首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zymogen-activating factors in the mouse were investigated by two-dimensional electrophoresis. Mouse pancreatic zymogens--trypsinogen-I group (Try G-I group), trypsinogen-II (Try G-II), and chymotrypsinogen (Chy G)--were purified using DEAE-cellulose column chromatography. Analysis by two-dimensional electrophoresis, using the purified zymogens as substrates, revealed enterokinase isozymes and chymotrypsinogen-activating factors in both the intestinal extract and luminal fluid. Mouse enterokinase was separated into at least two bands in the first-dimensional gel, each able to activate both trypsinogens Try G-I group and Try G-II. Chymotrypsinogen-activating factors were separated into several bands in the first-dimensional gel. Some activating factors showed mobilities similar to those of mouse enterokinase isozymes. Moreover, other activating factors that can activate chymotrypsinogen were present only in the more anodal area of the first-dimensional gel. These findings indicate that at least two enterokinases and several chymotrypsinogen-activating factors play an important role in the process of activating digestive enzymes.  相似文献   

2.
Prophenoloxidase has been successfully obtained from the haemolymph of the cockroach Periplaneta americana using cane sugar saline solution. The proenzyme was activated by various exogenously added proteases such as chymotrypsin, trypsin, subtilisin and thermolysin. Thermolysin was found to be the greatest activator, followed by chymotrypsin and subtilisin. Chymotrypsin activation showed a lag period when compared with the other proteases tested, indicating that activation by chymotrypsin followed an indirect path, whereas, subtilisin and thermolysin activated the proenzyme directly.Exogenously added protease inhibitor showed inhibition towards protease-mediated prophenoloxidase activation. Benzamidine inhibited chymotrypsin and trypsin activation, whereas soybean trypsin inhibitor inhibited trypsin. In situ inhibitor isolated from the haemocytes of Periplaneta americana inhibited the prophenoloxidase activation and showed evidence for the presence of a built-in inhibition system for the release of the components of the prophenoloxidase activating system of P. americana. Electrophoretic localization of activated phenoloxidase showed two bands, suggesting the dimeric condition of high mol. wt prophenoloxidase.  相似文献   

3.
Lima bean protease inhibitor (LBI) can be convalently attached to agarose using the cyanogen bromide activation procedure. The LBI-agarose complex retains full capacity to inhibit chymotrypsin and 30% capacity to inhibit trypsin; the dissociation constant for chymotrypsin bound to LBI-agarose is 3.7 × 10?6m. Bovine pancreatic deoxyribonuclease is contaminated by 3% by weight of chymotrypsin plus chymotrypsinogen. The contaminating proteases may be removed from DNase by sequential reaction with LBI-agarose followed by filtration. The most effective method for the removal of proteases from DNase is chromatography over LBI-agarose. DNase which has been chromatographed over LBI-agarose is at least ten times more stable than DNase prepared by earlier procedures.  相似文献   

4.
Bovine and porcine pancreatic residue, remaining after the extraction of insulin, has been used to prepare a proteinase powder. This powder was used as a source of trypsin and chymo-trypsin. The individual enzymes were isolated and purified by chromatography on sulfopropyl (SP)-Sephadex C-25 and affinity chromatography on soybean trypsin inhibitor (STI)-Sepharose. The bovine proteinase powder contained a-chymotrypsin, trypsin and chymotrypsin B in the ratio 5:2:1. The porcine powder contained cationic trypsin, anionic trypsin and cationic chymotrypsin in the ratio 5 : 1. 4 : 3. The isolated enzymes were characterized and found to be identical with enzymes isolated from fresh tissue with the exception of porcine chymotrypsin. Porcine cationic chymotrypsin was isolated as two distinct forms, A-l and A-2, which appear to be different activation products of porcine chymotrypsinogen A. Both forms resemble bovine a-chymotrypsin, a three chain structure, rather than porcine chymo-trypsin A, a two chain structure. Furthermore, the B-chain appears to be cleaved, possibly at residues Phe89-Lys90.  相似文献   

