首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to evaluate the biomass production potential for the Spanish Iberian Peninsula using the Populus spp. ‘I‐214’ clone under several management regimes and land availability scenarios, and to determine its future contribution to Spanish energy demands. Empirical models were fitted to the data from a network of 144 plots located at 12 sites in the continental Mediterranean climatic regions of the Iberian Peninsula, in which yield was related to climate and soil, as well as to plantation management variables. Four models were developed considering average maximum temperature of the hottest month (TMAXH, °C), length of drought (A, months), intensity of drought (K, unitless) and soil pH. Predictions were made for the irrigated agricultural land (IAL), where the value of the independent variables were within the validity range, and for two management scenarios. Energy production capacity was evaluated by considering the alternatives for transforming poplar SRC biomass: heat, bio‐ethanol and electricity. The results indicated a mean productivity for the Spanish Iberian peninsula of between 15.3 and 10.9 Mg ha?1 yr?1 for the standard management scenario and the poorly irrigated and weeded management scenario respectively. Two IAL scenarios were considered for the calculation of biomass production potential: all IAL for which it was possible to make predictions is made available for poplar SRC (TP, maximum hypothetical production capacity), and another in which only unproductive IAL is available for poplar SRC (RP, production capacity without constricting agricultural production). The TP scenario contributes up to 6.8–9.6% of total energy demands, and the RP scenario 0.7–0.9%, depending on plantation management.  相似文献   

2.
Several factors influence land availability for the growth of short rotation coppices (SRC) with fast‐growing tree species, including the nationwide availability of agricultural land, economic efficiency, ecological impacts, political boundaries and environmental protection regulations. In this study, we analysed the growing potential of poplar and willow SRC for bioenergy purposes in Germany without negative ecological impacts or land use conflicts. The potential biomass production using SRC on agricultural land in Germany was assessed taking into account ecological, ethical, political and technical restrictions. Using a geographic information system (GIS), digital site maps, climate data and a digital terrain model, the SRC biomass production potential on cropland and grassland was estimated using water supply and mean temperature during the growing season as parameters. From this analysis, a yield model for SRC was developed based on the analysed growth data and site information of 62 short rotation plantations in Germany and France. To assess the technical, ethical and ecological potential of SRC, restrictions in protected areas, technical constraints and competition with food and feed production were investigated. Our results revealed that approximately 18% (2.12 Mio. ha) of cropland and 54% (2.5 Mio. ha) of grassland in Germany were highly suitable for SRC plantations, providing favourable water supplies and mean temperatures during the growing season. These identified sites produced an average yield of more than 14 tons of dry matter per hectare per year. Due to local climate and soil conditions, the federal states in northern and eastern Germany had the highest theoretical SRC potential for agricultural land. After considering all ecological, ethical, political and technical restrictions, as well as future climate predictions, 5.7% (680 000 ha) of cropland and 33% (1.5 Mio. ha) of grassland in Germany were classified as suitable for biomass production with fast‐growing tree species in SRC.  相似文献   

3.
The effects of soil compaction and mechanical damage to stools at harvesting on the growth and biomass production of short rotation coppice (SRC) of willow (Salix viminalis L.) were monitored on clay loam (CL) and sandy loam (SL) soils. Moderate compaction, more typical of current harvesting situations did not reduce biomass yields significantly. Even heavy compaction only reduced stem biomass production by about 12% overall; effects were statistically significant only in the first year of the experiment on sandy loam. Heavy compaction increased soil strength and bulk density down to 0.4 m depth and reduced soil available water and root growth locally. Soil loosening treatments designed to alleviate the effects of heavy compaction did not markedly improve the growth of willow on compacted plots. Hence the focus fell on harvesting. Extensive mechanical damage to stools caused a 9% and 21% reduction in stem dry mass on the clay loam and sandy loam soils as a result of fewer stems being produced. The particularly severe effect on the sandy loam soil probably resulted from a combination of dry conditions in the year of treatment, root damage and soil compaction under stools and might have been aggravated by the young age of the plants (1 year) at the time of treatment.  相似文献   

