首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of mass spectrometric techniques has been used to investigate the amino acid sequence and post-translational modifications of alpha B-crystallin isolated from bovine lenses by gel filtration chromatography and reversed-phase high performance liquid chromatography. Chromatographic fractions were analyzed by electrospray ionization mass spectrometry to determine the homogeneity and molecular weights of proteins in the fractions. The alpha B-crystallin primary gene product, its mono- and diphosphorylated forms, its N- and C-terminal truncated forms, as well as other lens proteins unrelated to the alpha B-crystallins were identified by their molecular weights. Detailed information about the sites of phosphorylation, as well as evidence supporting reassignment of Asn to Asp at position 80, was obtained by analyzing proteolytic digests of these proteins by fast atom bombardment mass spectrometry. Results of this investigation indicate that alpha B-crystallin is phosphorylated in vivo at Ser 45, Ser 59, and either Ser 19 or 21. From the specificity of phosphorylation of alpha-crystallins, it appears that there may be two different kinases responsible for their phosphorylation.  相似文献   

2.
The phosphorylation sites of two phosphorylated proteins, bovine β-casein and myelin basic protein (MBP), were identified by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry (HPLC-ESI-QITMS). The tryptic digest of each protein was separated by HPLC, the molecular weight of each peptide was determined by ESI-QITMS on line, and MS/MS spectrum of each peptide was simultaneously obtained by the combination of collision-induced desorption (CID) technique and tandem mass spectrometry (MS/MS) of QITMS. The phosphorylated peptide was identified by looking into whether the difference between the observed and predicted molecular weights of a peptide is 80 u or its integral multiple. Then the phosphorylation site was identified through manual interpretation of the MS/MS spectrum of the phosphorylated peptide or automatic SEQUEST data base-searching.  相似文献   

3.
The phosphorylation sites of two phosphorylated proteins, bovine β-casein and myelin basic protein (MBP), were identified by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry (HPLC-ESI-QITMS). The tryptic digest of each protein was separated by HPLC, the molecular weight of each peptide was determined by ESI-QITMS on line, and MS/MS spectrum of each peptide was simultaneously obtained by the combination of collision-induced desorption (CID) technique and tandem mass spectrometry (MS/MS) of QITMS. The phosphorylated peptide was identified by looking into whether the difference between the observed and predicted molecular weights of a peptide is 80 u or its integral multiple. Then the phosphorylation site was identified through manual interpretation of the MS/MS spectrum of the phosphorylated peptide or automatic SEQUEST data base-searching.  相似文献   

4.
We have developed a new and sensitive LC-MS platform, Extended Range Proteomic Analysis (ERPA), which is able to achieve very high sequence coverage and comprehensive characterization of post-translational modifications in complex proteins. This new platform provides advantages of both the top-down and bottom-up proteomic approaches by combining (i) digestion of the protein with an enzyme, such as Lys-C, which cuts less frequently than trypsin, leading to on average a higher molecular weight peptide size, (ii) high-performance LC separation of the resulting fragments, (iii) a new data acquisition strategy using the LTQ-FTMS, a hybrid mass spectrometer that couples a linear ion trap with a Fourier transform ion cyclotron resonance (FTICR) cell, for analysis of peptides in the range of 0.5 to 10 kDa, and (iv) new data analysis methods for assigning large peptide structures and determining the site of attachment of post-translational modifications as well as structural features from the accurate precursor mass together with MS(2) and MS(3) fragmentations. The LC retention of the Lys-C fragments is increased, relative to a tryptic digest, due to the generally greater hydrophobicity of the larger peptides, a result that is particularly important for peptides containing hydrophilic modifications such as glycosylation and phosphorylation. Furthermore, additional positively charged arginine and lysine residues in the Lys-C fragments enhance the sensitivity of the post-translationally modified phospho- and glycopeptides by at least 10-fold relative to tryptic fragments. In typical operation, the FTICR cell provides a survey scan with the high mass resolution (> 100 000) and accurate mass (<2 ppm) to characterize the higher charge-state precursor ions of the larger peptides. In parallel, the linear ion trap provides MS(2) and MS(3) fragmentation spectra, with a scan speed sufficiently fast for on-line LC-MS. Together, these data provide multiple means to determine or enhance the confidence of assignment of large or complicated peptide. Using ERPA, we demonstrate >95% sequence coverage in the analysis of two heavily phosphorylated and glycosylated proteins, beta-casein at the 50 fmole level and the epidermal growth factor receptor (EGFR) at the 1 pmole level. In summary, the combination of digestion strategy, high-performance separation, and the hybrid LTQ-FTMS instrument enables comprehensive characterization of large proteins, including posttranslational modifications.  相似文献   