5.
Amino acid sequence of human D of the alternative complement pathway   总被引:4,自引:0,他引:4  
The primary structure of human D, the serine protease activating the C3 convertase of the alternative complement pathway, has been deduced by sequencing peptides derived from various chemical (CNBr and o-iodosobenzoic acid) and enzymatic (trypsin, lysine protease, Staphylococcus aureus V8 protease, and chymotrypsin) cleavages. Carboxypeptidase A was also used to confirm the COOH-terminal sequence. The peptides were purified by high-pressure liquid chromatography. The proposed sequence of human D contains 222 amino acids and has a calculated molecular weight of 23 748. It exhibits a high degree of homology with other serine proteases, especially around the NH2-terminus as well as the three residues corresponding to the active-site His-57, Asp-102, and Ser-195 (chymotrypsinogen numbering). This sequence homology is highest (40%) with plasmin, intermediate (35%) with pancreatic serine proteases, such as elastase, trypsin, chymotrypsin, and kallikrein, and least (30%) with the serum enzymes thrombin and factor X. D, however, exhibits only minimal amino acid homology with the other sequenced complement serine proteases, Clr (25%) and Bb (20%). The substitution of a basic lysine for a neutral amino acid three residues NH2-terminal to the active-site serine as well as a small serine residue for a bulky aromatic amino acid at position 215 (chymotrypsinogen numbering) in the binding pocket may be important in determining the exquisite substrate specificity of D. The presence of His-40 which interacts with Asp-194 (chymotrypsinogen numbering) to stabilize other serine protease zymogens [Freer, S. T., Kraut, J., Robertus, J. D., Wright, H. T., & Xuong, N. H. (1970) Biochemistry 9, 1997] argues in favor of such a D precursor molecule.  相似文献   

6.
Variants of the human pancreatic secretory trypsin inhibitor (PSTI) have been created during a protein design project to generate a high-affinity inhibitor with respect to some serine proteases other than trypsin. Two modified versions of human PSTI with high affinity for chymotrypsin were crystallized as a complex with chymotrypsinogen. Both crystallize isomorphously in space group P4(1)2(1)2 with lattice constants a = 84.4 A, c = 86.7 A and diffract to 2.3 A resolution. The structure was solved by molecular replacement. The final R-value after refinement with 8.0 to 2.3 A resolution data was 19.5% for both complexes after inclusion of about 50 bound water molecules. The overall three-dimensional structure of PSTI is similar to the structure of porcine PSTI in the trypsinogen complex (1TGS). Small differences in the relative orientation of the binding loop and the core of the inhibitors indicate flexible adaptation to the proteases. The chymotrypsinogen part of the complex is similar to chymotrypsin. After refolding induced by binding of the inhibitor the root-mean-square difference of the active site residues A186 to A195 and A217 to A222 compared to chymotrypsin was 0.26 A.  相似文献   

7.
J L Markley  I B Iba?ez 《Biochemistry》1978,17(22):4627-4640
Reversible unfolding of bovine chymotrypsinogen A in 2H2O either by heating at low pH or by exposure to 6 M guanidinium chloride results in the exchange of virtually all the nitrogen-bound hydrogens that give rise to low-field 1H NMR peaks, without significant exchange of the histidyl ring Cepsilon1 hydrogens. These preexchange procedures have enabled the resolution of two peaks, using 250-MHz correlation 1H NMR spectroscopy, that are attributed to the two histidyl residues of chymotrypsinogen A. Assignments of the Cepsilon1 hydrogen peaks to histidine-40 and -57 were based on comparison of the NMR titration curves of the native zymogen with those of the diisopropylphosphoryl derivative. Two histidyl Cepsilon1 H peaks were also resolved with solutions of preexchanged chymotrypsin Aalpha. The histidyl peaks of chymotrypsin Aalpha were assigned by comparison of NMR titration curves of the free enzyme with those of its complex with bovine pancreatic trypsin inhibitor (Kunitz). The NMR titration curves of histidine-57 in the zymogen and enzyme and histidine-40 in the zymogen exhibit two inflections; the additional inflections were assigned to interactions with neighboring carboxyl groups: aspartate-102 in the case of histidine-57 and aspartate-194 in the case of histidine-40 of the zymogen. In bovine chymotrypsinogen A in 2H2O at 31 degrees C, histidine-57 has a pK' of 7.3 and aspartate-102 a pK' of 1.4, and the histidine-40-aspartate-194 system exhibits inflections at pH 4.6 and 2.3. In bovine chymotrypsin Aalpha under the same conditions, the histidine-57-aspartate-102 system has pK' values of 6.1 and 2.8, and histidine-40 has a pK' of 7.2. The results suggest that the pK' of histidine-57 is higher than the pK' of aspartate-102 in both zymogen and enzyme. A significant difference exists in the structure and properties of the catalytic center between the zymogen and activated enzyme. In addition to the difference in pK' values, the chemical shift of histidine-57, which is highly abnormal in the zymogen (deshielded by 0.6 ppm), becomes normalized upon activation. These changes may explain part of the increase in the catalytic activity upon activation. The 1H NMR chemical shift of the Cepsilon1 H of histidine-57 in the chymotrypsin Aalpha-pancreatic trypsin inhibitor (Kunitz) complex is constant between pH 3 and 9 at a value similar to that of histidine-57 in the porcine trypsin-pancreatic trypsin inhibitor complex [Markley, J.L., and Porubcan, M. A. (1976), J. Mol. Biol. 102, 487--509], suggesting that the mechanisms of interaction are similar in the two complexes.  相似文献   

