共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane fusion depends on the formation of a complex of four SNARE motifs, three that bear a central glutamine and are localized in the target membrane (t-SNARE) and one that bears an arginine and is localized in the donor vesicle (v-SNARE). We have characterized the arginine 56 to proline mutant (R56P) of synaptobrevin-2 (Sb). SbR56P was blocked at the plasma membrane in association with the endogenous plasma membrane t-SNARE due to an inhibition of SNARE complex dissociation, suggesting that the plasma membrane is its first target. Cell surface blockade of SbR56P could be rescued by coexpression of synaptophysin, a partner of Sb. Sb was blocked at the plasma membrane but SNARE complexes were unaffected in cells expressing defective dynamin, indicating that the phenotype of SbR56P was not due to an internalization defect. When expressed in neurons, SbR56P localized both to axonal and dendritic plasma membranes, showing that both domains are initial targets of Sb. The R56P mutation affects a highly conserved position in v-SNAREs, and might thus provide a general tool for identifying their first target membranes. 相似文献
2.
Using an implicit membrane model (IMM1), we examine whether the structure of the transmembrane domain of Glycophorin A (GpA) could be predicted based on energetic considerations alone. The energetics of native GpA shows that van der Waals interactions make the largest contribution to stability. Although specific electrostatic interactions are stabilizing, the overall electrostatic contribution is close to zero. The GXXXG motif contributes significantly to stability, but residues outside this motif contribute almost twice as much. To generate non-native states a global conformational search was done on two segments of GpA: an 18-residue peptide (GpA74-91) that is embedded in the membrane and a 29-residue peptide (GpA70-98) that has additional polar residues flanking the transmembrane region. Simulated annealing was done on a large number of conformations generated from parallel, antiparallel, left- and right-handed starting structures by rotating each helix at 20 degrees intervals around its helical axis. Several crossing points along the helix dimer were considered. For 18-residue parallel topology, an ensemble of native-like structures was found at the lowest effective energy region; the effective energy is lowest for a right-handed structure with an RMSD of 1.0 A from the solid-state NMR structure with correct orientation of the helices. For the 29-residue peptide, the effective energies of several left-handed structures were lower than that of the native, right-handed structure. This could be due to deficiencies in modeling the interactions between charged sidechains and/or omission of the sidechain entropy contribution to the free energy. For 18-residue antiparallel topology, both IMM1 and a Generalized Born model give effective energies that are lower than that of the native structure. In contrast, the Poisson-Boltzmann solvation model gives lower effective energy for the parallel topology, largely because the electrostatic solvation energy is more favorable for the parallel structure. IMM1 seems to underestimate the solvation free energy advantage when the CO and NH dipoles just outside the membrane are parallel. This highlights the importance of electrostatic interactions even when these are not obvious by looking at the structures. 相似文献
3.
Doura AK Kobus FJ Dubrovsky L Hibbard E Fleming KG 《Journal of molecular biology》2004,341(4):991-998
To quantify the relationship between sequence and transmembrane dimer stability, a systematic mutagenesis and thermodynamic study of the protein-protein interaction residues in the glycophorin A transmembrane helix-helix dimer was carried out. The results demonstrate that the glycophorin A transmembrane sequence dimerizes when its GxxxG motif is abolished by mutation to large aliphatic residues, suggesting that the sequence encodes an intrinsic propensity to self-associate independent of a GxxxG motif. In the presence of an intact GxxxG motif, the glycophorin A dimer stability can be modulated over a span of -0.5 kcal mol(-1) to +3.2 kcal mol(-1) by mutating the surrounding sequence context. Thus, these flanking residues play an active role in determining the transmembrane dimer stability. To assess the structural consequences of the thermodynamic effects of mutations, molecular models of mutant transmembrane domains were constructed, and a structure-based parameterization of the free energy change due to mutation was carried out. The changes in association free energy for glycophorin A mutants can be explained primarily by changes in packing interactions at the protein-protein interface. The energy cost of removing favorable van der Waals interactions was found to be 0.039 kcal mol(-1) per A2 of favorable occluded surface area. The value corresponds well with estimates for mutations in bacteriorhodopsin as well as for those mutations in the interiors of soluble proteins that create packing defects. 相似文献
4.
