首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.
Izzo A  Nguyen DT  Bruns TD 《Mycologia》2006,98(3):374-383
In this study we analyzed the spatial structure of ectomycorrhizal fungi present in the soils as resistant propagules (e.g. spores or sclerotia) in a mixed-conifer forest in the Sierra Nevada, California. Soils were collected under old-growth Abies spp. stands across approximately 1 km and bioassayed with seedlings of hosts that establish best in stronger light (Pinus jeffreyi) or that are shade-tolerant (Abies concolor). Ectomycorrhizal fungi colonizing the roots were characterized with molecular techniques (ITSRFLP and DNA sequence analysis). Wilcoxina, five Rhizopogon species and Cenococcum were the most frequent of 17 detected species. No spatial structure was detected in the resistant propagule community as a whole, but P. jeffreyi seedlings had higher species richness and associated with seven Rhizopogon species that were not detected on A. concolor seedlings. We drew two conclusions from comparisons between this study and a prior study of the ectomycorrhizal community on mature trees in the same forest: (i) the resistant propagule community was considerably simpler and more homogeneous than the active resident community across the forest and (ii) Cenococcum and Wilcoxina species are abundant in both communities.  相似文献   

2.
Avis PG  Charvat I 《Mycologia》2005,97(2):329-337
The inoculum of ectomycorrhizal (EM) fungi was examined in a 16 y long nitrogen fertilization experiment maintained in a temperate oak savanna. To measure EM fungal inoculum, bur oak seedlings were grown in three types of bioassays: (i) intact soil cores that measure inoculum such as spores, mycelia and mycorrhizal roots; (ii) resistant propagule bioassays that measure inoculum types resistant to soil drying; and (iii) previously mycorrhizal root bioassays that measure the ability of EM fungi to colonize new roots from mycorrhizal roots. Colonization of bur oak seedlings was characterized by morphotyping and where necessary by restriction analysis and internal transcribed spacer (ITS) sequencing. Fourteen morphotypes were found in intact soil core bioassays with species of Cortinarius, Cenococcum and Russula abundant. Five morphotypes were found in resistant propagule bioassays with Cenococcum, a thelephoroid morphotype and a Wilcoxina-like ascomycete abundant and frequent. In intact soil core bioassays total percent root colonization and number of morphotypes were not affected by N supply in 2000 and 2001. However the composition of EM fungi colonizing oak seedling roots was different with increased N supply such that Russula spp. (primarily Russula aff. amoenolens) were most abundant at the highest level of N supply. Dominant Russula spp. did not colonize any roots in resistant propagule bioassays but did colonize oak seedling roots from previously mycorrhizal roots. Results suggest that in this savanna N supply can influence the kinds of inoculum propagules present and thereby might affect the dynamics of ectomycorrhizal communities by differentially influencing reproductive and colonization strategies.  相似文献   

3.
Disentangling the ecological factors that contribute to the assembly of the microbial symbiont communities within eukaryotic hosts is an ongoing challenge. Broadly speaking, symbiont propagules arrive either from external sources in the environment or from internal sources within the same host individual. To understand the relative importance of these propagule sources to symbiont community assembly, we characterized symbiotic fungal endophyte communities within the roots of three species of beachgrass in a field experiment. We manipulated two aspects of the external environment, successional habitat and physical disturbance. To determine the role of internal sources of propagules for endophyte community assembly, we used beachgrass individuals with different pre‐existing endophyte communities. Endophyte species richness and community composition were characterized using culture‐based and next‐generation sequencing approaches. Our results showed that external propagule sources associated with successional habitat, but not disturbance, were particularly important for colonization of most endophytic taxa. In contrast, internal propagule sources played a minor role for most endophytic taxa but were important for colonization by the dominant taxon Microdochium bolleyi. Our findings highlight the power of manipulative field experiments to link symbiont community assembly to its underlying ecological processes, and to ultimately improve predictions of symbiont community assembly across environments.  相似文献   