8.
A protein (bovine serum albumin: BSA) and a peptide (luteinizing hormone releasing hormone: LHRH) were used to evaluate proteolytic activity in the intestine of common brushtail possums (Marsupiala, Trichosurus vulpecula). Luminal and mucosal extracts were isolated from the duodenum, jejunum, ileum, caecum, proximal colon and distal colon, their protein content assessed and specific activities in metabolising LHRH and BSA determined in vitro. The degradation of LHRH by luminal extracts was compared with that by the pancreatic enzymes, chymotrypsin, trypsin, and elastase. The protein concentration (microg x mg-1) of mucosal extract in the duodenum was higher ( P<0.05) than in the proximal colon, but that of luminal extracts did not differ significantly between regions. Proteolytic activity of luminal extracts was greater ( P<0.01) in the jejunum and ileum than in the hindgut. In the small intestine, proteolytic activity of luminal enzymes far exceeded that of mucosal enzymes ( P<0.05). All three pancreatic enzymes hydrolysed LHRH, but chymotrypsin had the greatest activity. This study has demonstrated that, in possums, proteolysis occurs primarily in the small intestine through luminal enzymes, with chymotrypsin playing a major role. The possum hindgut contributes little to the metabolism of peptides and proteins, identifying it as a potential site to target for their absorption following oral delivery.  相似文献   

9.
Recombinant microbial transglutaminase (rMTG) is usually expressed as a soluble zymogen (pro-rMTG) in heterologous expression systems but proteolytic activation of the inactive pro-rMTG is essential. Instead of screening proteases for activating pro-rMTG, we examined an alternative method by introducing a specific cleavage site of enterokinase between the pro-peptide and mature rMTG, generating three pro-rMTG variants (Pro-mrMTG, Pro-m-rMTG and mPro-rMTG). Pro-mrMTG and Pro-m-rMTG were activated by enterokinase without degrading mature rMTG. The activation productivity of Pro-m-rMTG by enterokinase reached 92 % after 22 h activation, while the activation productivity of Pro-rMTG activated by trypsin was 47 %. MALDI-MS analysis revealed that the pro-peptide including the cleavage site was specifically removed from Pro-m-rMTG after activation. This methodology has the potential to be applied in rMTG production by incorporating highly specific cleavage sites of other proteases.  相似文献   