5.
Maria A. Castiglione-Morelli Angela Ostuni Antonietta Pepe Graziantonio Lauria Ferdinando Palmieri 《Molecular membrane biology》2013,30(5):297-305
The structures of the first and the second transmembrane segment of the bovine mitochondrial oxoglutarate carrier (OGC) were studied by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. Peptides 21–46 and 78–108 of its primary sequence were synthesized and structurally characterized in membrane-mimetic environments. CD data showed that at high concentrations of TFE (>50%) and SDS (>2%) both peptides assume α-helical structures, whereas in more hydrophilic environments only peptide 78–108 has a helical structure. 1H-NMR spectra of the two peptides in TFE/water and SDS were fully assigned, and the secondary structures of the peptides were obtained from nuclear Overhauser effects, 3JαH-NH coupling constants and αH chemical shifts. The three-dimensional solution structures of the peptides in TFE/water were generated by distance geometry calculations. A well-defined α-helix was found in the region K24-V39 of peptide 21–46 and in the region A86–F106 of peptide 78–108. We cannot exclude that in intact OGC the extension of these helices is longer. The helix of peptide 21–46 is essentially hydrophobic, whereas that of peptide 78–108 is predominantly hydrophilic. 相似文献
6.
Meruelo AD Samish I Bowie JU 《Protein science : a publication of the Protein Society》2011,20(7):1256-1264
A hallmark of membrane protein structure is the large number of distorted transmembrane helices. Because of the prevalence of bends, it is important to not only understand how they are generated but also to learn how to predict their occurrence. Here, we find that there are local sequence preferences in kinked helices, most notably a higher abundance of proline, which can be exploited to identify bends from local sequence information. A neural network predictor identifies over two-thirds of all bends (sensitivity 0.70) with high reliability (specificity 0.89). It is likely that more structural data will allow for better helix distortion predictors with increased coverage in the future. The kink predictor, TMKink, is available at http://tmkinkpredictor.mbi.ucla.edu/. 相似文献
7.
The fusion of a vesicle to a target membrane is mediated by temporally and spatially regulated interactions within a set of evolutionarily conserved proteins. Integral to proper fusion is the interaction between proteins originating on both vesicle and target membranes to form a protein bridge between the two membranes, known as the SNARE complex. This protein complex includes the single-pass transmembrane helix proteins: syntaxin and synaptobrevin. Experimental data and amino acid sequence analysis suggest that an interface of interaction is conserved between the transmembrane regions of the two proteins. However, conflicting reports have been presented on the role of the synaptobrevin transmembrane domain in mediating important protein-protein interactions. To address this question, a thermodynamic study was carried out to determine quantitatively the self-association propensities of the transmembrane domains of synaptobrevin and syntaxin. Our results show that the transmembrane domain of synaptobrevin has only a modest ability to self-associate, whereas the transmembrane domain of syntaxin is able to form stable homodimers. Nevertheless, by a single amino acid substitution, synaptobrevin can be driven to dimerize with the same affinity as syntaxin. Furthermore, crosslinking studies show that dimerization of synaptobrevin is promoted by oxidizing agents. Despite the presence of a conserved cysteine residue in the same location as in synaptobrevin, syntaxin dimerization is not promoted by oxidization. This analysis suggests that subtle yet distinct differences are present between the two transmembrane dimer interfaces. A syntaxin/synaptobrevin heterodimer is able to form under oxidizing conditions, and we propose that the interface of interaction for the heterodimer may resemble the homodimer interface formed by the synaptobrevin transmembrane domain. Computational analysis of the transmembrane sequences of syntaxin and synaptobrevin reveal structural models that correlate with the experimental data. These data may provide insight into the role of transmembrane segments in the mechanism of vesicle fusion. 相似文献
8.
Julia Koehler Leman Ralf Mueller Mert Karakas Nils Woetzel Jens Meiler 《Proteins》2013,81(7):1127-1140
Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α‐helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three‐state secondary structure prediction, and 94.8% for three‐state transmembrane span prediction. These accuracies are comparable to state‐of‐the‐art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org . Proteins 2013; 81:1127–1140. © 2013 Wiley Periodicals, Inc. 相似文献
9.