4.
Selecting superior clones is the first step for commercial short‐rotation coppice cultures to provide biomass and bioenergy. Till date, such selection for hybrid Populus clones in middle China is absent. Here we describe the growth, aboveground biomass production and cell wall composition of 27 hybrid poplar clones in Henan, China for two 3‐year rotations. Significant variation in these three characteristics over two triennial rotation coppices among the 27 poplar clones was observed. During two 3‐year rotation coppices, clones ‘276’, ‘02‐17’, and ‘599’ showed relatively higher tree heights and larger basal diameters than those of the other clones. However, the most productive clones were ‘36’ and ‘01‐30’. At the end of the second triennial rotation, the aboveground biomass production reached 18 Mg ha?1 year?1. For the cell wall composition analysis, the cellulose contents of clones ‘01‐243’ and ‘2001’ were relatively high, while the xylose contents of clones ‘01‐30’ and ‘65’ were relatively high. Cluster analysis based on height, basal diameter, biomass, heat value, cellulose content, and survival rate revealed five growth potential classes. Accordingly, clones ‘03‐332’, ‘36’, and ‘599’ exhibited high biomass and growth and had the greatest potential to serve as excellent biomass producers in Henan, China. In addition, the expression patterns of 20 key regulatory genes were analyzed, and an integrated coexpression network was constructed. This field trial provides a comprehensive quantification and evaluation of the agronomic performance of 27 poplar clones in Henan, China. The results of this study and the analytical strategies provide an efficient mechanism for selecting clones that will perform well agronomically in local environments. The expression of key genes and the integrated coexpression network provide the molecular mechanisms of poplar biomass performance.  相似文献   

5.
Short rotation coppices (SRC) are considered prime candidates for biomass production, yielding good‐quality feedstock that is easy to harvest. Besides technical, social and economical aspects, environmental issues are important to be taken into account when developing SRC. Here, we evaluated the environmental impacts of delivering 1 GJ of heat from eucalyptus SRC using life cycle assessment (LCA), based on management scenarios involving different rotations lengths, fertilizer input rates, stem densities and harvest methods. Compared to equivalent fossil chains, all eucalyptus scenarios achieved savings of fossil energy and greenhouse gas (GHG) emissions in the 80–90% range, and had generally lower impacts, except for eutrophication. The 3 year rotation scenario was the most energy and GHG‐intensive, whereas manual felling for the longer rotations resulted in twofold larger photochemical ozone impacts compared to the other scenarios. Transportation of wood chips and fertilization were the top two contributors to the impacts, the latter being more important with the shorter rotation lengths due to the evergreen character of eucalyptus. The possibility of including ecosystem carbon dynamics was also investigated, by translating the temporary sequestration of atmospheric CO2 in the above and belowground biomass of eucalyptus as CO2 savings using various published equivalence factors. This offset the life cycle GHG emissions of heat provision from eucalyptus SRC by 70–400%.  相似文献   

6.
Willow Salix sp. is currently cultivated as a short rotation forestry crop in Ireland as a source of biomass to contribute to renewable energy goals. The aim of this study is to evaluate the energy requirements and environmental impacts associated with willow (Salix sp.) cultivation, harvest, and transport using life cycle assessment (LCA). In this study, only emissions from the production of the willow chip are included, end‐use emissions from combustion are not considered. In this LCA study, three impact categories are considered; acidification potential, eutrophication potential and global warming potential. In addition, the cumulative energy demand and energy ratio of the system are evaluated. The results identify three key processes in the production chain which contribute most to all impact categories considered; maintenance, harvest and transportation of the crop. Sensitivity analysis on the type of fertilizers used, harvesting technologies and transport distances highlights the effects of these management techniques on overall system performance. Replacement of synthetic fertilizer with biosolids results in a reduction in overall energy demand, but raises acidification potential, eutrophication potential and global warming potential. Rod harvesting compares unfavourably in comparison with direct chip harvesting in each of the impact categories considered due to the additional chipping step required. The results show that dedicated truck transport is preferable to tractor‐trailer transport in terms of energy demand and environmental impacts. Finally, willow chip production compares favourably with coal provision in terms of energy ratio and global warming potential, while achieving a higher energy ratio than peat provision but also a higher global warming potential.  相似文献   