5.
The high-throughput nature of proteomics mass spectrometry is enabled by a productive combination of data acquisition protocols and the computational tools used to interpret the resulting spectra. One of the key components in mainstream protocols is the generation of tandem mass (MS/MS) spectra by peptide fragmentation using collision induced dissociation, the approach currently used in the large majority of proteomics experiments to routinely identify hundreds to thousands of proteins from single mass spectrometry runs. Complementary to these, alternative peptide fragmentation methods such as electron capture/transfer dissociation and higher-energy collision dissociation have consistently achieved significant improvements in the identification of certain classes of peptides, proteins, and post-translational modifications. Recognizing these advantages, mass spectrometry instruments now conveniently support fine-tuned methods that automatically alternate between peptide fragmentation modes for either different types of peptides or for acquisition of multiple MS/MS spectra from each peptide. But although these developments have the potential to substantially improve peptide identification, their routine application requires corresponding adjustments to the software tools and procedures used for automated downstream processing. This review discusses the computational implications of alternative and alternate modes of MS/MS peptide fragmentation and addresses some practical aspects of using such protocols for identification of peptides and post-translational modifications.  相似文献   

6.
We have developed a strategy to characterize protein isoforms, resulting from single-point mutations and post-translational modifications. This strategy is based on polyacrylamide gel electrophoresis separation of protein isoforms, mass spectrometry (MS) and MSn analyses of intact proteins, and tandem MS analyses of proteolytic peptides. We extracted protein isoforms from polyacrylamide gels by passive elution using SDS, followed by nanoscale hydrophilic phase chromatography for SDS removal. We performed electrospray ionization MS analyses of the intact proteins to determine their molecular mass, allowing us to draw hypotheses on the nature of the modification. In the case of labile post-translational modifications, like phosphorylations and glycosylations, we conducted electrospray ionization MSn analyses of the intact proteins to confirm their presence. Finally, after digestion of the proteins in solution, we performed tandem MS analyses of the modified peptides to locate the modifications. Using this strategy, we have determined the molecular mass of 5-10 pmol of a protein up to circa 50 kDa loaded on a gel with a 0.01% mass accuracy. The efficiency of this approach for the characterization of protein variants and post-translational modifications is illustrated with the study of a mixture of kappa-casein isoforms, for which we were able to identify the two major variants and their phosphorylation site and glycosylation motif. We believe that this strategy, which combines two-dimensional gel electrophoresis and mass spectrometric analyses of gel-eluted intact proteins using a benchtop ion trap mass spectrometer, represents a promising approach in proteomics.  相似文献   

7.
Peptide mass fingerprinting   总被引:10,自引:0,他引:10  
Peptide mass fingerprinting by MALDI-MS and sequencing by tandem mass spectrometry have evolved into the major methods for identification of proteins following separation by two-dimensional gel electrophoresis, SDS-PAGE or liquid chromatography. One main technological goal of proteome analyses beside high sensitivity and automation was the comprehensive analysis of proteins. Therefore, the protein species level with the essential information on co- and post-translational modifications must be achieved. The power of peptide mass fingerprinting for protein identification was described here, as exemplified by the identification of protein species with high molecular masses (spectrin alpha and beta), low molecular masses (elongation factor EF-TU fragments), splice variants (alpha A crystallin), aggregates with disulfide bridges (alkylhydroperoxide reductase), and phosphorylated proteins (heat shock protein 27). Helpful tools for these analyses were the use of the minimal protein identifier concept and the software program MS-Screener to remove mass peaks assignable to contaminants and neighbor spots.  相似文献   

