首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixty‐five accessions of the species‐rich freshwater red algal order Batrachospermales were characterized through DNA sequencing of two regions: the mitochondrial cox1 gene (664 bp), which is proposed as the DNA barcode for red algae, and the UPA (universal plastid amplicon) marker (370 bp), which has been recently identified as a universally amplifying region of the plastid genome. upgma phenograms of both markers were consistent in their species‐level relationships, although levels of sequence divergence were very different. Intraspecific variation of morphologically identified accessions for the cox1 gene ranged from 0 to 67 bp (divergences were highest for the two taxa with the greatest number of accessions; Batrachospermum helminthosum and Batrachospermum macrosporum); while in contrast, the more conserved universal plastid amplicon exhibited much lower intraspecific variation (generally 0–3 bp). Comparisons to previously published mitochondrial cox2–3 spacer sequences for B. helminthosum indicated that the cox1 gene and cox2–3 spacer were characterized by similar levels of sequence divergence, and phylogeographic patterns based on these two markers were consistent. The two taxa represented by the largest numbers of specimens (B. helminthosum and B. macrosporum) have cox1 intraspecific divergence values that are substantially higher than previously reported, but no morphological differences can be discerned at this time among the intraspecific groups revealed in the analyses. DNA barcode data, which are based on a short fragment of an organellar genome, need to be interpreted in conjunction with other taxonomic characters, and additional batrachospermalean taxa need to be analyzed in detail to be able to draw generalities regarding intraspecific variation in this order. Nevertheless, these analyses reveal a number of batrachospermalean taxa worthy of more detailed DNA barcode study, and it is predicted that such research will have a substantial effect on the taxonomy of species within the Batrachospermales in the future.  相似文献   

2.
Non-biting midges (Diptera: Chironomidae) are a diverse population that commonly causes respiratory allergies in humans. Chironomid larvae can be used to indicate freshwater pollution, but accurate identification on the basis of morphological characteristics is difficult. In this study, we constructed a mitochondrial cytochrome c oxidase subunit I (COI)-based DNA barcode library for Korean chironomids. This library consists of 211 specimens from 49 species, including adults and unidentified larvae. The interspecies and intraspecies COI sequence variations were analyzed. Sophisticated indexes were developed in order to properly evaluate indistinct barcode gaps that are created by insufficient sampling on both the interspecies and intraspecies levels and by variable mutation rates across taxa. In a variety of insect datasets, these indexes were useful for re-evaluating large barcode datasets and for defining COI barcode gaps. The COI-based DNA barcode library will provide a rapid and reliable tool for the molecular identification of Korean chironomid species. Furthermore, this reverse-taxonomic approach will be improved by the continuous addition of other speceis’ sequences to the library.  相似文献   

3.
Abstract Partial mitochondrial gene sequences of 16 Culicoides species were determined to elucidate phylogenetic relations among species and to develop a molecular identification method for important virus vector species. In addition, the analysis found mitochondrial gene rearrangement in several species. Sequences of the mitochondrial genome region, cox1trnL2cox2 (1940–3785 bp) of 16 Culicoides and additional sequences were determined in some species, including whole mitochondrial genome sequences of Culicoides arakawae. Nine species showed common organization in this region, with three genes cox1trnL2cox2 and a small or no intergenic region (0–30 bp) between them. The other seven species showed translocation of tRNA and protein‐coding genes and/or insertion of AT‐rich non‐coding sequences (65–1846 bp) between the genes. The varied gene rearrangements among species within a genus is very rare for mitochondrial genome organization. Phylogenetic analyses based on the sequences of cox1+cox2 suggest a few clades among Japanese Culicoides species. No relationships between phylogenetic closeness and mitochondrial gene rearrangements were observed. Sequence data were used to establish a polymerase chain reaction tool to distinguish three important vector species from other Culicoides species, for which classification during larval stages is not advanced and identification is difficult.  相似文献   

4.

Background

DNA barcoding based on the mitochondrial cytochrome oxidase subunit I gene (cox1 or COI) has been successful in species identification across a wide array of taxa but in some cases failed to delimit the species boundaries of closely allied allopatric species or of hybridising sister species.

