首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of opiate peptides on basal and potassium-stimulated endogenous dopamine (DA) release from striatal slices was studied in vitro. Dual stimulation of the striatal slices gave a reproducible increase in DA release that was calcium dependent. Addition of the delta-opiate receptor agonists Met5-enkephalin, [D-Ala2,D-Leu5]enkephalin (DADLE), and [D-Ser2]Leu-enkephalin-Thr (DSLET), increased the basal DA release without affecting potassium-stimulated release in a dose-dependent manner. The effect of DADLE was antagonized by the addition of naloxone. In contrast, the mu-opioid receptor agonist [D-Ala2,N-MePhe4,Gly-ol5]enkephalin (DAGO) and the epsilon-opioid agonist beta-endorphin inhibited the stimulated DA release without changing the basal release. The inhibitory effect of DAGO on potassium-stimulated release was antagonized by naloxone. The addition of ethanol (75 mM) to the incubation media produced a delayed increase of both the basal and stimulated DA release. There was no change in stimulated DA release when the change in basal release was subtracted, suggesting that ethanol produced a dose-dependent, selective increase in basal DA release. Naloxone and the selective delta-opiate antagonist ICI 174864 inhibited the ethanol-induced increase in basal DA release. Naloxone and ICI 174864 added alone did not alter either basal or stimulated DA release. We therefore suggest that the ethanol-induced increase in basal DA release is an indirect effect involving an endogenous delta-opiate agonist.  相似文献   

2.
Domperidone, a dopamine (DA) receptor antagonist with reportedly preferential actions outside of the blood-brain barrier, and haloperidol, a centrally active DA antagonist, were compared with respect to their abilities to increase the activity of dopaminergic neurons in the rat brain. The activity of nigrostriatal, mesolimbic, tuberohypophyseal and tuberoinfundibular dopamine nerves was estimated by measuring the in vivo rate of DA synthesis (dihydroxyphenylalanine accumulation following administration of an inhibitor of aromatic L-amino acid decarboxylase) in the striatum, olfactory tubercle, posterior pituitary and median eminence, respectively. In an initial study, the rates of DA synthesis in striatum, olfactory tubercle, and posterior pituitary were determined at 2, 8, and 16 h after subcutaneous administration of 0.25, 2.5, or 25 mg/kg domperidone. At the lowest dose of domperidone, DA synthesis was increased only in the posterior pituitary at 8 and 16 h; at the intermediate dose, DA synthesis increased in the posterior pituitary at 8 and 16 h and in the olfactory tubercle at 8 h. Only at 8 h after the highest dose of domperidone was DA synthesis increased in the striatum. When 2.5 mg/kg of doperidone or haloperidol were administered, DA synthesis in posterior pituitary and median eminence was increased in a similar fashion (in the latter region only at 16 h). In contrast, domperidone promoted only modest and delayed increases in DA synthesis in the olfactory tubercle and had no effect in the striatum. These results indicate that systemically administered domperidone preferentially increases DA synthesis in neurons terminating outside the blood-brain barrier, but after a pronounced delay, high doses of the drug can also activate DA neurons which project to the forebrain.  相似文献   

3.
Rats received 7 daily injections with baclofen (40 mg/kg), GBL (750 mg/kg) or HA-966 (100 mg/kg). Dopamine (DA) was measured in the striatum and olfactory tubercle (OT) of rats, sacrificed 0.5 h or 1 h after the last injection. Marked tolerance and cross-tolerance for the DA-elevating effect of these drugs was seen in the striatum, but not in OT. When on day 7 a unilateral lesion of the nigrostriatal pathway was made, also some tolerance to the DA increase in the striatum on the lesioned side was seen in HA-966-pretreated rats, but it was small compared to the tolerance after an additional drug administration in non-lesioned animals. A low dose of apomorphine (0.25 mg/kg, i.p.) had no effect on DA, dihydroxyphenylacetic acid DOPAC) or homovanillic acid (HVA) levels in the lesioned striata, whether the rats had been pretreated for 6 days with HA-966 or not. However, this dose of apomorphine had a significantly more lowering effect on striatal DOPAC and HVA levels on the unlesioned side of HA-966 pretreated rats. The results show that tolerance develops to the increase of DA synthesis, which is possibly receptor-mediated. This tolerance develops more readily in the striatum than in the olfactory tubercle.  相似文献   