8.
Protein and peptide mass analysis and amino acid sequencing by mass spectrometry is widely used for identification and annotation of post-translational modifications (PTMs) in proteins. Modification-specific mass increments, neutral losses or diagnostic fragment ions in peptide mass spectra provide direct evidence for the presence of post-translational modifications, such as phosphorylation, acetylation, methylation or glycosylation. However, the commonly used database search engines are not always practical for exhaustive searches for multiple modifications and concomitant missed proteolytic cleavage sites in large-scale proteomic datasets, since the search space is dramatically expanded. We present a formal definition of the problem of searching databases with tandem mass spectra of peptides that are partially (sub-stoichiometrically) modified. In addition, an improved search algorithm and peptide scoring scheme that includes modification specific ion information from MS/MS spectra was implemented and tested using the Virtual Expert Mass Spectrometrist (VEMS) software. A set of 2825 peptide MS/MS spectra were searched with 16 variable modifications and 6 missed cleavages. The scoring scheme returned a large set of post-translationally modified peptides including precise information on modification type and position. The scoring scheme was able to extract and distinguish the near-isobaric modifications of trimethylation and acetylation of lysine residues based on the presence and absence of diagnostic neutral losses and immonium ions. In addition, the VEMS software contains a range of new features for analysis of mass spectrometry data obtained in large-scale proteomic experiments. Windows binaries are available at http://www.yass.sdu.dk/.  相似文献   

9.

Background  

The observed molecular weight of a protein on a 1D polyacrylamide gel can provide meaningful insight into its biological function. Differences between a protein's observed molecular weight and that predicted by its full length amino acid sequence can be the result of different types of post-translational events, such as alternative splicing (AS), endoproteolytic processing (EPP), and post-translational modifications (PTMs). The characterization of these events is one of the important goals of total proteome profiling (TPP). LC/MS/MS has emerged as one of the primary tools for TPP, but since this method identifies tryptic fragments of proteins, it has not generally been used for large-scale determination of the molecular weight of intact proteins in complex mixtures.  相似文献   

10.
At present, mass spectrometry provides a rapid and sensitive means for making conclusive protein identifications from complex mixtures. Sequencing tryptic peptides derived from proteolyzed protein samples, also known as the "Bottom Up" approach, is the mass spectrometric gold standard for identifying unknowns. An alternative technology, "Top Down" characterization, is emerging as a viable option for protein identifications, which involves analyzing the intact unknowns for accurate mass and amino acid sequence tags. In this paper, both characterization methods were employed to more comprehensively differentiate two early-eluting peaks in a process-scale size-exclusion chromatography (SEC) step for a recombinant, immunoglobulin gamma-1 (IgG-1) fusion protein. The contents of each SEC peak were enzymatically digested, and the resulting peptides were mapped using reversed-phase (RP) HPLC-ion trap MS. Many low-level UV signals were observed among the fusion protein-related peptide peaks. These unknowns were collected, concentrated, and analyzed using nanoelectrospray (nanoES) collision-induced dissociation (CID) tandem (MS/MS) mass spectrometry for identification. The peptide sequencing experiments resulted in the identification of twenty host cell-related proteins. Following peptide mapping, the contents of the two SEC peaks were protein mass profiled using on-line RP HPLC coupled to a high-resolution, quadrupole time-of-flight (Qq/TOF) MS. Unknown proteins were also collected, concentrated, and dissociated using nanoES CID MS/MS. Intact protein CID experiments and accurate molecular weight information allowed for the identification of three full length host cell-derived proteins and numerous clips from these and additional proteins. The accurate molecular weight values allowed for the assignment of N- and C-terminal processing, which is difficult to conclusively access from peptide mapping data. The peptide-mapping experiments proved to be far more effective for making protein identifications from complex mixtures, whereas the protein mass profiling was useful for assessing modifications and distinguishing protein clips from full length species.  相似文献   

