water budgets and land–atmosphere water fluxes. We measured subdiurnal variations of δ18OT from three tree species and used water isotopes to partition T from evapotranspiration (ET) to quantify the role of vegetation in the local water cycle. We find that δ18OT deviated from isotopic steady‐state during the day but find no species‐specific patterns. The ratio of T to ET varied from 53% to 61% and was generally invariant during the day, indicating that diurnal evaporation and transpiration fluxes respond to similar atmospheric and micrometeorological conditions at this site. Finally, we compared the isotope‐inferred ratio of T to ET with results from another ET partitioning approach that uses eddy covariance and sap flux data. We find broad midday agreement between these two partitioning techniques, in particular, the absence of a diurnal cycle, which should encourage future ecohydrological isotope studies. Isotope‐inferred estimates of transpiration can inform land surface models and improve our understanding of land–atmosphere water fluxes. 相似文献
17.
Water-vapor flux over a planted coniferous forest ecosystem near Qianyanzhou, Jiangxi Province, China, was continuously measured with the eddy covariance technique for 2004. How environmental variables, including net radiation, air temperature, and soil moisture, affected water-vapor flux variation was studied in detail. Results showed that winter had the lowest monthly water-vapor flux value, whereas summer had the highest. The diurnal variation of water-vapor flux showed different patterns for clear and cloudy days. The annual total evapotranspiration was 736.1 mm. Regression analysis showed that daily water-vapor flux was significantly correlated with net radiation, air temperature, soil temperature, and soil heat flux on both clear and cloudy days, all in quadratic relationships. Stepwise regression analysis demonstrated that a different set of environmental factors controlled water-vapor flux on days with different weather conditions. From this study, it was clear that these environmental variables, especially net radiation and soil temperature, regulated water-vapor flux over the planted coniferous ecosystem. 相似文献
18.
利用涡度相关技术研究了2004年千烟洲人工针叶林生态系统的水汽通量变化特征,结合气象要素的观测,进一步分析了净辐射、温度、水分、热量等环境因子对水汽通量的影响。结果表明:全年各月各时刻的水汽通量大多为正值,夏季大于春秋两季,冬季最小。其中7月份为全年最高,日最大值达到0·149gm-2·s-1;1月份最低,日最高值仅为0·021gm-2·s-1。不同天气条件下(晴天和多云)水汽通量的日变化有明显区别。全年蒸散量为736·1mm,占总降水量(1323·6mm)的55·6%。除7月份和10月份外,各月的蒸散量都要小于降水,尤以3、4月份差别最大,2004年10月出现典型的秋旱,但蒸散量和常年相差不大。水汽通量对净辐射、气温、地温、以及土壤热通量的变化都有很好的响应,两种天气条件下都能达到显著水平,可以用一元二次方程表达其间的关系。逐步回归分析显示晴天和多云时入选的变量不完全相同,晴天主要是净辐射、温度(气温、地温)、水分(饱和水汽压差),多云时包括净辐射、地温、土壤热通量和水分(空气相对湿度、土壤含水量)。可见气象条件在很大程度上制约着水汽通量的变化,而以辐射和地温的影响最大。 相似文献
19.
Xuhui Lee Hui‐Ju Wu Jeffrey Sigler Christopher Oishi Thomas Siccama 《Global Change Biology》2004,10(6):1017-1026
The influence of rainstorm on soil respiration of a mixed forest in southern New England, USA was investigated with eddy covariance, rain simulation and laboratory incubation. Soil respiration is shown to respond rapidly and instantaneously to the onset of rain and return to the prerain rate shortly after the rain stops. The pulse‐like flux, most likely caused by the decomposition of active carbon compounds in the litter layer, can amount to a loss of 0.18 t C ha?1 to the atmosphere in a single intensive storm, or 5–10% of the annual net ecosystem production of midlatitude forests. If precipitation becomes more variable in a future warmer world, the rain pulse should play an important part in the transient response of the ecosystem carbon balance to climate, particularly for ecosystems on ridge‐tops with rapid water drainage. 相似文献
20.
Revegetation is a common method to combat desertification in arid and semi‐arid areas worldwide. The objective of this study was to characterize the evapotranspiration (ET) of a 20‐year‐old revegetated area of the Tengger Desert. During the measurement period from 2009 to 2012, ET was measured by the eddy covariance technique. The result showed that the values for mean daily ET were 0.43, 0.39, 0.43 and 0.59 mm d−1 in 2009–2012, respectively. In the non‐growing season, the diurnal ET variation showed a normal distribution with a maximum value occurring at noon, while it showed multimodal distribution trend occurred in a dry day and a unimodal trend in a wet day with a maximum value occurring at noon in the growing season. During the 4‐year measurements, despite the large inter‐annual variation of precipitation (annual mean precipitation of 164.4 ± 33.5 mm), the water loss through ET (667.5 mm) was almost equal to rainfall (657.8 mm), and the mean of ET/P was 1.01.The annual ET amounts were 153.6, 143.3, 156.2 and 214.4 mm y−1 in 2009–2012, respectively, with corresponding ratio between accumulated ET and precipitation (ET/P) of 1.03, 1.14, 0.82 and 1.12. This indicated that the annual ET amounts can be modified by the soil water storage, which led to water loss through ET exceeding the water input by precipitation in a drier year, and soil water can be replenished in a wetter year. Thus, the vegetation protection system using plantations of xerophyte shrubs in the present study area is a success with a trade‐off of acceptable hydrological consequences that deserve to be popularized. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献