4.
5.
We have previously described a daily rhythm in thyrotropin releasing hormone (TRH) and TRH mRNA in the rat hypothalamus. To determine whether TRH release fluctuates in a diurnal manner, we have measured basal and potassium stimulated release from hypothalamic slices, and compared it to release from olfactory bulb slices, during the diurnal cycle. Basal TRH release was higher at 7:00 h than at any other time (1:00, 13:00 or 19:00 h) in either hypothalamus or olfactory bulb. The ratio of stimulated over basal release was higher in the hypothalamus at 19:00 h, when TRH content was highest. Potassium stimulated TRH release from olfactory bulb was not different from basal release at any time. TRH release fluctuations were not due to a rhythm of extracellular inactivation: the activity of pyroglutamyl aminopeptidase II, an ectoenzyme responsible for TRH inactivation, was constant throughout the cycle. Our data demonstrate that diurnal variations of TRH release occur in vitro and that the enhanced responsiveness to potassium stimulation in hypothalamus is correlated with increased levels of peptide.  相似文献   

6.
It was recently shown in the olfactory bulb (OB) that the response to olfactory stimulation might be related to local reinforcement mechanisms involved in discrimination of different odors. Therefore, it seemed interesting to study the effects of several drugs of abuse on the release of dopamine (DA) in the OB. Nicotine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), and cocaine at 37 degrees C increased the release of [3H] DA from olfactory bulb slice preparations of the rats. While nicotine, amphetamine, and MDMA directly evoked DA release, cocaine, by inhibiting the reuptake processes, enhanced the electrical stimulation-evoked release. At low temperature (17 degrees C), a condition in which the transmitter uptake carriers of the plasma membrane in both the normal and reverse mode of operation are inhibited, the nicotine-evoked [3H] DA release was potentiated, whereas those evoked by amphetamine and MDMA were inhibited. At low temperature the field stimulation-evoked [3H] DA release was potentiated, but under this condition cocaine failed to increase the release. Our results show that low temperature (a) increases the concentration of extracellular DA released by Ca(2+)-dependent vesicular exocytosis elicited by nicotine, (b) inhibits the extracellular Ca(2+)-independent amphetamine- and MDMA-induced release of DA that occurs by the reverse operation of membrane carriers transporting DA from the cytoplasm of presynaptic terminals to the extraneuronal space, and (c) does not alter the inhibitory effect of cocaine on DA uptake that increases the concentration of extracellular DA released by field stimulation. The findings that the drugs of abuse tested all enhanced the release of DA in the olfactory bulb suggest that local reinforcing mechanisms may also exist in this brain area. In addition, we also show that lowering the temperature in in vitro experiments is an easy and straightforward method for separating vesicular and cytoplasmic release of transmitters, and is suitable for studying the mechanism of catecholamine release evoked by drugs of abuse. This technique may be applicable in other neurochemical studies that need inhibition of the uptake carriers without the blockade of the ligand-gated ion channels caused by reuptake inhibitor drugs.  相似文献   