7.
In this article the global potential of energy crop production on degraded lands was estimated using detailed, spatially explicit data about the area, type and extent of degradation derived from the Global Assessment of Land Degradation Dataset, and by combining this dataset with various spatially explicit data sets. Next, an estimate was made of the possible yield of perennial energy crops on the degraded areas as a function of the type and degree of degradation. Lightly degraded areas were not included, as these areas might be suitable for conventional food production. The total global potential energy production on degraded lands was assessed to be slightly above 150 and 190 EJ yr?1, for grassy and woody energy crops, respectively. Most of this potential, however, is on areas currently classified as forest, cropland or pastoral land, leaving a potential of around 25 and 32 EJ yr?1 on other land cover categories. Most of the potential energy crop production on degraded land is located in developing regions. China has a total potential of 30 EJ yr?1, of which 4 EJ yr?1 from areas classified as other land. Also USA, Brazil, West Africa, East Africa, Russia and India have substantial potentials of 12–18 EJ yr?1, with up to 30% of the potential from areas classified as other land.  相似文献   

8.
Willow biomass produced in short rotation coppice systems can potentially be used as biomass feedstock in Europe, the United States and Canada. However, most researchers focus on data from the first harvest rotation only, whereas multiple rotations have been rarely investigated. The aim of this study was to evaluate the effect of cultivar (5), planting density (12,000–96,000 cuttings/ha) and harvest rotation (annual, biennial, triennial) on willow biomass yields during 12 consecutive years in northern Poland. Every experimental factor and the interactions between factors significantly impacted willow yields. Biomass yield was highest in the triennial harvest rotation (13.3 Mg ha?1 year?1), 15.9% lower in the biennial rotation and 26.9% lower in the annual rotation. The highest average yield (14.6 Mg ha?1 year?1) was noted at a planting density of 24,000 cuttings/ha, and yields were 9.3%–46.0% lower at the remaining densities. Cultivar UWM 095 had the highest average yield (13.0 Mg ha?1 year?1), whereas the yield of the remaining cultivars was 4.6%–32.4% lower. During the 12‐year period, yields were higher after the first harvest in annual, biennial and triennial harvest rotations. This above implies that high biomass yields can be obtained after the first harvest rotation if willows are cultivated on fertile soils at higher planting density, well managed and coppiced after the first year. However, yields are unlikely to be higher in successive harvest rotations, and they can even be lower, but more stable than in the first harvest rotation.  相似文献   

9.
To increase the understanding of poplar and willow perennial woody crops and facilitate their deployment for the production of biofuels, bioproducts, and bioenergy, there is a need for broadscale yield maps. For national analysis of woody and herbaceous crops production potential, biomass feedstock yield maps should be developed using a common framework. This study developed willow and poplar potential yield maps by combining data from a network of willow and poplar field trials and the modeling power of PRISM‐ELM. Yields of the top three willow cultivars across 17 sites ranged from 3.60 to 14.6 Mg ha?1 yr?1 dry weight, while the yields from 17 poplar trials ranged from 7.5 to 15.2 Mg ha?1 yr?1. Relationships between the environmental suitability estimates from the PRISM‐ELM model and results from field trials had an R2 of 0.60 for poplar and 0.81 for willow. The resulting potential yield maps reflected the range of poplar and willow yields that have been reported in the literature. Poplar covered a larger geographic range than willow, which likely reflects the poplar breeding efforts that have occurred for many more decades using genotypes from a broader range of environments than willow. While the field trial data sets used to develop these models represent the most complete information at the time, there is a need to expand and improve the model by monitoring trials over multiple cutting cycles and across a broader range of environmental gradients. Despite some limitations, the results of these models represent a dramatic improvement in projections of potential yield of poplar and willow crops across the United States.  相似文献   