11.
Finding gene-specific peptides by mass spectrometry analysis to pinpoint gene loci responsible for particular protein products is a major challenge in proteomics especially in highly conserved gene families in higher eukaryotes. We used a combination of in silico approaches coupled to mass spectrometry analysis to advance the proteomics insight into Arabidopsis cytosolic ribosomal composition and its post-translational modifications. In silico digestion of all 409 ribosomal protein sequences in Arabidopsis defined the proportion of theoretical gene-specific peptides for each gene family and highlighted the need for low m/z cutoffs of MS ion selection for MS/MS to characterize low molecular weight, highly basic ribosomal proteins. We undertook an extensive MS/MS survey of the cytosolic ribosome using trypsin and, when required, chymotrypsin and pepsin. We then used custom software to extract and filter peptide match information from Mascot result files and implement high confidence criteria for calling gene-specific identifications based on the highest quality unambiguous spectra matching exclusively to certain in silico predicted gene- or gene family-specific peptides. This provided an in-depth analysis of the protein composition based on 1446 high quality MS/MS spectra matching to 795 peptide sequences from ribosomal proteins. These identified peptides from five gene families of ribosomal proteins not identified previously, providing experimental data on 79 of the 80 different types of ribosomal subunits. We provide strong evidence for gene-specific identification of 87 different ribosomal proteins from these 79 families. We also provide new information on 30 specific sites of co- and post-translational modification of ribosomal proteins in Arabidopsis by initiator methionine removal, N-terminal acetylation, N-terminal methylation, lysine N-methylation, and phosphorylation. These site-specific modification data provide a wealth of resources for further assessment of the role of ribosome modification in influencing translation in Arabidopsis.  相似文献   

12.
13.
Proteomics based approaches, which examine the expressed proteins of a tissue or cell type, complement the genome initiatives and are increasingly used to address biomedical questions. Proteins are the main functional output, and post-translational modifications such as phosphorylation are very important in determining protein function. To address this question, we developed a method for specific immunoprecipitation using anti-phosphotyrosine antibodies. This method is directly compatible with two-dimensional gel electrophoresis (2-DE). In this report data are presented on B-lymphoblasts from a patient suffering of Scott syndrome. Scott syndrome is an orphan inherited hemorrhagic disorder due to a lack of exposure of procoagulant phosphatidylserine at the exoplasmic leaflet of plasma membrane of blood cells. We hypothesized that a consequence of the mutation is to alter phosphorylation of proteins involved in signal transduction leading to breakdown in cellular signaling pathways mediating phosphatidylserine exposure. An immunoprecipitation method combined with 2-DE was applied to search for modifications in the expression of phosphorylated polypeptides related to Scott syndrome phenotype. We report here the construction of a B-lymphoblast subproteomic map comprising of polypeptides observed after immunoprecipitation using antibodies to phosphotyrosine. The polypeptides were identified either by mass fingerprinting, by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and/or by matching with various lymphoid cell 2-DE maps included in the Laboratoire de Biochimie des Protéines et Protéomique 2-DE database. A differential analysis was further performed to explore several hundred proteins in Scott B-lymphoblasts in comparison with control B-lymphoblasts. Then, image analysis allowed detection of variations between control and Scott syndrome phenotype lymphoblasts. Five spots were specifically found on 2-DE from Scott syndrome phenotype lymphoblasts, and four only appeared on 2-DE from control cells. Protein identification was achieved using a combination of mass fingerprinting and peptide identification using LC-MS/MS.  相似文献   

14.
Molecular chaperone activity of lens alpha-crystallins is reduced by loss of the C terminus. The purpose of this experiment was to 1) determine the cleavage sites produced in vitro by ubiquitous m-calpain and lens-specific Lp82 on alpha-crystallins, 2) identify alpha-crystallin cleavage sites produced in vivo during maturation and cataract formation in rat lens, and 3) estimate the relative activities of Lp82 and m-calpain by appearance of protease-specific cleavage products in vivo. Total soluble protein from young rat lens was incubated with recombinant m-calpain or Lp82 and 2 mM Ca2+. Resulting fragmented alpha-crystallins were separated by two-dimensional gel electrophoresis. Eluted alpha-crystallin spots were analyzed by mass spectrometry. Cleavage sites on insoluble alpha-crystallins were determined similarly in mature rat lens nucleus and in cataractous rat lens nucleus induced by selenite. In vitro proteolysis of alphaA-crystallin by Lp82 and m-calpain produced unique cleavage sites by removing 5 and 11 residues, respectively, from the C terminus. In vivo, the protease-specific truncations removing 5 and 11 residues from alphaA were both found in maturing lens, whereas only the truncation removing 5 residues was found in cataractous lens. Other truncation sites, common to both calpain isoforms, resulted from the removal of 8, 10, 16, 17, and 22 residues from the C terminus of alphaA. Using uniquely truncated alphaA-crystallins as in vivo markers, Lp82 and m-calpain were both found to be active during normal maturation of rat lens, whereas Lp82 seemed especially active during selenite cataract formation. These C-terminal truncations decrease chaperone activity of alpha-crystallins, possibly leading to the observed increases in insoluble proteins during aging and cataract. The methodology that allowed accurate mass measurements of proteins eluted from 2D gels should be useful to examine rapidly other post-translational modifications.  相似文献   