10.
J Kardos  A Bódi  P Závodszky  I Venekei  L Gráf 《Biochemistry》1999,38(38):12248-12257
Chymotrypsinogen and proelastase 2 are the only pancreatic proteases with propeptides that remain attached to the active enzyme via a disulfide bridge. It is likely, although not proven, that these propeptides are functionally important in the active enzymes, as well as in the zymogens. A mutant chymotrypsin was constructed to test this hypothesis, but it was demonstrated that the lack of the propeptide had no effect on the catalytic efficiency, substrate specificity, or folding of the protein [Venekei, I., et al. (1996) FEBS Lett. 379, 139-142]. In this paper, we investigate the role of the disulfide-linked propeptide in the conformational stability of chymotrypsin(ogen). We compare the stabilities of the wild-type and mutant proteins (lacking propeptide-enzyme interactions) in their zymogen (chymotrypsinogen) and active (chymotrypsin) forms. The mutants exhibited a substantially increased sensitivity to heat denaturation and guanidine hydrochloride unfolding, and a faster loss of activity at extremes of pH relative to those of their wild-type counterparts. From guanidine hydrochloride denaturation experiments, we determined that covalently linked propeptide provides about 24 kJ/mol of free energy of extra stabilization (DeltaDeltaG). In addition, the mutant chymotrypsinogen lacked the normal resistance to digestion by pepsin. This may also explain (besides keeping the zymogen inactive) the evolutionary conservation of the propeptide-enzyme interactions. Tryptophan fluorescence, circular dichroism, microcalorimetric, and activity measurements suggest that the propeptide of chymotrypsin restricts the relative mobility between the two domains of the molecule. In pancreatic serine proteases, such as trypsin, that lose the propeptide upon activation, this function appears to be accomplished via alternative interdomain contacts.  相似文献   

11.
A protease inhibitor from arrow root (Maranta arundinaceae) tuber has been isolated in a homogeneous form. The inhibitor has a Mr of 11,000-12,000; it inhibited bovine trypsin, bovine enterokinase, bovine α-chymotrypsin and the proteolytic activity of human and bovine pancreatic preparations. The inhibitor is resistant to pepsin, and elastase. It could withstand heat treatment at 100°C for 60 min and exposure to a wide range of pH (1.0–12.5) for 72 h at 4°C without loss of activity. Arginyl groups are essential for the action of the inhibitor. Preincubation of the inhibitor at pH 3.7 with trypsin or chymotrypsin caused nearly a two-fold increase in inhibitor potency  相似文献   

12.
1. The serum proteinase inhibitors alpha 1-antitrypsin, alpha 2-macroglobulin, inter-alpha-trypsin inhibitor and C1-esterase inhibitor were found not to affect the catalytic activity of human enterokinase, whereas bovine trypsin activity was modified essentially as expected. Enterokinase was also not inhibited by Trasylol (trypsin inhibitor from bovine lung) or bovine pancreatic trypsin inhibitor. No other component in human or mouse serum complexing with enterokinase was identified. 2. Human enterokinase administered intravenously into mice was rapidly cleared from the circulation with a half-life of 2.5 min. This removal was not the result of the difference in species, since partially purified mouse enterokinase was cleared at the same rate as the human enzyme. Clearance was mediated by recognition of the carbohydrate portion of enterokinase and not through specific recognition of its catalytic site. Immunofluorescent staining showed that the enzyme accumulated in the liver. Attempts to block the clearance by the simultaneous infusion of competing glycoproteins suggested that enterokinase was taken up by hepatocytes. Of the glycoproteins tested only two, human lactoferrin (terminal fucosyl alpha 1 leads to 3 N-acetylglucosamine) and bovine asialo-fetuin (terminal galactosyl beta 1 leads to 4 N-acetylglucosamine) were weakly competitive. Two inhibitors of endocytosis, Intralipid and Triton WR1339, failed to delay the removal of enterokinase. It is proposed that enterokinase is cleared from the circulation by an as yet uncharacterized hepatocyte receptor.  相似文献   

13.
The effect of 3 purified trypsin inhibitors and 4 legume seed extracts on teh trypsins and chymotrypsins of the activated pancreata of 11 animal species, including man, was measured. The activation was performed by either homologous enterokinase or by bovine trypsin. Several trypsinogens were not activated by the latter. Rabbit trypsin was the most sensitive to all inhibitor preparations, while the human trypsin was the most resistant, except to the black bean extract. The response of the chymotrypsins was more variable and those of capybara and rabbit showed extreme sensitivity. Considerable differences between the extracts of black and white garden beans, both Phaseolus vulgaris, with respect to their reactivity toward different animal enzymes were detected. No relation between relative pancreas weight and susceptibility toward soybean trypsin inhibitor could be observed.  相似文献   