Synaptobrevin is a synaptic vesicle protein that has an essential role in exocytosis and forms the SNARE complex with syntaxin and SNAP-25. We have analyzed the structure of isolated synaptobrevin and its binary interaction with syntaxin using NMR spectroscopy. Our results demonstrate that isolated synaptobrevin is largely unfolded in solution. The entire SNARE motif of synaptobrevin is capable of interacting with the isolated C-terminal SNARE motif of syntaxin but only a few residues bind to the full-length cytoplasmic region of syntaxin. This result suggests an interaction between the N- and C-terminal regions of syntaxin that competes with core complex assembly. 相似文献
10.
Papaloukas C Granseth E Viklund H Elofsson A 《Protein science : a publication of the Protein Society》2008,17(2):271-278
Zpred2 is an improved version of ZPRED, a predictor for the Z-coordinates of alpha-helical membrane proteins, that is, the distance of the residues from the center of the membrane. Using principal component analysis and a set of neural networks, Zpred2 analyzes data extracted from the amino acid sequence, the predicted topology, and evolutionary profiles. Zpred2 achieves an average accuracy error of 2.18 A (2.17 A when an independent test set is used), an improvement by 15% compared to the previous version. We show that this accuracy is sufficient to enable the predictions of helix lengths with a correlation coefficient of 0.41. As a comparison, two state-of-the-art HMM-based topology prediction methods manage to predict the helix lengths with a correlation coefficient of less than 0.1. In addition, we applied Zpred2 to two other problems, the re-entrant region identification and model validation. Re-entrants were able to be detected with a certain consistency, but not better than with previous approaches, while incorrect models as well as mispredicted helices of transmembrane proteins could be distinguished based on the Z-coordinate predictions. 相似文献
11.
12.
Jun-Xia Lu Simon Sharpe Rodolfo Ghirlando Wai-Ming Yau Robert Tycko 《Protein science : a publication of the Protein Society》2010,19(10):1877-1896
HIV‐1 Vpu is an 81‐residue protein with a single N‐terminal transmembrane (TM) helical segment that is involved in the release of new virions from host cell membranes. Vpu and its TM segment form ion channels in phospholipid bilayers, presumably by oligomerization of TM helices into a pore‐like structure. We describe measurements that provide new constraints on the oligomerization state and supramolecular structure of residues 1–40 of Vpu (Vpu1–40), including analytical ultracentrifugation measurements to investigate oligomerization in detergent micelles, photo‐induced crosslinking experiments to investigate oligomerization in bilayers, and solid‐state nuclear magnetic resonance measurements to obtain constraints on intermolecular contacts between and orientations of TM helices in bilayers. From these data, we develop molecular models for Vpu TM oligomers. The data indicate that a variety of oligomers coexist in phospholipid bilayers, so that a unique supramolecular structure can not be defined. Nonetheless, since oligomers of various sizes have similar intermolecular contacts and orientations, molecular models developed from our data are most likely representative of Vpu TM oligomers that exist in host cell membranes. 相似文献
13.
Swint-Kruse L Elam CR Lin JW Wycuff DR Shive Matthews K 《Protein science : a publication of the Protein Society》2001,10(2):262-276
The repressor proteins of the LacI/GalR family exhibit significant similarity in their secondary and tertiary structures despite less than 35% identity in their primary sequences. Furthermore, the core domains of these oligomeric repressors, which mediate dimerization, are homologous with the monomeric periplasmic binding proteins, extending the issue of plasticity to quaternary structure. To elucidate the determinants of assembly, a structure-based alignment has been created for three repressors and four periplasmic binding proteins. Contact maps have also been constructed for the three repressor interfaces to distinguish any conserved interactions. These analyses show few strict requirements for assembly of the core N-subdomain interface. The interfaces of repressor core C-subdomains are well conserved at the structural level, and their primary sequences differ significantly from the monomeric periplasmic binding proteins at positions equivalent to LacI 281 and 282. However, previous biochemical and phenotypic analyses indicate that LacI tolerates many mutations at 281. Mutations at LacI 282 were shown to abrogate assembly, but for Y282D this could be compensated by a second-site mutation in the core N-subdomain at K84 to L or A. Using the link between LacI assembly and function, we have further identified 22 second-site mutations that compensate the Y282D dimerization defect in vivo. The sites of these mutations fall into several structural regions, each of which may influence assembly by a different mechanism. Thus, the 360-amino acid scaffold of LacI allows plasticity of its quaternary structure. The periplasmic binding proteins may require only minimal changes to facilitate oligomerization similar to the repressor proteins. 相似文献
14.