10.
Following an evaluation of the various methods available for non-destructive biomass estimation in short rotation forestry, a standardised procedure was defined and incorporated into a computer programme (BioEst). Special efforts were made to ensure that the system can be used by people who are unfamiliar with computers and mathematics. BioEst provides an interface between a calliper and a spreadsheet programme which was written in Microsoft Excel macro language. Therefore, it is simple to modify the programme and create personal protocols. BioEst can be run on a portable PC with Microsoft Excel for Windows. The computer continuously recalculates an estimate of the amount of biomass per hectare, as well as some summary statistics, when fed data on shoot diameter obtained by making row-section-wise measurements with a standard digital calliper. BioEst is available without cost from the author.  相似文献   

11.
Improving production in short rotation coppice (SRC) plantations requires, among other elements, a proper understanding of clonal performance. Genotypic stability over a range of environments is a factor of concern for breeding and recommendation purposes. Most common stability measures can be embedded in a mixed‐model framework accounting for interaction and heterocedasticity in genotype‐by‐environment tables. Data from nine hybrid poplars of different taxonomic background were tested in four Mediterranean sites under three agronomic practices (control, herbicide application, and supplementary fertilization) for total biomass (TB), stem biomass (SB), and branch biomass (BB) at the end of the first rotation. Stability models (stability variance, Finlay–Wilkinson and Eberhart–Russell) were compared, also allowing for the definition of groups of genotypes with distinct taxonomic backgrounds and a priori different variabilities. Results showed that genotype‐by‐environment (GE) interactions were associated with factors inherent to evaluation sites rather than to the agronomic practices tested. Depending on biomass fraction, regression models provided appropriate stability measures. Highly reactive clones to improving environmental conditions (e.g., ‘AF2’) tended to show the largest mean TB. However, this was not always the case, as clone ‘Monviso’ showed both intermediate reactivity (i.e., stable sensu Eberhart–Russell) and enhanced overall performance. The taxonomic group was relevant for explaining stability patterns for SB. The stability assessment for BB indicated different patterns in biomass allocation. Present findings point to the feasibility of either exploiting specific adaptation (in which case hybrid type may play a relevant role) or searching for broadly adapted, stable material exhibiting good performance in Mediterranean conditions.  相似文献   

12.
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.  相似文献   

13.
The quickly rising atmospheric carbon dioxide (CO2)‐levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar species (Populus alba L. clone 2AS‐11, Populus nigra L. clone Jean Pourtet and Populus×euramericana clone I‐214). Trees were growing in a high‐density coppice plantation during the second rotation (i.e., regrowth after coppice; 2002–2004; POPFACE/EUROFACE). Six plots were studied, half of which were continuously fumigated with CO2 (FACE; free air carbon dioxide enrichment of 550 ppm). Half of each plot was fertilized to study the interaction between CO2 and nutrient fertilization. At the end of the second rotation, selective above‐ and belowground harvests were performed to estimate the productivity of this bio‐energy plantation. Fertilization did not affect growth of the poplar trees, which was likely because of the high rates of fertilization during the previous agricultural land use. In contrast, elevated CO2 enhanced biomass production by up to 29%, and this stimulation did not differ between above‐ and belowground parts. The increased initial stump size resulting from elevated CO2 during the first rotation (1999–2001) could not solely explain the observed final biomass increase. The larger leaf area index after canopy closure and the absence of any major photosynthetic acclimation after 6 years of fumigation caused the sustained CO2‐induced biomass increase after coppice. These results suggest that, under future CO2 concentrations, managed poplar coppice systems may exhibit higher potential for C sequestration and, thus, help mitigate climate change when used as a source of C‐neutral energy.  相似文献   

