首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of urea, cations (K+, NH4, Na+, Cs+, Li+), and trimethylamines on the maximal activities and kinetic properties of pyruvate kinase (PK) and phosphofructokinase (PFK) from skeletal muscle, were analyzed in two anuran amphibians, an estivating species, the spadefoot toadScaphiopus couchii, and a semi-aquatic species, the leopard frogRana pipiens. Urea, which accumulates naturally to levels of 200–300 mM during estivation in toads, had only minor effects on the Vmax, kinetic constants and pH curves of PK from either species and no effects on PFK Vmax or kinetic constants. Trimethylamine oxide neither affected enzyme activity directly or changed enzyme response to urea. By contrast, high KCl (200 mM) lowered the Vmax of toad PFK and of PK from both species and altered the Km values for both substrates of frog PFK. Other cations were even more inhibitory; for example, the Vmax of PK from either species was reduced by more than 80% by the addition of 200 mM NH4Cl, NaCl, CsCi, or LiCl. High KCl also significantly changed the Km values for substrates of toad lactate dehydrogenase and strongly reduced the Vmax of glutamate dehydrogenase and NAD-dependent isocitrate dehydrogenase in both species whereas 300 mM urea had relatively little effect on these enzymes. The perturbing effect of urea on enzymes and the counteracting effect of trimethylamines that has been reported for elasmobranch fishes (that maintain high concentrations of both solutes naturally) does not appear to apply to amphibian enzymes. Rather, we found that urea is largely a non-perturbing solute for anuran enzymes (I50 values were>1 M for both PK and PFK in both species) and we propose that its accumulation in high concentrations during estivation helps to minimize the increase in cellular ionic strength that would otherwise occur during desiccation and to alleviate the accompanying negative effects of high salt on individual enzyme activities and overall metabolic regulation.Abbreviations PFK 6-phosphofructo-1-kinase - PK pyruvate kinase  相似文献   

2.
Hepatic DNA, RNA, protein and p-nitroanisole O-demethylase, aniline hydroxylase, nonspecific carboxylesterase, bromosulphophthalein-glutathione (BSP-GSH) conjugating enzyme and p-nitrophenol UDPglucuronyl transferase activities were measured in young Wistar male rats which had received intraperitoneal injections (50 mg/kg) of biphenyl and Aroclors 1016, 1221, 1232, 1242, 1248, 1254 and 1260, dissolved in peanut oil, for 3 consecutive days and assayed 96 h after the last injection. Biphenyl and all the Aroclors caused the same degree of enhancement of BSP-GSH conjugating enzyme. Decreased DNA content, increased RNA and protein content and the other enzymatic activities were related to the percent weight of chlorine and the chlorobiphenyl composition of the Aroclors. More marked effects were observed with the highly chlorinated Aroclor 1248, 1254, and 1260 mixtures which contained predominantly tetra-, penta-, hexa-, and higher-chlorinated biphenyls.  相似文献   

3.
Inspiring a hyperoxic (H) gas permits subjects to exercise at higher power outputs while training, but there is controversy as to whether this improves skeletal muscle oxidative capacity, maximal O(2) consumption (Vo(2 max)), and endurance performance to a greater extent than training in normoxia (N). To determine whether the higher power output during H training leads to a greater increase in these parameters, nine recreationally active subjects were randomly assigned in a single-blind fashion to train in H (60% O(2)) or N for 6 wk (3 sessions/wk of 10 x 4 min at 90% Vo(2 max)). Training heart rate (HR) was maintained during the study by increasing power output. After at least 6 wk of detraining, a second 6-wk training protocol was completed with the other breathing condition. Vo(2 max) and cycle time to exhaustion at 90% of pretraining Vo(2 max) were tested in room air pre- and posttraining. Muscle biopsies were sampled pre- and posttraining for citrate synthase (CS), beta-hydroxyacyl-coenzyme A dehydrogenase (beta-HAD), and mitochondrial aspartate aminotransferase (m-AsAT) activity measurements. Training power outputs were 8% higher (17 W) in H vs. N. However, both conditions produced similar improvements in Vo(2 max) (11-12%); time to exhaustion (approximately 100%); and CS (H, 30%; N, 32%), beta-HAD (H, 23%; N, 21%), and m-AsAT (H, 21%; N, 26%) activities. We conclude that the additional training stimulus provided by training in H was not sufficient to produce greater increases in the aerobic capacity of skeletal muscle and whole body Vo(2 max) and exercise performance compared with training in N.  相似文献   

