首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A dual-tube dense-phase silicone rubber membrane bioreactor was investigated for control of cyclohexane-contaminated air as part of a jet propulsion (JP-8) fuel remediation investigation strategy. The reactor was seeded with a mixed bacterial consortium isolated from the water/fuel interface of a JP-8 jet fuel sample and activated sludge, capable of aromatic and cyclic compound biodegradation. Cyclohexane removal ranged from 1.1 to 28.6 mg L-1, with removal percentages ranging from 4.6% to 37.6%. Removal in the bioreactor ranged from 29.4 to 596.6 mg min-1 m-2 and measured elimination capacities ranged from 46.7 to 947.9 g m-3 h-1. Removal rates and elimination capacity increased with increasing biofilm growth and with increasing loading rates of cyclohexane. Loading rates ranged from 395.9 to 2189.5 mg min-1 m-2. Results of this study showed effective removal of cyclohexane using the membrane bioreactor, suggesting that this technology may have applicability for treating vapors contaminated with cyclic hydrocarbons.  相似文献   

3.
A dual-tube dense-phase silicone rubber membrane bioreactor was investigated for control of cyclohexane-contaminated air as part of a jet propulsion (JP-8) fuel remediation investigation strategy. The reactor was seeded with a mixed bacterial consortium isolated from the water/fuel interface of a JP-8 jet fuel sample and activated sludge, capable of aromatic and cyclic compound biodegradation. Cyclohexane removal ranged from 1.1 to 28.6 mg L?1, with removal percentages ranging from 4.6% to 37.6%. Removal in the bioreactor ranged from 29.4 to 596.6 mg min?1 m?2 and measured elimination capacities ranged from 46.7 to 947.9 g m?3 h?1. Removal rates and elimination capacity increased with increasing biofilm growth and with increasing loading rates of cyclohexane. Loading rates ranged from 395.9 to 2189.5 mg min?1 m?2. Results of this study showed effective removal of cyclohexane using the membrane bioreactor, suggesting that this technology may have applicability for treating vapors contaminated with cyclic hydrocarbons.  相似文献   

4.
A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chloride concentrations (up to 25 g/liter) and had pH values which were either acidic (pH 2.4) or alkaline (pH 13.0). A mercury-resistant bacterial strain, Pseudomonas putida Spi3, was isolated from polluted river sediments. Biofilms of P. putida Spi3 were grown on porous carrier material in laboratory column bioreactors. The bioreactors were continuously fed with sterile synthetic model wastewater or nonsterile, neutralized, aerated chloralkali wastewater. We found that sodium chloride concentrations up to 24 g/liter did not inhibit microbial mercury retention and that mercury concentrations up to 7 mg/liter could be treated with the bacterial biofilm with no loss of activity. When wastewater samples from three different chloralkali plants in Europe were used, levels of mercury retention efficiency between 90 and 98% were obtained. Thus, microbial mercury removal is a potential biological treatment for chloralkali electrolysis wastewater.  相似文献   

5.
Microbiology - Abstract—Biotechnologies involving phosphate-accumulating organisms, which collect inorganic phosphates from the medium as polyphosphates during cyclic growth under aerobic and...  相似文献   

6.
P. Roelants  B. Boon    W. Lhoest 《Applied microbiology》1968,16(10):1465-1467
The effectiveness of a commercial absolute air filter for removal of viruses from air was tested with an actinophage, under the usual conditions of a laminar airflow clean room. A new method of dry phage dispersion is described. The filter showed an average reduction of 99.996% of airborne actinophage.  相似文献   

7.
The cometabolic degradation of trichloroethylene (TCE) as a vapor by two aromatic-metabolizing pseudomonads was evaluated in an airlift reactor. These microorganisms were able to degrade 90 to 95% of TCE in air at concentrations at the reactor inlet of 300 to 4,000 μg/liter. Although exposure of the cells to high inlet concentrations of TCE (4 mg/liter) caused a decline in enzyme-specific activity and TCE removal efficiency, this loss in activity could be prevented or delayed by increasing the rate of cosubstrate addition. Under the appropriate operating conditions, the microorganisms were able to degrade even high concentrations of TCE and activity of the cells in the reactor could be maintained for periods of at least 2 weeks.  相似文献   