14.
A trypsin inhibitor, termed ovostatin, has been purified approximately 265-fold with 82% yield, from unfertilized eggs of the sea urchin Strongylocentrotus intermedius, using trypsin coupled Sepharose 4B as an affinity column for chromatography. The isolated ovostatin is homogeneous in sodium dodecyl sulfate/polyacrylamide gel electrophoresis, the estimated molecular weight being 20K–21.5K. Ovostatin inhibits preferentially trypsin-like endogenous protease purified from the eggs of the same species and bovine pancreatic trypsin and also bovine pancreatic chymotrypsin. Values of IC50 (amount causing 50% inhibition of enzymes) for trypsin-like protease purified from eggs of the same species, bovine pancreatic trypsin, and bovine pancreatic chymotrypsin, are 0.91 ± 0.13 μg/ml (4.55 ± 0.65 × 10?8 M), 3.0 ± 0.28 μg/ml (1.5 ± 0.14 × 10?7 M), and 4.8 ± 0.2 μg/ml (2.4 ± 0.1 × 10?7 M), respectively, in the experimental condition used. Kinetic studies indicate that ovostatin is a noncompetitive inhibitor of trypsin. The inhibitor is relatively heat labile. NaCl (0.025–0.01 M) enhances the inhibitor activity, whereas KCl is inhibitory. Ovostatin requires a low concentration of Ca2+ for activity. The activity is higher in unfertilized eggs than in fertilized eggs; total activity and specific activity in unfertilized eggs is about 1.67-fold and 1.85-fold higher than those in fertilized eggs, respectively. We believe that ovostatin may regulate the function of the cortical granule protease and other trypsin-like proteases that are activated in sea urchin eggs during fertilization.  相似文献   

15.
The amino-terminal sequence of the catalytic subunit of bovine enterokinase   总被引:2,自引:0,他引:2  
Bovine enterokinase (enteropeptidase) is a serine protease and functions as the physiological activator of trypsinogen. The enzyme has a heavy chain (115 kD) covalently linked to a light or catalytic subunit (35 kD). The amino acid composition showed that the light chain has nine half-cystine residues (four as intramolecular disulfides) and that one half-cystine was in a disulfide link between the light and heavy subunits. The amino-terminal 27 residues of the S-vinylpyridyl derivative of the light chain were determined by gas-phase Edman degradation. The sequence has homologies with other serine proteases containing one or two chains. The homologies suggest that the catalytic subunit has the same three-dimensional structure and, therefore, the same mechanism of enzymatic action as pancreatic chymotrypsin, trypsin, and elastase. The presence of the conserved amino-terminal activation peptide sequence (IVGG) shows that enterokinase must have a zymogen precursor and that the two-chain enzyme arises from limited proteolysis during posttranslational processing.  相似文献   

16.
Hamster lymph node and spleen cells can be stimulated to incorporate tritiated thymidine ([3H]TdR) in vitro under serum-free conditions by the proteases trypsin and chymotrypsin. Under similar conditions, thymocytes could be stimulated by concanavalin A (ConA) but not lipopolysaccharide (LPS) or the proteases. The subpopulation of cells responding to the proteases correlated with the cells responding to LPS on fractionation of spleen and lymph node cells on discontinuous bovine serum albumin (BSA) gradients or on nylon-wool columns. The stimulation induced by trypsin was completely blocked by soybean trypsin inhibitor (SBTI) while that induced by chymotrypsin was only partially blocked. The inhibition by SBTI of protease activation was not effective when added 24 h after initiation of stimulation. On the other hand, addition of clarified isologous serum to protease activated cultures after 24 h still lead to greater than 50% inhibition of [3H]TdR incorporation.  相似文献   

17.
Two hypotheses on the feedback regulation of pancreatic enzyme secretion   总被引:2,自引:0,他引:2  
T Fushiki  K Iwai 《FASEB journal》1989,3(2):121-126
We review the mechanisms underlying the feedback regulation of pancreatic enzyme secretion in response to a meal. Pancreatic enzyme secretion in the rat and pig is known to be regulated by a negative feedback mechanism mediated by intestinal trypsin and chymotrypsin. Such a mechanism has recently been noted in humans. The presence of these enzymes in the small intestine suppresses pancreatic enzyme secretion, whereas their removal increases it. Two novel peptides have been proposed to account for the stimulation of pancreatic enzyme secretion in response to feeding trypsin inhibitor. One was assumed to be present in rat pancreatic juice and the other to be spontaneously secreted from the rat small intestine. In either case, trypsin and trypsin inhibitors do not directly interact with the luminal surface of the small intestine, but their actions are mediated by a trypsin-sensitive, cholecystokinin-releasing peptide. This is a novel explanation of the well-recognized stimulation of pancreatic enzyme secretion in response to dietary protein intake.  相似文献   