4.
1. The activities of enzymes involved in fatty acid synthesis in the human liver (sample taken during abdominal surgery) and in the livers of some animals were studied. 2. Fatty acid synthase, ATP-citrate lyase and malic enzyme activities were found to be from 4 to 70-fold lower in human liver than in rat or bird livers. 3. The activities of hexose monophosphate shunt dehydrogenases in human liver were from half to almost equal to the corresponding activities in birds, but much lower than in rat liver. 4. The activities of all enzymes listed above in human and beef liver were very similar (except fatty acid synthase which was undetectable in the beef liver). 5. Very high activity of NADP-linked isocitrate dehydrogenase was found in livers of all species tested. 6. These results are discussed in relation to the role of the human liver in lipogenesis. 7. The activities of the enzymes generating NADPH in human liver taken during abdominal surgery were similar to the activities observed in the tissue obtained post mortem. 8. This suggested that post mortem tissue may be used as a reliable human material for some enzyme assays. 9. Thus we also examined the activity of malic enzyme in post mortem human kidney cortex, heart, skeletal muscle and brain. 10. Relatively high activity of NADP-linked malic enzyme has been observed in human brain.  相似文献   

5.
The purpose of the study was to estimate the genetic effect for skeletal muscle characteristics using pairs of nontwin brothers (n = 32), dizygotic (DZ) twins (n = 26), and monozygotic (MZ) twins (n = 35). They were submitted to a needle biopsy of the vastus lateralis for the determination of fiber type distribution (I, IIa, IIb) and the following enzymes were assayed for maximal activity: creatine kinase, hexokinase, phosphofructokinase (PFK), lactate dehydrogenase, malate dehydrogenase, 3-hydroxyacyl CoA dehydrogenase, and oxoglutarate dehydrogenase (OGDH). For the percentage of type I fibers, intraclass correlations were 0.33 (p less than 0.05), 0.52 (p less than 0.01), and 0.55 (p less than 0.01) in brothers and DZ and MZ twins, respectively. MZ twins exhibited significant within-pair resemblance for all enzyme activities (0.30 less than or equal to r less than or equal to 0.68). In spite of these correlations, genetic analyses performed with the twin data alone indicated that there was no significant genetic effect for muscle fiber type I, IIa, and IIb distribution and fiber areas. Although there were significant correlations in MZ twins for all muscle enzyme activities, the often nonsignificant intraclass coefficients found in brothers and DZ twins suggest that variations in enzyme activities are highly related to common environmental conditions and nongenetic factors. However, genetic factors appear to be involved in the variation of regulatory enzymes of the glycolytic (PFK) and citric acid cycle (OGDH) pathways and in the variation of the oxidative to glycolytic activity ratio (PFK/OGDH ratio). Data show that these genetic effects reach only about 25-50% of the total phenotypic variation when data are adjusted for age and sex differences.  相似文献   