We have determined the structure of the archaeal sodium/proton antiporter NhaP1 at 7 Å resolution by electron crystallography of 2D crystals. NhaP1 is a dimer in the membrane, with 13 membrane‐spanning α‐helices per protomer, whereas the distantly related bacterial NhaA has 12. Dimer contacts in the two antiporters are very different, but the structure of a six‐helix bundle at the tip of the protomer is conserved. The six‐helix bundle of NhaA contains two partially unwound α‐helices thought to harbour the ion‐translocation site, which is thus similar in NhaP1. A model of NhaP1 based on detailed sequence comparison and the NhaA structure was fitted to the 7 Å map. The additional N‐terminal helix 1 of NhaP1, which appears to be an uncleaved signal sequence, is located near the dimer interface. Similar sequences are present in many eukaryotic homologues of NhaP1, including NHE1. Although fully folded and able to dimerize, NhaP1 constructs without helix 1 are inactive. Possible reasons are investigated and discussed. 相似文献
15.
Vereshaga YA Volynsky PE Pustovalova JE Nolde DE Arseniev AS Efremov RG 《Proteins》2007,69(2):309-325
BNIP3 is a mitochondrial 19-kDa proapoptotic protein, a member of the Bcl-2 family. It has a single COOH-terminal transmembrane (TM) alpha-helical domain, which is required for membrane targeting, proapoptotic activity, hetero- and homo-dimerization in membrane. The role and the molecular details of association of TM helices of BNIP3 are yet to be established. Here, we present a molecular modeling study of helix interactions in its membrane domain. The approach combines Monte Carlo conformational search in an implicit hydrophobic slab followed by molecular dynamics simulations in a hydrated full-atom lipid bilayer. The former technique was used for exhaustive sampling of the peptides' conformational space and for generation of putative "native-like" structures of the dimer. The latter ones were taken as realistic starting points to assess stability and dynamic behavior of the complex in explicit lipid-water surrounding. As a result, several groups of tightly packed right-handed structures of the dimer were proposed. They have almost similar helix-helix interface, which includes the motif A(176)xxxG(180)xxxG(184) and agrees well with previous mutagenesis data and preliminary NMR analysis. Molecular dynamics simulations of these structures reveal perfect adaptation of most of them to heterogeneous membrane environment. A remarkable feature of the predicted dimeric structures is the occurrence of a cluster of H-bonded histidine 173 and serines 168 and 172 on the helix interface, near the N-terminus. Because of specific polar interactions between the monomers, this part of the dimer has no such dense packing as the C-terminal one, thus allowing penetration of water from the extramembrane side into the membrane interior. We propose that the ionization state of His(173) can mediate structural and dynamic properties of the dimer. This, in turn, may be related to pH-dependent proapoptotic activity of BNIP3, which is triggering on by acidosis appearing under hypoxic conditions. 相似文献
16.
When localized adjacent to a Pro-kink, Thr and Ser residues can form hydrogen bonds between their polar hydroxyl group and a backbone carbonyl oxygen and thereby modulate the actual bending angle of a distorted transmembrane α-helix. We have used the homo-dimeric transmembrane cytochrome b(559)' to analyze the potential role of a highly conserved Ser residue for assembly and stabilization of transmembrane proteins. Mutation of the conserved Ser residue to Ala resulted in altered heme binding properties and in increased stability of the holo-protein, most likely by tolerating subtle structural rearrangements upon heme binding. The results suggest a crucial impact of an intrahelical Ser hydrogen bond in defining the structure of a Pro-kinked transmembrane helix dimer. 相似文献
17.