4.
Ding Q  Liang Y  Legendre P  He XH  Pei KQ  Du XJ  Ma KP 《Mycorrhiza》2011,21(8):669-680
As the main source of inocula, ectomycorrhizal (ECM) fungal propagules are critical for root colonization and seedling survival in deforested areas. It is essential to know factors that may affect the diversity and composition of ECM fungal community on roots of seedlings planted in deforest areas during reforestation. We quantitatively evaluated the effect of host plant and soil origin on ECM fungal propagule community structure established on roots of Castanopsis fargesii, Lithocarpus harlandii, Pinus armandii, and Pinus massoniana growing in soils from local natural forests and from sites deforested by clear-cut logging in the 1950s and 1960s. ECM root tips were sampled in April, July, and October of 2006, and ECM fungal communities were determined using ECM root morphotyping, internal transcribed spacer (ITS)-RFLP, and ITS sequencing. A total of 36 ECM fungal species were observed in our study, and species richness varied with host species and soil origin. Decreased colonization rates were found in all host species except for L. harlandii, and reduced species richness was found in all host species except for P. armandii in soil from the deforested site, which implied the great changes in ECM fungal community composition. Our results showed that 33.3% variance in ECM fungal community composition could be explained by host plant species and 4.6% by soil origin. Results of indicator species analysis demonstrated that 14 out of 19 common ECM fungal species showed significant preference to host plant species, suggesting that the host preference of ECM fungi was one of the most important mechanisms in structuring ECM fungal community. Accordingly, the host plant species should be taken into account in the reforestation of deforested areas due to the strong and commonly existed host preference of ECM fungi.  相似文献   

5.
The potential for mycorrhizae to influence the diversity and structuring of plant communities depends on whether their affinities and effects differ across a suite of potential host species. In order to assess this potential for a tropical forest community in Panama, we conducted three reciprocal inoculation experiments using seedlings from six native tree species. Seeds were germinated in sterile soil and then exposed to arbuscular mycorrhizal fungi in current association with naturally infected roots from adults of either the same or different species growing in intact forest. The tree species represent a range of life histories, including early successional pioneers, a persistent understory species, and emergent species, typical of mature forest. Collectively, these experiments show: (i) the seedlings of small-seeded pioneer species were more dependent on mycorrhizal inocula for initial survival and growth; (ii) although mycorrhizal fungi from all inocula were able to colonize the roots of all host species, the inoculum potential (the infectivity of an inoculum of a given concentration) and root colonization varied depending on the identity of the host seedling and the source of the inoculum; and (iii) different mycorrhizal fungal inocula also produced differences in growth depending on the host species. These differences indicate that host–mycorrhizal fungal interactions in tropical forests are characterized by greater complexity than has previously been demonstrated, and suggest that tropical mycorrhizal fungal communities have the potential to differentially influence seedling recruitment among host species and thereby affect community composition.  相似文献   

6.
Investigating the dynamics of ectomycorrhizal fungal (EMF) communities in seasonally dry tropical forests is essential for sustainable management and for understanding the resilience of this forest type in future climate change scenarios. EMF communities in secondary forest fragments with Shorea siamensis as a single host tree species in central Thailand were sampled seasonally for 2.5 y. Ten EMF taxa were identified from ectomycorrhizal morphotypes, with/tomentella-thelephora and/russula-lactarius as the dominant taxa. Seasonal differences in EMF diversity were not detected; the dominant morphotypes were present in both seasons and their abundance varied. Most EMF taxa exhibited wide environmental ranges and only a few taxa were correlated with soil moisture. Seasonal dynamics of ectomycorrhizal colonization was likely influenced by climatic factors and the phenology of host species. Together, these results suggested that climatic variation may have a long-term and subtle influence on the composition of ectomycorrhizal communities.  相似文献   

7.
The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction–restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.  相似文献   

8.
Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species (Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora, accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal–tree–soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.  相似文献   

9.
To advance our understanding of ectomycorrhizal fungal communities in mining areas, the diversity and composition of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana Lamb.) and soil chemistry were investigated in Taolin lead–zinc (Pb–Zn) mine tailings (TLT), two fragmented forest patches in a Huayuan Pb–Zn mineland (HY1 and HY2), and a non-polluted forest in Taolin in central south China. Ectomycorrhizal fungal species were identified by morphotyping and sequence analyses of the internally transcribed spacer regions of ribosomal DNA. The two study sites in the Huayuan mineland (HY1 and HY2) were significantly different in soil Pb, Zn, and cadmium (Cd) concentrations, but no significant difference was observed in ectomycorrhizal colonization, ectomycorrhizal fungal richness, diversity, or rank–abundance. In addition, the similarity of ectomycorrhizal fungal communities between HY1 and HY2 was quite high (S?rensen similarity index?=?0.47). Thus, the concentration of heavy metals may not be determining factors in the structure of these communities. In the tailings, however, significantly lower ectomycorrhizal colonization and ectomycorrhizal fungal richness were observed. The amounts of Pb and Zn in the tailing sand were higher than the non-polluted forest but far lower than in HY1. Thus, these heavy metals did not account for the reduced colonization and ectomycorrhizal fungal richness in TLT. The ectomycorrhizal fungal community in TLT was dominated by four pioneer species (Rhizopogon buenoi, Tomentella ellisii, Inocybe curvipes, and Suillus granulatus), which collectively accounted for 93.2?% of root tip colonization. The immature soil conditions in tailing (low N and P, sand texture, and lack of organic matter) may only allow certain pioneer ectomycorrhizal fungal species to colonize the site. When soil samples from four sites were combined, we found that the occurrences of major ectomycorrhizal fungal taxa were not clearly related to the concentrations of Pb, Zn, and Cd. In conclusion, our results suggest that ectomycorrhizal fungal communities in mining areas are not necessarily affected by heavy metals themselves but could be largely determined by soil maturity.  相似文献   