14.
Development of dedicated bioenergy crop production systems will require accurate yield estimates, which will be important for determining many of the associated environmental and economic impacts of their production. Shrub willow (Salix spp) is being promoted in areas of the USA and Canada due to its adaption to cool climates and wide genetic diversity available for breeding improvement. Willow breeding in North America is in an early stage, and selection of elite genotypes for commercialization will require testing across broad geographic regions to gain an understanding of how shrub willow interacts with the environment. We analyzed a dataset of first‐rotation shrub willow yields of 16 genotypes across 10 trial environments in the USA and Canada for genotype‐by‐environment interactions using the additive main effects and multiplicative interactions (AMMI) model. Mean genotype yields ranged from 5.22 to 8.58 oven‐dry Mg ha?1 yr?1. Analysis of the main effect of genotype showed that one round of breeding improved yields by as much as 20% over check cultivars and that triploid hybrids, most notably Salix viminalis × S. miyabeana, exhibited superior yields. We also found important variability in genotypic response to environments, which suggests specific adaptability could be exploited among 16 genotypes for yield gains. Strong positive correlations were found between environment main effects and AMMI parameters and growing environment temperatures. These findings demonstrate yield improvements are possible in one generation and will be important for developing cultivar recommendations and for future breeding efforts.  相似文献   

15.
Woody biomass produced from short rotation coppice (SRC) poplar (Populus spp.) and willow (Salix spp.) is a bioenergy feedstock that can be grown widely across temperate landscapes and its use is likely to increase in future. Process‐based models are therefore required to predict current and future yield potential that are spatially resolved and can consider new genotypes and climates that will influence future yield. The development of a process‐based model for SRC poplar and willow, ForestGrowth‐SRC, is described and the ability of the model to predict SRC yield and water use efficiency (WUE) was evaluated. ForestGrowth‐SRC was parameterized from a process‐based model, ForestGrowth for high forest. The new model predicted annual above ground yield well for poplar (r2 = 0.91, RMSE = 1.46 ODT ha?1 yr?1) and willow (r2 = 0.85, RMSE = 1.53 ODT ha?1 yr?1), when compared with measured data from seven sites in contrasting climatic zones across the United Kingdom. Average modelled yields for poplar and willow were 10.3 and 9.0 ODT ha?1 yr?1, respectively, and interestingly, the model predicted a higher WUE for poplar than for willow: 9.5 and 5.5 g kg?1 respectively. Using regional mapped climate and soil inputs, modelled and measured yields for willow compared well (r2 = 0.58, RMSE = 1.27 ODT ha?1 yr?1), providing the first UK map of SRC yield, from a process‐based model. We suggest that the model can be used for predicting current and future SRC yields at a regional scale, highlighting important species and genotype choices with respect to water use efficiency and yield potential.  相似文献   

16.
Biogenic volatile organic compounds (BVOC) emissions from bioenergy crops may differ from those of conventional crops. We compared emission rates of isoprene and a number of monoterpenes from the lignocellulosic bioenergy crops short‐rotation coppice (SRC) willow and Miscanthus, with the conventional crops wheat and oilseed rape. BVOC emission rates were measured via dynamic vegetation enclosure and GC‐MS analysis approximately monthly between April 2010 and August 2012 at a location in England and from SRC willow at two locations in Scotland. The largest BVOC emission rates were measured from willow in England and varied between years. Isoprene emission rates varied between μg g?1 h?1. Of the monoterpenes detected from willow, α‐pinene emission rates were highest (μg g?1 h?1), followed by μg g?1 h?1 for δ‐3‐carene, μg g?1 h?1 for β‐pinene and μg g?1 h?1 for limonene. BVOC emission rates measured in Scotland were much lower. Low emission rates of isoprene and α‐pinene were measured from Miscanthus in 2010 (μg g?1 h?1 and μg g?1 h?1, respectively) but were not detected in subsequent years. Emission rates from wheat of isoprene were negligible but relatively high for monoterpenes (μg g?1 h?1 and μg g?1 h?1 for α‐pinene and limonene, respectively). No significant emission rates of BVOCs were measured from oilseed rape. The measured emission rates followed a clear seasonal trend. Crude extrapolations based solely on data gathered here indicate that isoprene emissions from willow could correspond to 0.004–0.03% (UK) and 0.76–5.5% (Europe) of current global isoprene if 50% of all land potentially available for bioenergy crops is planted with willow.  相似文献   