Methodology/Principal Findings

In this study we extend the sample size of prior studies in birds for cox1 (2776 sequences, 756 species) and target especially species that are known to occur parapatrically, and/or are known to hybridise, on a Holarctic scale. In order to obtain a larger set of taxa (altogether 2719 species), we include also DNA sequences of two other mitochondrial genes: cytochrome b (cob) (4614 sequences, 2087 species) and 16S (708 sequences, 498 species). Our results confirm the existence of a wide gap between intra- and interspecies divergences for both cox1 and cob, and indicate that distance-based DNA barcoding provides sufficient information to identify and delineate bird species in 98% of all possible pairwise comparisons. This DNA barcoding gap was not statistically influenced by the number of individuals sequenced per species. However, most of the hybridising parapatric species pairs have average divergences intermediate between intraspecific and interspecific distances for both cox1 and cob.

Conclusions/Significance

DNA barcoding, if used as a tool for species discovery, would thus fail to identify hybridising parapatric species pairs. However, most of them can probably still assigned to known species by character-based approaches, although development of complementary nuclear markers will be necessary to account for mitochondrial introgression in hybridising species.  相似文献   

5.
DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648‐bp segment near the 5′ terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus, the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5′ region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus. Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.  相似文献   

6.
A DNA barcode based on 650 bp of mitochondrial gene cytochrome c oxidase I is proving to be highly functional in species identification for various animal groups. However, DNA degradation complicates the recovery of a full‐length barcode from many museum specimens. Here we explore the use of shorter barcode sequences for identification of such specimens. We recovered short sequences — i.e. ~100 bp — with a single PCR pass from more than 90% of the specimens in assemblages of moth and wasp museum specimens from which full barcode recovery was only 50%, and the latter were usually less than 8 years old. Short barcodes were effective in identifying specimens, confirming their utility in circumstances where full barcodes are too expensive to obtain and the identification comparisons are within a confined taxonomic group.  相似文献   

7.
The 655 bp cytochrome c oxidase subunit I barcode region of single specimens of 388 species of fishes (four Holocephali, 61 Elasmobranchii and 323 Actinopterygii) was examined. All but two (Urolophus cruciatus and Urolophus sufflavus) showed different cox1 nucleotide sequences (99.5% species discrimination); the two that could not be resolved are suspected to hybridize. Most of the power of cox1 nucleotide sequence analysis for species identification comes from the degenerate nature of the genetic code and the highly variable nature of the third codon position of amino acids. Variation at the third codon position is bimodally distributed, and the more variable mode is dominated by amino acids with four or six codons, while the less variable mode is dominated by amino acids with two codons. The ratio of nonsynonymous to synomymous changes is much less than one, indicating that this gene is subject to strong purifying selection. Consequently, cox1 amino acid sequence diversity is much less than nucleotide sequence diversity and has very poor species resolution power. Fourteen of the 16 amino acid residues recognized as having important functions in the region of cox1 sequenced were completely conserved over all 388 species (and the bovine cox1 sequence), with one fish species varying at one of these sites, and three fish at another site. No significant differences in amino acid conservation were observed between residues in helices, strands and turns. Patterns of nucleotide and amino acid variability were very similar between elasmobranchs and actinopterygians.  相似文献   

8.
For comparative primatology proper recognition of basal taxa (i.e. species) is indispensable, and in this the choice of a suitable gene with high phylogenetic resolution is crucial. For the goals of species identification in animals, the cytochrome c oxidase subunit 1 (cox1) has been introduced as standard marker. Making use of the difference in intra- and interspecific genetic variation – the DNA barcoding gap – cox1 can be used as a fast and accurate marker for the identification of animal species. For the Order Primates we compare the performance of cox1 (166 sequences; 50 nominal species) in species-identification with that of two other mitochondrial markers, 16S ribosomal RNA (412 sequences, 92 species) and cytochrome b (cob: 547 sequences, 72 species). A wide gap exist between intra- and interspecific divergences for both cox1 and cob genes whereas this gap is less apparent for 16S, indicating that rRNA genes are less suitable for species delimitation in DNA barcoding. For those species where multiple sequences are available there are significant differences in the intraspecific genetic distances between different mitochondrial markers, without, however, showing a consistent pattern. We conclude that cox1 allows accurate differentiation of species and as such DNA barcoding may have an important role to play in comparative primatology.  相似文献   