6.
Too intensive training may lead to overreaching or overtraining. To study whether quantitative needle electromyography (QEMG) is more sensitive to detect training (mal)adaptation than muscle enzyme activities, 12 standardbred geldings trained for 32 wk in age-, breed-, and sex-matched fixed pairs. After a habituation and normal training (NT) phase (phases 1 and 2, 4 and 18 wk, respectively), with increasing intensity and duration and frequency of training sessions, an intensified training (IT) group (phase 3, 6 wk) and a control group (which continued training as in the last week of phase 2) were formed. Thereafter, all horses entered a reduced training phase (phase 4, 4 wk). One hour before a standardized exercise test (SET; treadmill), QEMG analysis and biochemical enzyme activity were performed in muscle or in biopsies from vastus lateralis and pectoralis descendens muscle in order to identify causes of changes in exercise performance and eventual (mal)adaptation in skeletal muscle. NT resulted in a significant adaptation of QEMG parameters, whereas in muscle biopsies hexokinase activity was significantly decreased. Compared with NT controls, IT induced a stronger adaptation (e.g., higher amplitude, shorter duration, and fewer turns) in QEMG variables resembling potentially synchronization of individual motor unit fiber action potentials. Despite a 19% decrease in performance of the SET after IT, enzyme activities of 3-hydroxyacyl dehydrogenase and citrate synthase displayed similar increases in control and IT animals. We conclude that 1) QEMG analysis is a more sensitive tool to monitor training adaptation than muscle enzyme activities but does not discriminate between overreaching and normal training adaptations at this training level and 2) the decreased performance as noted in this study after IT originates most likely from a central (brain) rather than peripheral level.  相似文献   

7.
The effect of orally administered fixed dose cyclosporin-A (CsA) on rat liver monooxygenase activities was studied. Group I was treated for 3, group II for 7 and group III for 17 consecutive days. A time dependence in the degree of inhibition and number of microsomal enzyme activities inhibited was observed.  相似文献   

8.
The activity of hepatic protein N-glycosylation was compared in rats of different ages by incubating UDP-[14C]glucose with liver microsomes. Dolichyl-phosphate [14C]glucose, [14C]glucosyl-oligosaccharide-lipid and [14C]glycoproteins formed were increased after birth to maximal levels at 2 weeks; thereafter dolichylphosphate [14C]glucose remained constant, while [14C]glucosyl-oligosaccharide-lipid and [14C]glycoproteins were decreased to constant levels at 4 weeks. The postnatal change in the formation of [14C]glycoproteins was similar to the change in the hexosamine content of N-glycans in liver microsomes and plasma, suggesting that the N-glycosylation of proteins in rat liver increases after birth to a maximum at 2 weeks, and thereafter decreases to a constant level at 4 weeks. The possibility of a regulatory role for dolichyl phosphate in glycoprotein synthesis in rat liver during postnatal development was eliminated by demonstrating the inefficiency of exogenous dolichyl phosphate on the postnatal changes in [14C]glycoprotein formation. The transfer of [14C]glucose from UDP-[14C]glucose to denatured alpha-lactalbumin in liver microsomes increased to a maximum at 2 weeks and then decreased to a constant level, as with transfer to endogenous proteins (i.e. the formation of [14C]glycoproteins). On the other hand, the transfer of oligosaccharide from exogenous [14C]glucosyl-oligosaccharide-lipid to denatured alpha-lactalbumin reached a maximum at 2 weeks and then remained constant. These results strongly suggest that oligosaccharide-lipid available for N-glycosylation is limiting in rat liver after 2 weeks post partum. The activities of dolichyl-phosphate glucose, dolichyl-phosphate mannose and dolichyl-pyrophosphate N-acetylglucosamine synthases increased until 2 weeks post partum. Thereafter, the activity of dolichyl-pyrophosphate N-acetylglucosamine synthase decreased to a constant level at 4 weeks, while the activities of dolichyl-phosphate glucose and dolichyl-phosphate mannose synthases remained constant. These results suggest that N-glycosylation of proteins in rat liver increases until 2 weeks post partum, and that this depends on the activities of dolichol-pathway enzymes as a whole rather than on the activity of specific enzymes. N-Glycosylation then decreases to a constant level at 4 weeks due to decreases in the activities of enzymes responsible for oligosaccharide assembly on lipids, including dolichyl-pyrophosphate N-acetylglucosamine synthase.  相似文献   