7.
Amphetamine (AMPH) is thought to disrupt normal patterns of action potential-dependent dopaminergic signaling by depleting dopamine (DA) vesicular stores and promoting non-exocytotic DA efflux. Voltammetry in brain slices concurrently demonstrates these key drug effects, along with competitive inhibition of neuronal DA uptake. Here, we perform comparable kinetic and voltammetric analyses in vivo to determine whether AMPH acts qualitatively and quantitatively similar in the intact brain. Fast-scan cyclic voltammetry measured extracellular DA in dorsal and ventral striata of urethane-anesthetized rats. Electrically evoked recordings were analyzed to determine K(m) and V(max) for DA uptake and vesicular DA release, while background voltammetric current indexed basal DA concentration. AMPH (0.5, 3, and 10 mg/kg i.p.) robustly increased evoked DA responses in both striatal subregions. The predominant contributor to these elevated levels was competitive uptake inhibition, as exocytotic release was unchanged in the ventral striatum and only modestly decreased in the dorsal striatum. Increases in basal DA levels were not detected. These results are consistent with AMPH augmenting action potential-dependent dopaminergic signaling in vivo across a wide, behaviorally relevant dose range. Future work should be directed at possible causes for the distinct in vitro and in vivo pharmacology of AMPH.  相似文献   

8.
The invivo of four psychomotor stimulants (d-amphetamine, β-phenylethylamine, cocaine and methylphenidate) were determined on: 1) the rate of dopamine (DA) synthesis, as measured by the accumulation of dihydroxyphenylalanine (DOPA) after aromatic L-amino acid decarboxylase inhibition, in the striatum (terminals of nigrostriatal neurons) and in the nucleus accumbens and olfactory tubercle (terminals of mesolimbic neurons) and 2) the efflux of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) into cerebroventricular perfusates of conscious, freely-moving rats. d-Amphetamine and β-phenylethylamine produced biphasic responses with lower doses of each drug increasing both the efflux of DOPAC and the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect or actually decreased the efflux of DOPAC and also decreased the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect only decreased the efflux of DOPAC and the rate of DA synthesis in the striatum. The effects of the drugs on the rate of DA synthesis in the nucleus accumbens and olfactory tubercle were similar to, but less pronounced than those seen in the striatum. These results are consistent with the following suggestions: 1) low doses of d-amphetamine and β-phenylethylamine facilitate the neuronal release of DA while higher doses of both drugs facilitate release and inhibit neuronal reuptake of the amine, and 2) cocaine and methylphenidate preferentially block the neuronal reuptake of DA.  相似文献   

9.
Freely moving rats were injected intraventricularly with 200 micrograms of 6-hydroxydopamine (6-OHDA) and examined for transport of this substance to the striatum, degradation of dopamine (DA) neurons, and functional recovery through microcomputer-controlled in vivo voltammetry. Approximately 6 min after the injection, 6-OHDA began to appear in the extracellular fluid of the contralateral striatum. It increased linearly and began to decrease exponentially with the termination of the injection. Two hours after the injection with 6-OHDA, a peak began to appear at the same potential as the peak of DA in the differential pulse voltammogram. It persisted for approximately 3 days. When the rats were injected intraperitoneally with L-3,4-dihydroxyphenylalanine (L-Dopa), the conversion of L-Dopa to DA was not found 1 week after the 6-OHDA injection, but was clearly recognized 5 months after the injection. When the rats were examined for behavioral changes arising from the L-Dopa injection, they were found to be clearly less hyperactive 5 months after the 6-OHDA injection than 1 week after.  相似文献   

10.
Cocaine inhibits tritium-labeled dopamine ([3H]DA) uptake in rat (IC50 approximately 400 nM) and sheep (IC50 approximately 1 microM) striatum. GBR 12909, a selective DA uptake inhibitor, potently inhibits [3H]DA uptake in rat (IC50 less than 10 nM), but is less effective (only 60% of the uptake is inhibited at a concentration of 10 microM) and less potent (IC50 approximately 300 nM) in sheep. [3H]DA release from slices of rat or sheep striatum is stimulated by potassium (15-50 mM). In the presence of nomifensine (10 microM), cocaine (10 microM) had no effect on potassium-stimulated [3H]DA release in either species. [3H]DA release is increased by N-methyl-D-aspartate (NMDA) (10-1000 microM) in rat striatum but NMDA did not stimulate [3H]DA release in sheep striatum. These findings suggest that NMDA receptors either are absent from or do not regulate release of preloaded [3H]DA in sheep striatum.  相似文献   