10.
赵南星  韩其晟  黄建 《生态学杂志》2017,28(12):3855-3861
为更好地恢复和保存白皮松天然林,在陕西省白皮松残存林地采集根际土壤,采用幼苗检测法获取土壤外生菌根真菌繁殖体,用形态观察分类与ITS-PCR-sequencing相结合的方法进行菌根鉴定,研究白皮松林地外生菌根真菌土壤繁殖体库的组成.结果表明: 在白皮松幼苗菌根中共获得73个特异性序列;按照97%的相似度阈值,将序列划分为12个可操作分类单元(OTUs);稀疏曲线分析表明,本研究基本获得了白皮松土壤外生菌根繁殖体库的多样性.常见种有土生空团菌、Tomentella sp.、Tuber sp.等.出现频率最高的一个OTU(80%)与已知种类相似度较低(75%),说明其可能是一个新的菌根菌种类.白皮松残存天然林地的外生菌根繁殖体库中具有其他松科植物土壤繁殖体库常见的种类,但是频率最高的种类未能鉴定到已知属或科,说明白皮松菌根繁殖体库具有其宿主特异性.这种群落特异构成也说明研究和利用白皮松土壤外生菌根真菌繁殖体库具有特殊性和重要性.  相似文献   

11.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

12.
We conducted bioassay experiments to investigate the soil propagule banks of ectomycorrhizal (EM) fungi in old-growth forests along an elevation gradient and compared the elevation pattern with the composition of EM fungi on existing roots in the field. In total, 150 soil cores were collected from three forests on Mt. Ishizuchi, western Japan, and subjected to bioassays using Pinus densiflora and Betula maximowicziana. Using molecular analyses, we recorded 23 EM fungal species in the assayed propagule banks. Eight species (34.8 %) were shared across the three sites, which ranged from a warm–temperate evergreen mixed forest to a subalpine conifer forest. The elevation pattern of the assayed propagule banks differed dramatically from that of EM fungi on existing roots along the same gradient, where only a small proportion of EM fungal species (3.5 %) were shared across sites. The EM fungal species found in the assayed propagule banks included many pioneer fungal species and composition differed significantly from that on existing roots. Furthermore, only 4 of 23 species were shared between the two host species, indicating a strong effect of bioassay host identity in determining the propagule banks of EM fungi. These results imply that the assayed propagule bank is less affected by climate compared to EM fungal communities on existing roots. The dominance of disturbance-dependent fungal species in the assayed propagule banks may result in higher ecosystem resilience to disturbance even in old-growth temperate forests.  相似文献   

13.
As anthropogenic N deposition has been suspected to be the main reason for the decline of macromycetous sporocarp production in forest ecosystems, various N-fertilization experiments were started in the mid 1990s. The dynamics of ectomycorrhizal (root-inhabiting) and terricolous saprobic (litter-inhabiting) fungal communities were studied by exhaustive sporocarp inventories in a substitution Norway spruce (Picea abies) forest in two 256-m2 plots sampled for periods of 1 week at 1-m2 resolution between 1994 and 2007. N was added to the soil twice per year in one plot from the fourth year onwards. The effects of N input and time on aboveground fungal communities were assessed using redundancy analysis, principal response curves and non-parametric multivariate ANOVA. Results of this long-term experiment revealed that both ectomycorrhizal and saprobic fungal communities responded to an increase in soil N input. The ectomycorrhizal community reacted by a fast decrease in sporocarp production and in species richness, whereas the saprobic community was less affected. The response was highly species specific, especially for the saprobic community. The difference in species composition between control and fertilized plots was significant after 1 year of N addition for ectomycorrhizal fungi and only after 3 years for saprobic fungi. An aging effect affected sporocarp production in the whole area. For both communities, this unidirectional drift in species composition was as important as the treatment effect. This result highlights the importance of considering the respective role of treatment and year effects in long-term field experiments on fungal communities.  相似文献   