9.
This paper reports the first tests of the suitability of the standardized mitochondrial cytochrome c oxidase subunit I (COI) barcoding system for the identification of Canadian deerflies and horseflies. Two additional mitochondrial molecular markers were used to determine whether unambiguous species recognition in tabanids can be achieved. Our 332 Canadian tabanid samples yielded 650 sequences from five genera and 42 species. Standard COI barcodes demonstrated a strong A + T bias (mean 68.1%), especially at third codon positions (mean 93.0%). Our preliminary test of this system showed that the standard COI barcode worked well for Canadian Tabanidae: the target DNA can be easily recovered from small amounts of insect tissue and aligned for all tabanid taxa. Each tabanid species possessed distinctive sets of COI haplotypes which discriminated well among species. Average conspecific Kimura two‐parameter (K2P) divergence (0.49%) was 12 times lower than the average divergence within species. Both the neighbour‐joining and the Bayesian methods produced trees with identical monophyletic species groups. Two species, Chrysops dawsoni Philip and Chrysops montanus Osten Sacken (Diptera: Tabanidae), showed relatively deep intraspecific sequence divergences (~10 times the average) for all three mitochondrial gene regions analysed. We suggest provisional differentiation of Ch. montanus into two haplotypes, namely, Ch. montanus haplomorph 1 and Ch. montanus haplomorph 2, both defined by their molecular sequences and by newly discovered differences in structural features near their ocelli.  相似文献   

10.
The creation and use of a globally available database of DNA sequences from a standardized gene region has been proposed as a tool for species identification, assessing genetic diversity and monitoring the legal and illegal trade in wildlife species. Here, we contribute to the Barcode of Life Data System and test whether a short region of the mitochondrial cytochrome c oxidase subunit 1 (COX1) gene would reliably distinguish among a suite of commonly hunted African and South American mammal and reptile species. We used universal primers to generate reference barcode sequences of 645 bp for 23 species from five vertebrate families (Crocodilidae, Alligatoridae, Bovidae, Suidae and Cercopithecidae). Primer cocktails yielded high quality barcode sequences for 179 out of 204 samples (87.7%) from all species included in the study. For most taxa, we sequenced multiple individuals to estimate intraspecific sequence variability and document fixed diagnostic characters for species identification. Polymorphism in the COX1 fragment was generally low (mean = 0.24%), while differences between congeneric species averaged 9.77%. Both fixed character differences and tree-based maximum likelihood distance methods unambiguously identified unknown and misidentified samples with a high degree of certainty. Barcode sequences also differentiated among newly identified lineages of African crocodiles and identified unusually high levels of genetic diversity in one species of African duiker. DNA barcoding offers promise as an effective tool for monitoring poaching and commercial trade in endangered species, especially when investigating semi-processed or morphologically indistinguishable wildlife products. We discuss additional benefits of barcoding to ecology and conservation.  相似文献   