17.
In this paper, we focus on the impact on soil organic carbon (SOC) of two dedicated energy crops: perennial grass Miscanthus x Giganteus (Miscanthus) and short rotation coppice (SRC)‐willow. The amount of SOC sequestered in the soil is a function of site‐specific factors including soil texture, management practices, initial SOC levels and climate; for these reasons, both losses and gains in SOC were observed in previous Miscanthus and SRC‐willow studies. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas emissions in mineral and organic soils. The performance of ECOSSE has already been tested at site level to simulate the impacts of land‐use change to short rotation forestry (SRF) on SOC. However, it has not been extensively evaluated under other bioenergy plantations, such as Miscanthus and SRC‐willow. Twenty‐nine locations in the United Kingdom, comprising 19 paired transitions to SRC‐willow and 20 paired transitions to Miscanthus, were selected to evaluate the performance of ECOSSE in predicting SOC and SOC change from conventional systems (arable and grassland) to these selected bioenergy crops. The results of the present work revealed a strong correlation between modelled and measured SOC and SOC change after transition to Miscanthus and SRC‐willow plantations, at two soil depths (0–30 and 0–100 cm), as well as the absence of significant bias in the model. Moreover, model error was within (i.e. not significantly larger than) the measurement error. The high degrees of association and coincidence with measured SOC under Miscanthus and SRC‐willow plantations in the United Kingdom, provide confidence in using this process‐based model for quantitatively predicting the impacts of future land use on SOC, at site level as well as at national level.  相似文献   

18.
Sustained interest in producing renewable energy from dedicated woody biomass crops, such as shrub willow (Salix spp.), through short rotation coppice (SRC) has resulted in a substantial amount of published research on SRC over the past few decades. One area of constant focus has been the nutritional requirements for optimal growth and yield. Inconsistency in the results of individual research trials has likely been a driver of repeated experimentation. This review is intended to provide a quantitative examination of the effect of fertilization treatments on willow biomass yield in field conditions. Data from the literature were collected and summarized to test for significant sources of variation in willow biomass nitrogen (N) pools of common SRC genotypes used in North American and European research programs. A meta‐analysis was conducted on studies comparing synthetic or organic sources of N willow fertilization to an unfertilized control treatment to test for yield response. Overall, the majority of responses to fertilization were positive, although variation by species, N source material, and crop age were found. While no clear pattern in N dosage response was observed, the level of yield response was correlated with geographic and climatic variables. Nitrogen export levels were fairly predictable, and the synthesis presented here can be used to refine current guidelines. Environmental and economic aspects are also considered.  相似文献   

19.
When considering the large‐scale deployment of bioenergy crops, it is important to understand the implication for ecosystem hydrological processes and the influences of crop type and location. Based on the potential for future land use change (LUC), the 10,280 km2 West Wales Water Framework Directive River Basin District (UK) was selected as a typical grassland dominated district, and the Soil & Water Assessment Tool (SWAT) hydrology model with a geographic information systems interface was used to investigate implications for different bioenergy deployment scenarios. The study area was delineated into 855 sub‐basins and 7,108 hydrological response units based on rivers, soil type, land use, and slope. Changes in hydrological components for two bioenergy crops (Miscanthus and short rotation coppice, SRC) planted on 50% (2,192 km2) or 25% (1,096 km2) of existing improved pasture are quantified. Across the study area as a whole, only surface run‐off with SRC planted at the 50% level was significantly impacted, where it was reduced by up to 23% (during April). However, results varied spatially and a comparison of annual means for each sub‐basin and scenario revealed surface run‐off was significantly decreased and baseflow significantly increased (by a maximum of 40%) with both Miscanthus and SRC. Evapotranspiration was significantly increased with SRC (at both planting levels) and water yield was significantly reduced with SRC (at the 50% level) by up to 5%. Effects on streamflow were limited, varying between ?5% and +5% change (compared to baseline) in the majority of sub‐basins. The results suggest that for mesic temperate grasslands, adverse effects from the drying of soil and alterations to streamflow may not arise, and with surface run‐off reduced and baseflow increased, there could, depending on crop location, be potential benefits for flood and erosion mitigation.  相似文献   

20.
Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate‐limiting step in the BR‐biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded‐growth phenotype of the Arabidopsis cyp85a2‐2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast‐growing trees with improved wood production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号