8.
A method is desibed for the removal of mercury from solution by using the off-gas produced from aerobic cultures of Klebsiella pneumoniae M426. Cells growing in Hg-supplemented medium produced a black precipitate containing mercury and sulphur. The ratio of Hg:S was determined as ~1:1 by analysis using proton-induced X-ray emission, suggesting precipitation of HgS within the culture. The outlet gases produced by a mercury-unsupplemented aerated culture were bubbled into an external chamber supplemented with up to 10 mg HgCl2/ml. A yellowish-white precipitate formed, corresponding to 99% removal of the mercury from solution within 120 min. Energy dispersive X-ray microanalysis showed that this metal precipitate consisted of mercury, carbon and sulphur. Formation of mercury carbonate was discounted since similar precipitation occurred at pH 2 and no oxygen was detected in the solid, which gave an X-ray powder pattern suggesting an amorphous material, with no evidence of HgS. Precipitation of mercury with a volatile organosulphur compound is suggested. Bio-precipitation of heavy metals by using culture off-gas is a useful approach because it can be used with concentrated or physiologically incompatible solutions. Since the metal precipitate is kept separate from the bacterial biomass, it can be managed independently.  相似文献   

9.
Evaluation of Filters for Removal of Bacteriophages from Air   总被引:3,自引:3,他引:0       下载免费PDF全文
Glass wool, nonabsorbent cotton, fiberglass filter medium, and a commercial absolute filter were tested for effectiveness in removing aerosolized bacterial viruses under low flow rate (1 ft(3)/min) and high flow rate (10 to 25 ft(3)/min) air-flow conditions. Special equipment was designed for measurement of filter efficiencies under the two air-flow conditions. Under low air-flow rate test conditions, glass wool was only 98.543 to 99.83% efficient, whereas cotton (five layers), fiberglass medium (three layers), and the commercial absolute filter were at least 99.900, 99.999, and 99.999 efficient, respectively. Glass wool and cotton were not used under higher air-flow conditions because they were difficult to assemble in leak-tight filters. The commercial absolute filter and fiberglass medium (three layers) were at least 99.990 and 99.999% efficient, respectively, under the higher air flow conditions. A stainless-steel filter of simple design and fitted with three layers of fiberglass medium was found to be greater than 99.999% efficient in removing high concentrations (20,000 to 70,000 plaque-forming units per cubic foot) of aerosolized bacteriophages from air moving at a low flow rate (1 ft(3)/min). Use of this filter on pressure-vacuum tanks in the fermentation industry is suggested. Several other uses of such a filter are proposed.  相似文献   

10.
Mercury‐resistant microorganisms are widespread in natural environments and can effectively be used to demercurize Hg(II)‐contaminated wastewaters as was already demonstrated on an industrial scale. The aim of this paper is to find the performance limits with regard to Hg(II) loadings D cHg,in (dilution rate × Hg(II) inlet concentration) and residual Hg(II) at the reactor outlet and to provide a reasonable basis for an optimal and safe process design. To this end, comprehensive studies were carried out with different single microbes (natural isolates and a genetically engineered strain) as well as microbial consortia in batch and continuous stirred reactors and fixed beds with microorganisms immobilized as films. The rate of the biotransformation (reduction of inorganically and organically bound Hg(II) to elemental Hg(0)) was found to follow a uniform mechanism with inhibition kinetics (Haldane type). Both reactor types are able to cope with high Hg(II) loadings and yield conversions up to 98 %. The stirred vessel is particularly suited for high cHg,in but restricted to low D (D < μmax), while the fixed bed can be operated at high D, say 10 h–1, but can only deal with cHg,in < 10 mg/L due to the limited Hg(II) tolerance of microorganisms. The loading limitations can be removed by appropriate recycle flows for both reactor types. However, irrespective of reactor type used, the residual Hg at the outlet cannot be reduced below the legal discharge limit (50 μg/L) mainly owing to the adsorption of Hg(II) on biomass. Therefore, a separation step following the reactor is required (sand bed, activated carbon filter). Comparing the reactor types exhibits the superiority of the fixed bed system due to its simpler construction, easier operation and higher cost effectiveness. Furthermore, the fixed bed shows better flexibility and robustness to extreme loadings. This justifies a posteriori the choice of a fixed bed reactor applied in the technical process.  相似文献   