11.
The standardized use of mitochondrial cytochrome c oxidase subunit I (COI) gene sequences as DNA barcodes has been widely promoted as a high-throughput method for species identification and discovery. Species delimitation has been based on the following criteria: (1) monophyletic association and less frequently (2) a minimum 10× greater divergence between than within species. Divergence estimates, however, can be inflated if sister species pairs are not included and the geographic extent of variation within any given taxon is not sampled comprehensively. This paper addresses both potential biases in DNA divergence estimation by sampling range-wide variation in several morphologically distinct, endemic butterfly species in the genus Heteropsis, some of which are sister taxa. We also explored the extent to which mitochondrial DNA from the barcode region can be used to assess the effects of historical rainforest fragmentation by comparing genetic variation across Heteropsis populations with an unrelated forest-associated taxon Saribia tepahi. Unexpectedly, generalized primers led to the inadvertent amplification of the endosymbiont Wolbachia, undermining the use of universal primers and necessitating the design of genus-specific COI primers alongside a Wolbachia-specific PCR assay. Regardless of the high intra-specific genetic variation observed, most species satisfy DNA barcoding criteria and can be differentiated in the nuclear phylogeny. Nevertheless, two morphologically distinguishable candidate species fail to satisfy the barcoding 10× genetic distance criterion, underlining the difficulties of applying a standard distance threshold to species delimitation. Phylogeographic analysis of COI data suggests that forest fragmentation may have played an important role in the recent evolutionary diversification of these butterflies. Further work on other Malagasy taxa using both mitochondrial and nuclear data will provide better insight into the role of historical habitat fragmentation in species diversification and may potentially contribute to the identification of priority areas for conservation.  相似文献   

12.
DNA Barcoding (DBC) is a method for taxonomic identification of animals that is based entirely on the 5′ portion of the mitochondrial gene, cytochrome oxidase subunit I (COI-5). It can be especially useful for identification of larval forms or incomplete specimens lacking diagnostic morphological characters. DBC can also facilitate the discovery of species and in defining “molecular taxonomic units” in problematic groups. However, DBC is not a panacea for coral reef taxonomy. In two of the most ecologically important groups on coral reefs, the Anthozoa and Porifera, COI-5 sequences have diverged too little to be diagnostic for all species. Other problems for DBC include paraphyly in mitochondrial gene trees and lack of differentiation between hybrids and their maternal ancestors. DBC also depends on the availability of databases of COI-5 sequences, which are still in early stages of development. A global effort to barcode all fish species has demonstrated the importance of large-scale coordination and is yielding promising results. Whether or not COI-5 by itself is sufficient for species assignments has become a contentious question; it is generally advantageous to use sequences from multiple loci.  相似文献   

13.
To increase knowledge about the systematics and evolution of Mediterranean soles, we assessed mitochondrial DNA variation, molecular phylogeny, and evolution in eight species from the genera Solea, Microchirus, Monochirus, and Buglossidium by large ribosomal subunit (16S) and cytochrome b (cytb) sequence analysis. Relevant molecular features are the great variation of base composition among species at the third codon in cytb and the heterogeneity of the nucleotide substitution rate. Phylogenies recovered using 16S nucleotide and cytb amino acid sequences agree with those based on morphology in assessing monophyly of Solea species and ancestry of Buglossidium luteum, but they are against the intergeneric differentiation of Microchirus and Monochirus. Conversely, phylogenetic trees based on cytb nucleotide sequences yielded relationships among taxa regardless of their evolutionary histories. The incongruities between morphological and molecular issues suggest the need for reassessing the systematic value of some morphological characters. Approximate estimates of the divergence time of Mediterranean soleid lineages range from 40 to 13 Mya (Oligocene–Miocene), indicating an ancient origin for the group. Received August 31, 1999; accepted December 17, 1999.  相似文献   

14.
Accurate species-level identifications underpin many aspects of basic and applied biology;however,identifications can be hampered by a lack of discriminating morphological characters,taxonomic expertise or time.Molecular approaches,such as DNA"barcoding"of the cytochrome c oxidase(COI)gene,are argued to overcome these issues.However,nuclear encoding of mitochondrial genes(numts)and poor amplification success of suboptimally preserved specimens can lead to erroneous identifications.One insect group for which these molecular and morphological problems are significant are the dacine fruit flies(Diptera:Tephritidae:Dacini).We addressed these issues associated with COI barcoding in the dacines by first assessing several"universal"COI primers against public mitochondrial genome and numt sequences for dacine taxa.We then modified a set of four primers that more closely matched true dacine COI sequence and amplified two overlapping portions of the COI barcode region.Our new primers were tested alongside universal primers on a selection of dacine species,including both fresh preserved and decades-old dry specimens.Additionally,Bactrocera tiyoni mitochondrial and nuclear genomes were compared to identify putative numts.Four numt clades were identified,three of which were amplified using existing universal primers.In contrast,our new primers preferentially amplified the"true"mitochondrial COI barcode in all dacine species tested.The new primers also successfully amplified partial barcodes from dry specimens for which full length barcodes were unobtainable.Thus we recommend these new primers be incorporated into the suites of primers used by diagnosticians and quarantine labs for the accurate identification of dacine species.  相似文献   