11.
G M Tyce  D K Rorie 《Life sciences》1985,37(25):2439-2448
Conjugation (presumably with sulfate) is a demonstrable metabolic pathway for 3, 4-dihydroxyphenylethylamine (dopamine, DA) in brain. Studies were done to determine whether conjugation becomes of increased significance in the presence of precursors of DA. The effects of 3, 4-dihydroxyphenylalanine (L-DOPA) and L-tyrosine on the efflux of free and conjugated DA, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid from slices from striatum in rats were studied under quiescent conditions and during release evoked by 40 mM K+ or by 5 X 10(-5) M phenylethylamine (PEA). Conjugated DA was present in the basal efflux from striatal slices and the amounts present were increased during evoked release. More conjugated DA was present in superfusate during K+-evoked release than during PEA-evoked release. L-Tyrosine (5 X 10(-4) M or 5 X 10(-5) M) had little effect on the efflux of conjugated DA, but decreased the amounts of free DA released by PEA, and attenuated the increase in DOPAC that occurred during K+-evoked release of transmitter. L-DOPA (5 X 10(-5) M) increased the formation of conjugated DA, but to a lesser extent than that of free DA or of DOPAC. Thus even after the addition of precursors, conjugation remains a minor metabolic pathway for DA relative to O-methylation or oxidative deamination. The data also suggest that conjugation of DA occurs chiefly outside of the dopaminergic neurons in striatum.  相似文献   

12.
Abstract: Several amphetamine analogues are reported to increase striatal glutamate efflux in vivo, whereas other data indicate that glutamate is capable of stimulating the efflux of dopamine (DA) in the striatum via a glutamate receptor-dependent mechanism. Based on these findings, it has been proposed that the ability of glutamate receptor-blocking drugs to antagonize the effects of amphetamine may be explained by their capacity to inhibit DA release induced by glutamate. To examine this possibility further, we investigated in vivo the ability of glutamate antagonists to inhibit DA release induced by either methamphetamine (METH) or 3,4-methylenedioxymethamphetamine (MDMA). Both METH and MDMA increased DA efflux in the rat striatum and, in animals killed 1 week later, induced persistent depletions of DA and serotonin in tissue. Pretreatment with MK-801 or CGS 19755 blocked the neurotoxic effects of METH and MDMA but, did not significantly alter striatal DA efflux induced by either stimulant. Infusion of 6-cyano-7-nitroquinoxaline-2,3-dione into the striatum likewise did not alter METH-induced DA overflow, and none of the glutamatergic antagonists affected the basal release of DA when given alone. The findings suggest that the neuroprotective effects of NMDA antagonists do not involve an inhibition of DA release, nor do the data support the proposal that glutamate tonically stimulates striatal DA efflux in vivo. Whether phasic increases in glutamate content might stimulate DA release, however, remains to be determined.  相似文献   

13.
1.--The administration of SAH to rats, at physiologically active dose on the sleep, does not change the urinary level of MD and NM. On the other hand, the excretion of DA and NA decreases. 2.--In the brain, SAH does not modify neither the concentration of NA and NM in hypothalamus and thalamus, nor the concentration of DA and MD in corpus striatum. 3.--After intracisternally injection of [14C]DA or [3H]NA, SAH increases the level of [14C]MD and [3H]NM. 4.--Contrary to the studies in vitro, where SAH is an inhibitor of COMT, on the rat it does not seem prevent the methylation of DA and NA.  相似文献   