9.
Common terns (Sterna hirundo), sooty terns (S. fuscata) and brown noddies (Anous stolidus) are phylogenetically related seabirds that differ in field activity levels and daily energy expenditure. To test whether muscle metabolic capacities co-evolve with activity levels and energy expenditure, we collected pectoral muscle biopsies from members of each species, and measured the activities of key enzymes in oxidative metabolism (citrate synthase, CS), anaerobic metabolism (lactate dehydrogenase, LDH), glycolysis (pyruvate kinase, PK), fatty acid oxidation (3-hydroxyacyl CoA dehydrogenase) and phosphocreatine hydrolysis (creatine phosphokinase, CPK). We hypothesized that temperate-breeding common terns would have higher enzyme activities than the two tropical species (sooty terns and brown noddies); consistent with the higher activity level of common terns. There were no differences in enzyme activities among adults of the three species. Common tern chicks within 2-3 days of flight had two-fold higher pyruvate kinase activity than adults, suggesting an increased glycolytic capacity in the chicks. Given the lack of difference among species at the enzymatic level, our results support the notion that behavior and whole organism performance can evolve considerably before there are detectable changes in underlying lower-level physiological/biochemical traits.  相似文献   

10.
Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.  相似文献   

11.
Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity.  相似文献   

12.
The steady state kinetics and effects of salts on chicken breast phosphoglycerate mutase have been examined. The enzyme can catalyze three phosphoryl transfer reactions: mutase, bisphosphoglycerate phosphatase, and bisphosphoglycerate synthase. The mutase rate was measured in the favorable direction (Keq = glycerate-3-P/glycerate-2-P approximately equal to 12) using [2T]glycerate-2-P as substrate. The bisphosphoglycerate phosphatase activity was studied in the presence of the activator, glycolate-2-P. The latter is an analog of the glycerate-P's and appears to act as an abortive mutase substrate. The kinetic pattern obtained with both activities is that of a ping-pong mechanism with inhibition by the second substrate occurring at a lower concentration than the Km value for that substrate. The kinetic parameters for the mutase determined in 50 mM N-[tris(hydroxymethyl)methyl-2-amino]ethanesulfonate (TES)/sodium buffer containing 0.1 M KCl, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.069 micron; Km glycerate-2-P, 14 micron; Km glycerate-3-P approximately 200 micron; Ki glycerate-2-P, 4 micron. The kinetic parameters for the phosphatase reaction in 50 mM triethanolamine/Cl- buffer, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.065 micron:Km glycolate-2P, 479 micron; Ki glycolate-2-P, 135 micron. The enzyme is sensitive to changes in the ionic environment. Increasing salt concentrations activate the phosphatase in the presence of glycolate-2-P by decreasing the apparent Km of glycerate-2,3-P2. The effects are due to the anionic component and Cl- greater than acetate greater than TES. The same salts are competitive inhibitors with respect to glycolate-2-P. With high levels of KCl that produce a 30-fold decrease in the apparent maximal velocity due to competition with glycolate-2-P, the Km of glycerate-2,3-P2 remains low. These observations lead us to postulate that each monophosphoglycerate substrate has a separate site on the enzyme and that glycerate-2,3-P2 can bind to either site. The binding of anions to one site of the nonphosphorylated enzyme allows an increase in the on and off rates of glycerate-2,3-P2 at the alternate site. Salts inhibit the mutase reaction. The Km of glycerate-2,3-P2 is increased as is that of glycerate-2-P. The effect on the Km of glycerate-2,3-P2 is attributed to an increase in the off rate/on rate ratio for glycerate-2,3-P2. The bisphosphoglycerate synthase reaction is shown to require added glycerate-3-P. The equilibrium between enzyme and glycerate-1,3-P2 is favorable (Kdiss less than or equal 7 X 10(-8) M) and suggests that in the absence of a separate synthase this reaction may have functional significance.  相似文献   