15.
Cystic echinococcosis (CE) caused by the larval stage of Echinococcus granulosus sensu lato (s.l.) is one of the most important zoonotic parasitic diseases worldwide and 10 genotypes (G1–G10) have been reported. In China, almost all the epidemiological and genotyping studies of E. granulosus s.l. are from the west and northwest pasturing areas. However, in Heilongjiang Province of northeastern China, no molecular information is available on E. granulosus s.l. To understand and to speculate on possible transmission patterns of E. granulosus s.l., we molecularly identified and genotyped 10 hydatid cysts from hepatic CE patients in Heilongjiang Province based on mitochondrial cytochrome c oxidase subunit I (cox1), cytochrome b (cytb) and NADH dehydrogenase subunit 1 (nad1) genes. Two genotypes were identified, G1 genotype (n = 6) and G7 genotype (n = 4). All the six G1 genotype isolates were identical to each other at the cox1 locus; three and two different sequences were obtained at the cytb and nad1 loci, respectively, with two cytb gene sequences not being described previously. G7 genotype isolates were identical to each other at the cox1, cytb and nad1 loci; however, the cytb gene sequence was not described previously. This is the first report of G7 genotype in humans in China. Three new cytb gene sequences from G1 and G7 genotypes might reflect endemic genetic characterizations. Pigs might be the main intermediate hosts of G7 genotype in our investigated area by homology analysis. The results will aid in making more effective control strategies for the prevention of transmission of E. granulosus s.l.  相似文献   

16.
Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well‐supported clusters. Intraspecific Kimura 2‐parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra‐ and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species.  相似文献   

17.
18.
A complete set of pika taxa, belonging to the subgenus Ochotona, was studied using craniometric and multilocus genetic analyses. We examined 1,007 skulls, covering the entire distribution range of the subgenus, as well as the mitochondrial COI gene and three nuclear introns in 31 specimens, representing nearly all taxa in question. An additional set of 167 COI gene sequences and 357 cytb gene sequences was analysed to enlarge the geographical extent of genetic data and to compare the results with previous publications. We found that the subgenus consists of eight species. One of them, Ochotona morosa, is elevated to the full species rank for the first time. The name of this species is given preliminarily and should be studied additionally. Several cases of interspecies hybridisation were found, which indicates that mitochondrial DNA cannot be used for species identification in this subgenus. Taxon Ochotona qionglaiensis, which was recently described as a separate species, represents a relic mitochondrial lineage of Ochotona thibetana. Another recently described species, Ochotona yarlungensis, is a Nubra pika with its native mitochondrial DNA, firstly found for this species. Intraspecies variation was analysed for several species for the first time. Thus, new subspecies (Ochotona thibetana fengii ssp. n.) was found within O. thibetana.  相似文献   

19.
20.
Enrichment of barcode databases with mitochondrial cytochrome c oxidase subunit I (COI) barcode sequences in different animal taxa has become important for identification of animal source in food samples to prevent commercial fraud. In this study, COI barcode sequence in seventy one river buffalo samples were determined, analyzed and deposited in Genbank barcode database and barcode of life database (BOLD) to contribute for construction of public reference library for COI barcode sequence in river buffalo. Moreover COI barcode sequence was used to identify the closely related buffalo groups: river buffalo, swamp buffalo, lowland anoa and African buffalo. Results indicated the success of the COI barcode in the identification of each of the tested groups. Whereas a suggested sequence of other mitochondrial segment representing two successive transfer RNA (tRNA) genes; tRNA-Threonine (MT-TT) and tRNA-Proline (MT-TP) was failed to be used as a barcode marker for differentiation between the tested buffalo groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号