Human phospholemman (PLM) is a 72-residue protein, which is expressed at high density in the cardiac plasma membrane and in various other tissues. It forms ion channels selective for K+, Cl-, and taurine in lipid bilayers and colocalizes with the Na+/K+-ATPase and the Na+/Ca2+-exchanger, which may suggest a role in the regulation of cell volume. Here we present the first structural data based on synthetic peptides representing the transmembrane domain of PLM. Perfluoro-octaneoate-PAGE of reconstituted proteoliposomes containing PLM reveals a tetrameric homo-oligomerization. Infrared spectroscopy of proteoliposomes shows that the PLM peptide is completely alpha-helical, even beyond the hydrophobic core residues. Hydrogen/deuterium exchange experiments reveal that a core of 20-22 residues is not accessible to water, thus embedded in the lipid membrane. The maximum helix tilt is 17 degrees +/- 2 degrees obtained by attenuated total reflection infrared spectroscopy. Thus, our data support the idea of ion channel formation by the PLM transmembrane domain. 相似文献
18.
The exocyst is an evolutionarily conserved multiprotein complex required for the targeting and docking of post-Golgi vesicles to the plasma membrane. Through its interactions with a variety of proteins, including small GTPases, the exocyst is thought to integrate signals from the cell and signal that vesicles arriving at the plasma membrane are ready for fusion. Here we describe the three-dimensional crystal structure of one of the components of the exocyst, Exo70p, from Saccharomyces cerevisiae at 3.5A resolution. Exo70p binds the small GTPase Rho3p in a GTP-dependent manner with an equilibrium dissociation constant of approximately 70 microM. Exo70p is an extended rod approximately 155 angstroms in length composed principally of alpha helices, and is a novel fold. The structure provides a first view of the Exo70 protein family and provides a framework to study the molecular function of this exocyst component. 相似文献
19.
Andrias O. O'Reilly Kalypso Charalambous Andrias O. O'Reilly Kalypso Charalambous Ghasem Nurani Andrew M. Powl 《Molecular membrane biology》2013,30(8):670-676
The NaChBac sodium channel from Bacillus halodurans is a homologue of eukaryotic voltage-gated sodium channels. It can be solubilized in a range of detergents and consists of four identical subunits assembled as a tetramer. Sodium channels are relatively flexible molecules, adopting different conformations in their closed, open and inactivated states. This study aimed to design and construct a mutant version of the NaChBac protein that would insert into membranes and retain its folded conformation, but which would have enhanced stability when subjected to thermal stress. Modelling studies suggested a G219S mutant would have decreased conformational flexibility due to the removal of the glycine hinge around the proposed gating region, thereby imparting increased resistance to unfolding. The mutant expressed in Escherichia coli and purified in the detergent dodecyl maltoside was compared to wildtype NaChBac prepared in a similar manner. The mutant was incorporated into the membrane fraction and had a nearly identical secondary structure to the wildtype protein. When the thermal unfolding of the G219S mutant was examined by circular dichroism spectroscopy, it was shown to not only have a Tm ~10°C higher than the wildtype, but also in its unfolded state it retained more ordered helical structure than did the wildtype protein. Hence the G219S mutant was shown to be, as designed, more thermally stable. 相似文献
20.
Sagar Antala Sergey Ovchinnikov Hetunandan Kamisetty David Baker Robert E. Dempski 《The Journal of biological chemistry》2015,290(29):17796-17805
Members of the Zrt and Irt protein (ZIP) family are a central participant in transition metal homeostasis as they function to increase the cytosolic concentration of zinc and/or iron. However, the lack of a crystal structure hinders elucidation of the molecular mechanism of ZIP proteins. Here, we employed GREMLIN, a co-evolution-based contact prediction approach in conjunction with the Rosetta structure prediction program to construct a structural model of the human (h) ZIP4 transporter. The predicted contact data are best fit by modeling hZIP4 as a dimer. Mutagenesis of residues that comprise a central putative hZIP4 transmembrane transition metal coordination site in the structural model alter the kinetics and specificity of hZIP4. Comparison of the hZIP4 dimer model to all known membrane protein structures identifies the 12-transmembrane monomeric Piriformospora indica phosphate transporter (PiPT), a member of the major facilitator superfamily (MFS), as a likely structural homolog. 相似文献