11.
Klebsiella pneumoniae, a mercury-resistant bacterial strain able to reduce ionic mercury to metallic mercury, was isolated from wastewater of Casablanca. This strain exhibits high minimal inhibition concentrations for heavy metals such as mercury 2400 μM, lead 8000 μM, silver 2400 μM, and cadmium 1000 μM. This bacterium was immobilized in alginate, polyacrylamide, vermiculite, and cooper beech and was used for removing mercury from a synthetic water polluted by mercury by using a fluidized bead bioreactor. Immobilized bacterial cells of Klebsiella pneumoniae could effectively volatilize mercury and detoxify mercury compounds. Moreover, the efficiency of mercury volatilization was much greater than with the native cells. The highest cleanup and volatilization rates were obtained when Klebsiella pneumoniae was entrapped in alginate beads, with a cleanup rate of 100% and a volatilization rate of 89%. Immobilized cells in alginate continuously volatilized mercury even after 10 days without loss of activity. Received: 21 February 2001 / Accepted: 13 March 2001  相似文献   

12.
13.
Fibers are suggested for bacterial immobilization in trickle-bed bioreactors used for the removal of volatile organic compounds (VOCs) from air. Fiber-based bioreactors retain up to 200 to 300 mg of dry biomass per 1 g of support, which is a much larger value than that of traditional, granule-based bioreactors. Air pollutant removal efficiency for fiber-based bioreactors remains high with large inlet pollutant concentrations or space velocities (lower contact times). Efficient removal is achieved not only for a water-miscible substrate (ethanol), but also for some less water-soluble compounds, such as ethyl acetate and styrene. Specific pollutant elimination capacity per unit fiber-based biocatalyst volume (up to 4000 g/m3-h) exceeds those of biological air purification methods and is comparable to chemical methods. Unlike granule-based biocatalysts, oxygen limitation for pollutant biodegradation is not observed. Evidence obtained shows that the higher air purification efficiency is due to the greater surface-to-volume ratio of fibers when compared with granules, which results in a more efficient substrate mass transfer.  相似文献   

14.
Electrokinetic remediation (EKR) processes are energy intense systems as they are mainly run under continuous constant current supply mode. In this study, pulsed electrokinetic remediation (PEKR) technique was employed for the removal of Cd, Hg and Cr from mixed contaminated natural clay and bentonite soils. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals and specific energy consumption were investigated. Fifteen (15) PEKR experiments were conducted according to Box–Behnken design (BBD) with each experiment allowed to continuously run for 21 days. Increase in the proportion of the bentonite significantly decreased the removal efficiency of the heavy metals while having insignificant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies, though at the expense of increase in energy consumption due to combine effects of increase in the soil electrical conductivity, amount of current needed to sustain the applied voltage gradient as well as the raise in the soil pH. The maximum achievable removal efficiencies for Cd, Hg and Cr were 21.87, 78.06 and 89.64% respectively. The specific energy consumption significantly increased from the range of 91.67–154.17 kwh/m3 to 1700–2441.67 kwh/m3 as a result of combined effect of increasing voltage gradient and pulse duty cycle. This demonstrated that effective PEKR could be achieved with significance reduction in the energy consumption via appropriate selection of pulse duty and voltage gradient for clay soils of different proportion of montmorillonite.  相似文献   