14.
Extensive knowledge of various ectomycorrhizal fungal communities has been obtained over the past 10 years based on molecular identification of the fungi colonizing fine roots. In contrast, only limited information exists about the species composition of ectomycorrhizal hyphae in soil. This study compared the ectomycorrhizal external mycelial community with the adjacent root-tip community in a Danish beech forest. Sand-filled in-growth mesh bags were used to trap external mycelia by incubating the mesh bags in the soil for 70 days. The adjacent ectomycorrhizal root-tip communities were recorded at the times of insertion and retrieval of the mesh bags. Ectomycorrhizal fungi were identified by sequencing the internal transcribed spacer region. In total, 20, 31 and 24 ectomycorrhizal species were recorded from the two root-tip harvests and from the mesh bags, respectively. Boletoid species were significantly more frequent as mycelia than as root tips, while russuloid and Cortinarius species appeared to be less dominant as mycelia than as root tips. Tomentella species were equally frequent as root tips and as mycelia. These discrepancies between the root-tip and the mycelial view of the ectomycorrhizal fungal community are discussed within the framework of ectomycorrrhizal exploration types.  相似文献   

15.
Plant–soil feedbacks have been observed in many forest communities, but the role of the mycorrhizal community in perpetuating feedback loops is still poorly understood. Mycorrhizal community composition is closely linked to soil properties and host plant composition, which highlights their potential importance in plant–soil–fungus loops. Eastern hemlock (hemlock; Tsuga canadensis) seedlings were grown in soil bioassays in growth chambers and transplanted under closed forest canopy to examine the effect of hardwood and hemlock forest soil on seedling growth, survival, and ectomycorrhizal fungi (EMF) colonization. Seedlings propagated in hemlock forest soil had greater height growth compared with sterile control soil and achieved greater mycorrhizal colonization than seedlings grown in hardwood forest soils after 9 months in a growth chamber. Outplanted seedlings grown in hemlock communities achieved significantly greater increment growth than those seedlings grown in hardwood communities (mean height difference (95% CI)?=?0.39 cm (0.14–0.63 cm)), although final survival and EMF colonization was similar between forest types. EMF diversity (Shannon-Wiener index (SE)?=?1.88 (0.28) and 1.23 (0.44) for hardwood and hemlock, respectively) and community assemblage (Jaccard index (SE)?=?19.0% (4%)) differed between the two forest communities. EMF community assemblage was associated with both the forest type (i.e. plant community/microsite effects) and initial soil type (i.e. soil characteristics/resistant inoculum). The results support previously observed positive feedbacks between conspecifics under hemlock forest communities and provides evidence for the role of the EMF community within this feedback loop. Alternatively, the reduced growth of hemlocks under hardwoods may be attributed to the different EMF community associated with that forest.  相似文献   

16.
Mexico is a center of diversity for pines, but few studies have examined the ectomycorrhizal (ECM) fungal communities associated with pines in this country. We investigated the ECM communities associated with Pinus montezumae seedlings and mature trees in neotropical forests of central Mexico and compared their structure and species composition. Root tips were sampled on both planted seedlings and naturally occurring adult trees. A total of 42 ECM operational taxonomic units (OTUs) was found on P.?montezumae. Diversity and similarity indices showed that community structure was similar for both plant growth stages, but phylogenetic diversity and Chao-estimated richness were higher for seedlings. Species composition differed between communities. The dominant OTUs belonged to the families Atheliaceae, Cortinariaceae, and Sebacinaceae, although different taxa appeared to colonize seedlings and adults. Only 12 OTUs were shared between seedlings and adults, which suggests that ECM fungi which colonize seedlings are still not fully incorporated into mycelial networks and that ECM taxa colonizing young individuals of P.?montezumae are likely to come from fungal propagules. Intra-generic diversity could be an insurance mechanism to maintain forest productivity under stressed conditions. This is the first report describing the abundance of Atheliaceae in tree roots in neotropical ecosystems.  相似文献   