15.
On stimulation, rhodopsin, the light-sensing protein in the rod cells of the retina, is phosphorylated at several sites on its C terminus as the first step in deactivation. We have developed a mass spectrometry-based method to quantify the kinetics of phosphorylation at each site in vivo. After exposing either a freshly dissected mouse retina or the eye of an anesthetized mouse to a flash of light, phosphorylation and dephosphorylation reactions are terminated by rapidly homogenizing the retina or enucleated eye in 8 M urea. The C-terminal peptide containing all known phosphorylation sites is cleaved from rhodopsin, partially purified by ultracentrifugation, and analyzed by liquid chromatography coupled with mass spectrometry (LCMS). The mass spectrometer responds linearly to the peptide from 10 fmole to 100 pmole. The relative sensitivity to peptides with zero to five phosphates was determined using purified phosphopeptide standards. High pressure liquid chromatography (HPLC) coupled with tandem mass spectrometry (LCMS/MS) was used to distinguish the three primary sites of phosphorylation, Ser 334, Ser 338, and Ser 343. Peptides monophosphorylated on Ser 334 were separable from those monophosphorylated on Ser 338 and Ser 343 by reversed-phase HPLC. Although peptides monophosphorylated at Ser 338 and Ser 343 normally coelute, the relative amounts of each species in the single peak could be determined by monitoring the ratio of specific daughter ions characteristic of each peptide. Doubly phosphorylated rhodopsin peptides with different sites of phosphorylation also were distinguished by LCMS/MS. The sensitivity of these methods was evaluated by using them to measure rhodopsin phosphorylation stimulated either by light flashes or by continuous illumination over a range of intensities.  相似文献   

16.
A two-dimensional (2-D) liquid phase separation method, liquid isoelectric focusing followed by nonporous reversed-phase high performance liquid chromatography (HPLC), was used to separate proteins from human ovarian epithelial whole cell lysates. HPLC eluent was interfaced on-line to an electrospray ionization (ESI) time of flight (TOF) mass spectrometer to obtain accurate intact protein molecular weights (Mr). 2-D protein expression maps were generated displaying protein isoelectric point (pI) versus intact protein Mr. Resulting 2-D images effectively displayed quantitative differential protein expression in ovarian cancer cells versus non-neoplastic ovarian epithelial cells. Protein peak fractions were collected from the HPLC eluent, enzymatically digested, and analyzed by matrix-assisted laser desorption/ionization (MALDI) TOF-mass spectrometry (MS) peptide mass fingerprinting and by MALDI-quadrupole TOF tandem mass spectrometry peptide sequencing. Interlysate comparisons of differential protein expression between two ovarian adenocarcinoma cell lines, ES2 and MDAH-2774, and ovarian surface epithelial cells was performed. Five pI fractions from each sample were selected for comparative study and over 300 unique proteins were positively identified from the 2-D liquid expression maps using MS, which covered around 60% of proteins detected by on-line ESI-TOF-MS. This represents one of the most comprehensive proteomic analyses of ovarian cancer samples to date. Protein bands with significant up- or down-regulation in one cell line versus another as viewed in the 2-D expression maps were identified. This strategy may prove useful in identifying novel ovarian cancer marker proteins.  相似文献   