13.
Thorburn DR  Chow CW  Kirby DM 《Mitochondrion》2004,4(5-6):363-375
Respiratory Chain (RC) enzyme analysis remains the mainstay for diagnosis of children suspected of having a RC disorder. A previous international workshop suggested a set of criteria for the ideal approach to diagnosis but concluded that probably no single centre fulfilled all these criteria. Major practical issues relate to the range of tissues tested, whether frozen tissue biopsies can be used reliably, assay methods, difficulty in defining realistic reference ranges, and the lack of an external quality assurance scheme. We discuss these issues and describe our experience over the last decade with assaying RC enzymes in over 600 skeletal muscle and 300 liver biopsies from patients, a range of different controls (other known inborn errors, end-stage liver disease, post-mortem samples) and single donated normal muscle and liver samples assayed on more than 100 occasions over 5- to 10-year periods. Our experience is that 'sick' tissues have wider 'normal' ranges than 'healthy' tissues. Caution is therefore needed to ensure that secondary RC defects are not misdiagnosed as primary RC defects. We describe diagnostic criteria that integrate the results of RC enzyme assays with clinical, histological, metabolic and molecular investigations to determine whether the overall diagnostic certainty is possible, probable or definite.  相似文献   

14.
1. Oral administration of ethanol (3 ml) of 95% in 12 ml total volume over a two day period) significantly decrease plasma glucose and insulin levels and the activities of two key gluconeogenic enzymes, pyruvate carboxylase (pyruvate: CO2 ligase (ADP), EC 6.4.1.1) and fructose diphosphatase, (D-Fru-1,6-P2 1-phosphohydrolase, EC 3.1.3.11), and one glycolytic enzyme, fructose-1,6-P2 aldolase (Fru-1,6-P2 D-glyceraldehyde-3-P lyase, EC 4.1.2.13). In each instance, the administration of 2400 mug daily of oral folate in conjuction with the ethanol prevented these alterations in carbohydrate metabolism. 2. Intravenous injection of ethanol produced a rapid decrease (within 10--15 min) in the activities of hepatic phosphofructokinase, (ATP:D-fructose-6-phosphate 6-phosphotransferase, EC 2.7.1.11), pyruvate kinase, (ATP:pyruvate phosphotransferase, EC 2.7.1.40), fructose diphosphatase and fructose-1,6-P2 aldolase. 3. Intravenous ethanol significantly increased hepatic cyclic AMP concentration approximately 60% within 10 min, while oral ethanol did not alter hepatic cyclic AMP concentrations. 4. These data confirm the known antagonism ethanol and folate and suggest that oral folate might offer a protective effect against hypoglycemia in rats receiving ethanol.  相似文献   

15.
The effects of promoter deletions on Drosophila tropomyosin I (TmI) gene expression have been determined by measuring TmI RNA levels in transformed flies. Decreases in RNA levels have been correlated with rescue of flightless and jumpless mutant phenotypes in Ifm(3)3 mutant transformed flies and changes in muscle ultrastructure. The results of this analysis have allowed us to identify a region responsible for 20% of maximal TmI expression, estimate threshold levels of TmI RNA required for indirect flight and jump muscle function, and obtain evidence suggesting that sarcomere length may be an important determinant of flight muscle function.  相似文献   

16.
The amino-acid enzymes (aspartate-, alanine- and tyrosine transaminases, serine dehydratase, glutamate dehydrogenase, glutamine synthetase, adenylate deaminase and arginase) activities in the liver and kidney of developing rats (days 19 and 21 after conception and 1, 5, 10, 20 and 30 after birth) compared with adults were determined in crude homogenates. Most enzymes attained the adult levels early after birth or at weaning, showing a marked trend towards amino-acid nitrogen conservation during late foetal and specially during the neonatal period, increasing their activity during lactation. It is postulated that these changes are closely related to availability of low grade protein in diet as well as to maturation of amino-acid homeostasis maintenance for growth.  相似文献   