17.
This study investigated broad patterns in communities of ectomycorrhizal fungi from three Florida habitats (sandhills, scrub, and pine rocklands) and the ability of spore bank fungi to associate with Pinus elliottii (slash pine) and Pinus densa (south Florida slash pine). Efforts to replant pines in the endangered pine rocklands are vital to the persistence of this habitat, yet little is known about the ectomycorrhizal fungi communities or how they may differ from those in other pine-dominated habitats in Florida. We used high-throughput amplicon sequencing (HTS) to assess baseline fungal communities and greenhouse bioassays to bait ectomycorrhizal fungi using seedlings. HTS soil data recovered 188 ectomycorrhizal species but only a few subsequently colonized the bioassay seedlings. We recovered 21 ectomycorrhizal species on pine seedlings including common spore bank fungi such as Cenococcum, Suillus, and Tuber, but Rhizopogon species were dominant across all sites and habitats. Habitat type and site were significant variables influencing the community composition of the total soil fungal community, soil ectomycorrhizal community, and the fungi found on seedling root tips. However, we found no significant differences between the ectomycorrhizal communities on seedling roots from the two Pinus species.  相似文献   

18.
The community of indigenous mycorrhizal fungi on planted-out nursery seedlings of Scots pine (Pinus sylvestris L.) was surveyed for two years at two sites in Sweden. Factors studied were the effect of forests versus clearcuts on these communities, age of clearcut, planting-out in early summer versus autumn, age of planted-out seedlings and time of soil scarification. Analyses of variance and detrended correspondence analysis showed that the relative magnitude of the effects of these factors upon the composition of the ectomycorrhizal community on seedlings planted out was site > time of outplanting > forest/clearcut > age of clearcut > time of soil scarification. In general, clear-cutting had a minor effect, both qualitatively and quantitatively. Nineteen different mycorrhizal types were recorded. After two seasons, seedlings hosted an average of 1.8 indigenous mycorrhizal types and 0.95 nursery mycorrhizal types comprising 35% and 65% of the mycorrhizal roots, respectively.Piloderma croceum colonized seedlings significantly more frequently in forests than in clearcuts, whereas the reverse was found forCenococcum geophilum, and two other mycorrhizal types. However, there is a general agreement between mature coniferous forests and clearcuts as regards both the inoculum potential of dominant fungi adapted to early colonization, and the composition of these fungal species. The fungal adaptations to forests obviously resemble those conditions occurring at clearcuts.  相似文献   

19.
On Vancouver Island, British Columbia, fertilization with nitrogen (N) and phosphorus (P) following clearcutting increases growth of western hemlock. To explore whether fertilization also resulted in ectomycorrhizal fungal communities that were more or less similar to neighboring unlogged stands, we sampled roots from western hemlock from three replicate plots from each of five different, well-characterized, forest stand types that differed in site type, and in logging and fertilization history. We harvested four samples of 100 ectomycorrhizal root tips from each plot, a total of 60 samples per stand type. From each sample, we analyzed fungal ribosomal internal transcribed spacers and 28S DNA, sequencing 15–29 clones per sample and 60–116 clones per plot. We detected 147 fungal operational taxonomic units among a total of 1435 sequences. Craterellus tubaeformis was frequently present and resulted in a pattern of phylogenetic overdispersion in the fungal communities. Fungal species composition was strongly correlated with foliar nitrogen concentration. However, other site quality factors were also important because the fertilized regenerating hemlock and mature hemlock-amabilis fir forests had similar foliar nitrogen content but little overlap in fungal species. Compared with unfertilized regenerating forests, fungal communities in N?+?P-fertilized regenerating forests had significantly more species overlap with old growth forests. However, the fungal communities of all regenerating forest were similar to one another and all differed significantly from older forests. By correlating fungal clades with habitats, this research improves understanding of how forest management can contribute to maintaining diverse ectomycorrhizal fungal communities across a landscape.  相似文献   

20.
Fungal communities associated with plant tissues were compared between two bryophyte species dominating decaying logs (Scapania bolanderi and Pleurozium schreberi), and roots of spruce seedlings growing on the bryophytes and in the ground soil, to evaluate the contribution of fungal communities to seedling regeneration. Using high-throughput DNA sequencing, a total of 1233 fungal operational taxonomic units (OTUs) were detected. Saprotrophic Ascomycota were dominant in bryophytes, whereas ectomycorrhizal (ECM) Basidiomycota were dominant in spruce roots. Fungal communities were significantly different between the two bryophyte species. In addition, fungal communities of spruce seedlings were significantly affected by the substrates on which they were growing. Some ECM fungi were detected from both of the bryophytes and the spruce seedlings growing on them; however, the dominant OTU identities differed between the two bryophyte systems. The possible effects of functional differences between dominant fungal OTUs on spruce seedling regeneration are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号