14.
Systemic administration of ritanserin elicited rapid changes in dopamine (DA) and serotonin (5-HT) levels in both dialysate and neuronal tissue extracts. These effects occurred in both a site-selective and a dose-related manner. Increases in extracellular levels of DA and 5-HT in the nucleus accumbens were maximal at 120-140 min after treatment. A dose of 0.63 mg/kg of ritanserin elicited larger and more prolonged increases in extracellular DA and 5-HT levels than did the 0.3 mg/kg dose. By contrast, 0.63 mg/kg of ritanserin elicited no changes in either DA or 5-HT levels with dialysate collected from the striatum. Ritanserin also induced dose-related decreases in tissue levels of DA and 5-HT from the nucleus accumbens. The site specificity of action was again noted in that there were no dose-dependent decreases in tissue levels of DA or 5-HT measured from the striatum. Ritanserin exerted little effect on metabolite levels from either dialysate or tissue extracts. Taken together, these findings show that selective 5-HT2 receptor antagonism modulates DA and 5-HT neurotransmission in a specific manner. These actions appear to involve increased release of DA and 5-HT rather than significant changes in metabolism. These findings add further weight to the importance of 5-HT2 receptor interactions as an important component of antipsychotic activity.  相似文献   

15.
S R Philips 《Life sciences》1986,39(25):2395-2400
The release of endogenous dopamine (DA) has been measured in the rat striatum following the intracardial administration of various doses of beta-phenylethylamine (PEA) or alpha,alpha-dideutero-beta-phenylethylamine (deuterated PEA). The release was significantly increased for a period of approximately 15 minutes by a dose of 25 mg/kg PEA. Both the dose required to stimulate DA release and the duration of the effect were in good agreement with previously reported behavioral and locomotor effects of administered PEA. When the animals were given 25 mg/kg of deuterated PEA, the increase in DA release was both longer lasting and significantly greater in magnitude than that observed in response to the non-deuterated amine. The results of these experiments provide direct evidence that DA release is stimulated by amounts of PEA known to cause behavioral effects and locomotor activity in rats, and suggest that these effects are likely to be mediated, at least in part, by DA.  相似文献   

16.
The effects of a number of biochemical and pharmacological manipulations on amphetamine (AMPH)-induced alterations in dopamine (DA) release and metabolism were examined in the rat striatum using the in vivo brain microdialysis method. Basal striatal dialysate concentrations were: DA, 7 nM; dihydroxyphenylacetic acid (DOPAC), 850 nM; homovanillic acid (HVA), 500 nM; 5-hydroxyindoleacetic acid (5-HIAA), 300 nM; and 3-methoxytyramine (3-MT), 3 nM. Intraperitoneal injection of AMPH (4 mg/kg) induced a substantial increase in DA efflux, which attained its maximum response 20-40 min after drug injection. On the other hand, DOPAC and HVA efflux declined following AMPH. The DA response, but not those of DOPAC and HVA, was dose dependent within the range of AMPH tested (2-16 mg/kg). High doses of AMPH (greater than 8 mg/kg) also decreased 5-HIAA and increased 3-MT efflux. Depletion of vesicular stores of DA using reserpine did not affect significantly AMPH-induced dopamine efflux. In contrast, prior inhibition of catecholamine synthesis, using alpha-methyl-p-tyrosine, proved to be an effective inhibitor of AMPH-evoked DA release (less than 35% of control). Moreover, the DA releasing action of AMPH was facilitated in pargyline-pretreated animals (220% of control). These data suggest that AMPH releases preferentially a newly synthesised pool of DA. Nomifensine, a DA uptake inhibitor, was an effective inhibitor of AMPH-induced DA efflux (18% of control). On the other hand, this action of AMPH was facilitated by veratrine and ouabain (200-210% of control). These results suggest that the membrane DA carrier may be involved in the actions of AMPH on DA efflux.  相似文献   

17.
The effects of 20-min transient, global, forebrain ischaemia and cardiac arrest on extracellular concentrations of dopamine (DA), serotonin (5-HT), and their respective metabolites, homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), were measured in vivo by dialysis of rat striatum and hippocampus. During the ischaemic period, striatal DA content increased (250-fold basal concentrations) with parallel but much less marked increases of both striatal and hippocampal 5-HT content (eight- to 10-fold). Baseline values were restored during reperfusion. Subsequent increases of DA and 5-HT levels on cardiac arrest were comparable after both sham operation and ischaemia. Significant decreases of HVA and 5-HIAA levels were observed following ischaemia or cardiac arrest. The differential effects of ischaemia on DA and 5-HT suggest selective alterations in disposition or metabolism of the two transmitters and that dopaminergic neurones may be more vulnerable to ischaemic insults.  相似文献   