18.
We characterized trypsin‐ and chymotrypsin‐like serine alkaline proteases from cotton bollworm, Helicoverpa armigera, for their probable potential application as additives in various bio‐formulations. Purification was achieved by using hydroxylapatite, DEAE sephadex and CM sephadex columns, which resulted in increased enzyme activity by 13.76‐ and 14.05‐fold for trypsin and chymotrypsin, respectively. Michaelis–Menten constants (Km) for substrates of trypsin and chymotrypsin, BApNA and SAAPFpNA, were found to be 1.25 and 0.085 mM, correspondingly. Fluorescent zymogram analysis indicated the presence of five trypsin bands with molecular masses of ~21, 25, 38, 40, and 66 kDa and two chymotrypsin bands with molecular masses of ~29 and 34 kDa in SDS‐PAGE. The optimum pH was 10.0 and optimum temperature was 50°C for proteolytic activity for the purified proteases. The proteases were inhibited by synthetic inhibitors such as PMSF, aprotonin, leupeptin, pefabloc, and antipain. TLCK and TPCK inhibited about 94 and 90% of trypsin and chymotrypsin activity, respectively, while EDTA, EGTA, E64, pepstatin, idoacetamide, and bestatin did not affect the enzymes. The purified enzymes exhibited high stability and compatibility with metal ions; oxidizing, reducing, and bleaching agents; organic solvents; and commercial detergents. Short life cycles, voracious feeding behavior, and production of multiple forms of proteases in the midgut with rapid catalytic activity and chemostability can serve H. armigera as an excellent alternative source of industrially important proteases for use as additives in stain removers, detergents, and other bio‐formulations. Identification of enzymes with essential industrial properties from insect species could be a bioresource.  相似文献   

19.
Trypsin (T) and chymotrypsin (CHT) activities in luminal contents of the ileum, caecum and sigmoideum were followed in conventional (6 animals), monoassociated (5) and germfree (5) rabbits by pH-stat automatic titration using p-toluenesulphonyl-L-arginine methylester and acetyl-L-tyrosine ethylester as substrates. In conventional rabbits with complete microbial flora an aborally increasing decline of both proteolytic activities of luminal contents was determined (ileum T 198.2 - CHT 100.0; signmoideum T 10m.2 - CHT 68.8 mrg/g of intestinal content). Monoassociated animals represent a group different from both germfree and conventional animals. Trypsin and chymotrypsin of intestinal contents were not significantly altered by the presence of megacaecum in germfree rabbits (ileum T 219.2 - CHT 160.2; sigmoideum T 208.8 - CHT 110.8 mug/g of intestinal content). Chymotrypsin in the intestinal contents appears more labile and more affected by microbial flora than trypsin.  相似文献   

20.
目的:原核表达并制备重组蜱kunitz型丝氨酸蛋白酶抑制剂IsKuI-1,检测其抗凝血及抑制蛋白酶活性。方法:构建pET32a-sumo/IsKuI-1原核表达质粒,并转入到E. coli BL21(DE3)中,用IPTG诱导表达。表达产物经Ni-NTA亲和层析,在层析柱上用SUMO蛋白酶切割融合伴侣,纯化后得到重组目的多肽rIsKuI-1。用PT及aPTT法检测重组目的多肽的抗凝活性,发色底物法检测rIsKuI-1对丝氨酸蛋白酶的抑制活性。结果:用原核表达系统获得了rIsKuI-1,其无延长PT及aPTT活性,对人中性粒细胞弹性蛋白酶具有较好的抑制活性(IC50=1.83μM),且特异性强。结论:IsKuI-1是一种活性较好的人NE抑制剂。因此为进一步探讨rIsKuI-1的生物学功能及其作为新药开发应用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号