15.
16.
A hybrid electrokinetic-adsorption (HEKA) technique using uniform electric field and granular activated carbon (GAC) produced from date palm pits was investigated for the removal of mercury from natural saline-sodic clay heavily contaminated with heavy metals, phenol, and kerosene. Response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained with the aid of Design Expert software. According to the Box-Behnken experimental design, 15 experiments were conducted each with residence time of three weeks. The effects of voltage gradient (0.2–1 V/cm), initial Hg concentration (mg/Kg), and polarity reversal interval (0-48 hours) on Hg removal efficiency and energy consumed for Hg removal were investigated. Respectively, the responses fitted reduced cubic (R2 = 99.3%) and quadratic models (R2 = 92.3%) with the overall relative contributions of the investigated parameters on the responses following the order: voltage gradient > initial Hg concentration > polarity reversal interval based on analysis of variance (ANOVA). The optimal conditions obtained with desirability of 90% aimed at maximizing Hg removal were 24 hours polarity reversal interval, 0.2 V/cm voltage gradient, and 100 mg/kg initial Hg concentration. This optimum operating condition yielded good removal of Hg (99.5%) at reduced energy consumption of 50.1kWh.m?3mg?1. Experimental validation of the models showed good prediction of Hg removal efficiency (0.0368% prediction error). The results presented herein suggest that HEKA technology could be utilized effectively for the removal of Hg from contaminated, low permeable soils under extreme soil and contamination conditions.  相似文献   

17.
Remediation of a lead-contaminated calcareous soil using NaCl solutions was examined. The removal of Pb from a coarser fraction of the soil was found to be 83% after three successive extractions at a NaCl concentration of 8?M, whereas an average of 9% of the calcium was removed. Multibatch extractions of Pb from finer soil containing a higher level of Pb were also performed. The removal of Pb from this soil after six successive extractions with 8?M NaCl was found to be 93%. The removal of Pb increased with time in a batch test and approached 80% after 90?h. It was found that the data were adequately described by a first-order rate, and hence it is believed that a single reaction mechanism controlled the release of Pb (i.e., from carbonate bound or exchangeable Pb fractions in the soil). Increasing removal of Pb was found as the volume of water added was increased as the mass of NaCl in solution remained constant. The removal of Pb from the leachate was found to be 90%, 99.7%, and 35% with lime (25.20?g/L), sodium carbonate (4.48?g/L), and calcium carbonate (82.0?g/L) addition, respectively. In the case of sodium carbonate, the removal of Pb was further improved when the pH was adjusted to 8.2. The recycling of free chloride that was generated from leachate resulted in 91% removal of Pb from the soil (particle size < 4.75?mm) after six recycles.  相似文献   

18.
A full‐scale constructed wetland treatment system consisting of four pairs of wetland cells (3.2 ha total area) with water flowing through a pair of cells in series prior to discharge was investigated. A retention basin provided stable water flow to the system. Water retention time in the wetland system was approximately 48 hours, and the wetland cells operated at circumneutral pH. Vegetation development within the cells has been excellent. Copper removal efficiency was greater than 75 % from the start‐up of the system, while mercury efficiency improved with maturation of the treatment cells. Sampling of the water course through the wetlands conducted during the fourth year of operation validated continued performance, and assessed the fate of a larger suite of metals present in the water. Copper and mercury removal efficiencies were still very high, both in excess of 80 % removal from the water after passage through the wetland system. Mercury removal continued along the entire water course through the system, while copper was removed almost immediately upon entering the wetland cells. Lead removal from the water by the system was 83 %, zinc removal was 60 %, and nickel was generally unaffected. Organic carbon in the water was also increased by the system and reduced the bioavailability of some metals. Operation and maintenance of the system continued to be minimal, and mainly consisted of checking for growth of the vegetation and free flow of the water through the system. The system was entirely passive, relying on gravity as the power source of water flow. No reportable permit exceedances have been experienced since the wetland began treating an outfall discharge.  相似文献   

19.
20.
S ummary : The micro-organisms in tap water were quantitatively (99%) retained by Oxoid membrane filters. The trapped organisms were extracted from the membrane filter by a simple washing process using glass beads or a magnetic stirrer. For counts on air, the membrane filter was considerably more efficient than an ammonium alginate filter in trapping bacteria, but both techniques were equally satisfactory for moulds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号