17.
Sun L  Luo C  Long J  Wei D  Liu J 《Mitochondrion》2006,6(3):136-142
Acrolein is an air pollutant from cigarette smoking and other pollutions and also a by-product of lipid peroxidation. Studies have demonstrated that acrolein causes cytotoxicity and genotoxicity, including liver damage and death of hepatocytes. However, the toxic effects and the underlying mechanisms of acrolein on mitochondria, especially, on liver mitochondria, have not been well studied. In the present study, we investigated the toxic effects and mechanisms of acrolein on mitochondria isolated from rat liver by examining mitochondrial respiration, dehydrogenases, complex I, II, III, IV and V, permeability transition, and protein oxidation. Acrolein incubation (10-1000 microM, or 0.02-2 micromol/mg protein) with mitochondria caused dose-dependent inhibition of NADH- and succinate-linked mitochondrial respiration chain, change of mitochondrial permeability transition, increase in protein carbonyls, and selective enzyme inhibition of mitochondrial complex I, II, pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, but no effects on mitochondrial complex III, IV, V and malate dehydrogenase. These results suggest that acrolein is a mitochondrial toxin and that mitochondrial dysfunction caused by acrolein may play an important role in acrolein toxicity such as hepatotoxicity and also smoking-related diseases.  相似文献   

18.
19.
An experiment involving 12 primiparous Large White sows was conducted to investigate changes in contractile and metabolic characteristics of skeletal muscle during the first 3 weeks of lactation. The sows lost 19.7 +/- 6.6 kg of body weight. No change in DNA concentration was observed in the longissimus dorsi (LD), a fast-twitch glycolytic muscle, and the trapezius (T), a mainly slow-twitch oxidative muscle during lactation. The percentage of type I fibers increased (P less than 0.05) in LD, but not in T. The muscle fiber cross sectional area (CSA) of IIB fibers, which represents about 78% of the total number of LD fibers, decreased by 18% (P less than 0.01) by lactation; the CSAs of I and IIA fibers were not significantly affected. Marker enzyme activities for oxidative and glycolytic metabolisms decreased in both muscles during lactation. The decrease in oxidative enzyme activities was particularly dramatic in T (P less than 0.001). No significant relationship was observed between sow weight loss and changes in muscle fiber CSA or enzyme activities. The extent to which the results could be related to a negative nutritional balance or to changes in hormonal status is discussed.  相似文献   

20.
To examine the effects of repetitive bouts of heavy exercise on the maximal activities of enzymes representative of the major metabolic pathways and segments, 13 untrained volunteers [peak aerobic power (Vo(2 peak)) = 44.3 +/- 2.3 ml.kg(-1).min(-1)] cycled at approximately 91% Vo(2 peak) for 6 min once per hour for 16 h. Maximal enzyme activities (V(max), mol.kg(-1).protein.h(-1)) were measured in homogenates from tissue extracted from the vastus lateralis before and after exercise at repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). For the mitochondrial enzymes, exercise resulted in reductions (P < 0.05) in cytochrome-c oxidase (COX, 14.6%), near significant reductions in malate dehydrogenase (4.06%; P = 0.06) and succinic dehydrogenase (4.82%; P = 0.09), near significant increases in beta-hydroxyacyl-CoA dehydrogenase (4.94%; P = 0.08), and no change in citrate synthase (CS, 2.88%; P = 0.37). For the cytosolic enzymes, exercise reduced (P < 0.05) V(max) in hexokinase (Hex, 4.4%), creatine phosphokinase (9.0%), total phosphorylase (13.5%), phosphofructokinase (16.6%), pyruvate kinase (PK, 14.1%) and lactate dehydrogenase (10.7%). Repetition-dependent reductions (P < 0.05) in V(max) were observed for CS (R1, R2 > R16), COX (R1, R2 > R16), Hex (1R, 2R > R16), and PK (R9 > R16). It is concluded that heavy exercise results in transient reductions in a wide range of enzymes involved in different metabolic functions and that in the case of selected enzymes, multiple repetitions of the exercise reduce average V(max).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号