17.
Rapid identification of proteins by peptide-mass fingerprinting   总被引:33,自引:0,他引:33  
BACKGROUND: Developments in 'soft' ionisation techniques have revolutionized mass-spectro-metric approaches for the analysis of protein structure. For more than a decade, such techniques have been used, in conjuction with digestion b specific proteases, to produce accurate peptide molecular weight 'fingerprints' of proteins. These fingerprints have commonly been used to screen known proteins, in order to detect errors of translation, to characterize post-translational modifications and to assign diulphide bonds. However, the extent to which peptide-mass information can be used alone to identify unknown sample proteins, independent of other analytical methods such as protein sequence analysis, has remained largely unexplored. RESULTS: We report here on the development of the molecular weight search (MOWSE) peptide-mass database at the SERC Daresbury Laboratory. Practical experience has shown that sample proteins can be uniquely identified from a few as three or four experimentally determined peptide masses when these are screened against a fragment database that is derived from over 50 000 proteins. Experimental errors of a few Daltons are tolerated by the scoring algorithms, thus permitting the use of inexpensive time-of-flight mass spectrometers. As with other types of physical data, such as amino-acid composition or linear sequence, peptide masses provide a set of determinants that are sufficiently discriminating to identify or match unknown sample proteins. CONCLUSION: Peptide-mass fingerprints can prove as discriminating as linear peptide sequences, but can be obtained in a fraction of the time using less protein. In many cases, this allows for a rapid identification of a sample protein before committing it to protein sequence analysis. Fragment masses also provide information, at the protein level, that is complementary to the information provided by large-scale DNA sequencing or mapping projects.  相似文献   

18.
Nitric oxide is an important mediator that participates in reduction-oxidation (redox) mechanisms and in cellular signal transduction pathways. Two types of post-translational modifications are induced by nitric oxide: S-nitrosylation of cysteine residues and nitration of tyrosine residues. Two-dimensional gel electrophoresis-based Western blotting was used to detect, and liquid chromatography (LC)-tandem mass spectrometry (MS/MS) to determine the amino acid sequence of, several different nitrated proteins in the human pituitary. Proteins from several 2D gel spots, which corresponded to the strongly positive anti-nitrotyrosine Western blot spots, were subjected to in-gel trypsin-digestion and LC-MS/MS analysis. MS/MS, SEQUEST analysis, and de novo sequencing were used to determine the nitration site of each nitrated peptide. A total of four different nitrated peptides were characterized and were matched to four different proteins: synaptosomal-associated protein, actin, immunoglobulin alpha Fc receptor, and cGMP-dependent protein kinase 2. Those nitrotyrosyl-proteins participate in neurotransmission, cellular immunity, and cellular structure and mobility.  相似文献   

19.
Single-cell MALDI: a new tool for direct peptide profiling   总被引:7,自引:0,他引:7  
Matrix-assisted laser desorption-ionization (MALDI) mass spectrometry (MS) is a rapid and sensitive analytical approach that is well suited for obtaining molecular weights of peptides and proteins from complex samples. MALDI-MS can profile the peptides and proteins from single-cell and small tissue samples without the need for extensive sample preparation, except for the cell isolation and matrix application. Strategies for peptide identification and characterization of post-translational modifications are presented. Furthermore, several recent enhancements in MALDI-MS technology, including in situ peptide sequencing as well as the direct spatial mapping of peptides in cells and tissues are discussed.  相似文献   

20.
Proteomics based on two-dimensional (2-D) gel electrophoresis of proteins followed by spot identification with mass spectrometry is a commonly used method for physiological studies. Physiological proteomics requires 2-D reference maps, on which most of the main proteins are identified. We present a reference map for the bacterial plant pathogen Agrobacterium tumefaciens proteins, which contains more than 300 entries with an isoelectric point (pI) between 4 and 7. The quantitative study of the proteins in the analytical window of the master gel demonstrated unique features, in comparison with other bacteria. In addition, a theoretical analysis of several protein parameters was performed and compared with the experimental results. A comparison of the theoretical molecular weight (MW) of the proteins and their theoretical pI with their vertical and horizontal migration distances, respectively, pointed out the existence of several proteins that strongly diverted from the graph trend-line. These proteins were clearly subjected to post-translational modifications, which changed their pI and/or MW. Additional support for post-translational modifications comes from the identification of multiple spots of the same gene products. Post-translational modifications appear to be more common than expected, at least for soluble proteins, as more than 10% of the proteins were associated with multiple spots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号