18.
Abstract: The concentration-related effects of ethanol on extracellular dopamine (DA) in rat striatum were studied by direct perfusion through microdialysis probes in freely moving rats. Two sets of three ethanol concentrations were separately tested using a Latin square experimental design. Potassium stimulation with high potassium (50 m M ) in artificial CSF (ACSF) preceding ethanol treatment confirmed the neuronal function of dopaminergic cells by increasing DA concentrations to 200–1,500% of basal levels. The perfusion with calcium-free ACSF applied at the end of each experiment confirmed the calcium dependency of the basal levels of extracellular DA by decreasing basal DA levels by 70%. The striatal volume measurement to examine the possible brain damage by direct ethanol perfusion suggested that ethanol did not increase the damage caused by the probe implantation at any ethanol concentration tested in this study. The 30-min direct perfusion of 510 and 860 m M ethanol resulted in a significant concentration-related stimulatory effect on the extracellular DA concentration in rat striatum (510 m M , 29% increase, p < 0.05; 860 m M , 66% increase, p < 0.05). However, there was no significant effect of ethanol at low concentrations, ≤170 m M . Considering the effective ethanol concentration in tissue areas in which DA is sampled, the data suggest that concentrations of ethanol associated with moderate intoxication do not directly affect the extracellular concentration of DA in the striatum. Therefore, the systemic effects of ethanol on striatal DA found in previous studies may be caused by the interaction with sites other than the striatum.  相似文献   

19.
Traumatic brain injury features deficits are often ameliorated by dopamine (DA) agonists. We have previously shown deficits in striatal DA neurotransmission using fast scan cyclic voltammetry after controlled cortical impact (CCI) injury that are reversed after daily treatment with the DA uptake inhibitor methylphenidate (MPH). The goal of this study was to determine how a single dose of MPH (5 mg/kg) induces changes in basal DA and metabolite levels and with electrically evoked overflow (EO) DA in the striatum of CCI rats. MPH-induced changes in EO DA after a 2-week daily pre-treatment regime with MPH was also assessed. There were no baseline differences in basal DA or metabolite levels. MPH injection significantly increased basal [DA] output in dialysates for control but not injured rats. Also, MPH injection increased striatal peak EO [DA] to a lesser degree in CCI (176% of baseline) versus control rats (233% of baseline). However, daily pre-treatment with MPH resulted in CCI rats having a comparable increase in EO [DA] after MPH injection when compared with controls. The findings further support the concept that daily MPH therapy restores striatal DA neurotransmission after CCI.  相似文献   

20.
Effect of spontaneous ingestion of ethanol on brain dopamine metabolism   总被引:3,自引:0,他引:3  
The effect of ethanol, either administered by gavage or voluntarily ingested, on brain dopamine (DA) metabolism was studied in alcohol-preferring and alcohol non-preferring rats. In alcohol non-preferring rats ethanol administration (2 g/kg) increased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and reduced DA levels in the caudate nucleus and olfactory tubercle but was ineffective in the medial prefrontal cortex. In alcohol-preferring rats ethanol effect was greater than in non-preferring animals and ethanol influenced DA metabolism also in the medial prefrontal cortex. The effect of voluntary ethanol ingestion was studied in alcohol-preferring rats trained to consume their daily fluid intake within 2 hrs. Voluntary ingestion of ethanol (3.1 +/- 0.7 g/kg in 1 hr) increased DA metabolites and reduced DA levels in the caudate nucleus, olfactory tubercle and medial prefrontal cortex. The results suggest that voluntary ethanol ingestion increases the release of DA from nigro-striatal and meso-limbic DA neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号