首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmission electron microscopy was used to study the cellular morphologies of a wild-type Rhizobium meliloti strain (L5-30), a nitrogen fixation-ineffective (Fix-) succinate dehydrogenase mutant (Sdh-) strain, and a Fix+ Sdh+ revertant strain within alfalfa nodules and after free-living growth in a minimal medium containing 27 mM mannitol plus 20 mM succinate. The results showed a requirement of succinate dehydrogenase activity for symbiotic differentiation and maintenance of R. meliloti bacteroids within alfalfa nodules and for succinate-induced cellular pleomorphism in free-living cultures. Also, the Sdh- strain had a 3.5-fold lower rate of oxygen consumption in the defined medium than did the wild type.  相似文献   

2.
Nitrogen-fixing bacteroids are degraded during nodule senescence. This is in contrast to recent implications that viable bacteroids can be released into soil from legume nodules. Rhizobia originating from persistent infection threads in senescing nodule plant cells seem to be the source of viable cells required for perpetuation of the Rhizobium spp. population in the soil. Our conclusions were derived from electron microscopic examination of stages of development and senescence of alfalfa root nodules.  相似文献   

3.
Symbiotic nitrogen fixation of Rhizobium meliloti bacteroids in Medicago sativa root nodules was suppressed by several inorganic nitrogen sources. Amino acids like glutamine, glutamic acid and aspartic acid, which can serve as sole nitrogen sources for the unnodulated plant did not influence nitrogenase activity of effective nodules, even at high concentrations.Ammonia and nitrate suppressed symbiotic nitrogen fixation in vivo only at concentrations much higher than those needed for suppression of nitrogenase activity in free living nitrogen fixing bacteria. The kinetics of suppression were slow compared with that of free living nitrogen fixing bacteria. On the other hand, nitrite, which acts as a direct inhibitor of nitrogenase, suppressed very quickly and at low concentrations. Glutamic acid and glutamine enhanced the effect of ammonia dramatically, while the suppression by nitrate was enhanced only slightly.  相似文献   

4.
Localization of symbiotic mutations in Rhizobium meliloti   总被引:5,自引:18,他引:5       下载免费PDF全文
A total of 5 Nod- and 57 Fix- symbiotic mutants of Rhizobium meliloti strain 41 have been isolated after either nitrosoguanidine or Tn5 transposition mutagenesis. Chromosomal locations of mutations in 1 Nod- and 11 Fix- derivatives were ascertained by transferring the chromosome (mobilized by plasmid R68.45), in eight fragments, into symbiotically effective recipients and testing the recombinants for symbiotic phenotype. Alternatively, the kanamycin resistance marker of Tn5 was mapped. In five mutants the fix alleles were localized on different chromosomal regions, but six other fix mutations and one nod mutation tested did not map onto the chromosome. It was shown that the chromosome-mobilizing ability (Cma+) of R68.45 was not involved in the mobilization of genes located extrachromosomally. Moreover, Cma- derivatives of R68.45 could mobilize regions of the indigenous plasmid pRme41b but not chromosomal genes. Thus, mobilization of a marker by Cma- R68.45 indicates its extrachromosomal location. With a 32P-labeled DNA fragment carrying Tn5 as a hybridization probe, it was shown that in five extrachromosomally located Tn5-induced fix mutants and one nod mutant Tn5 was localized on plasmid pRme41b. This is in agreement with the genetic mapping data.  相似文献   

5.
6.
Deletion analysis of Rhizobium meliloti symbiotic promoters   总被引:24,自引:1,他引:24       下载免费PDF全文
  相似文献   

7.
Pairs of Rhizobium meliloti nod mutants were co-inoculated onto alfalfa (Medicago saliva L.) roots to determine whether one nod mutant could correct, in situ, for defects in nodule initiation of another nod mutant. None of the Tn5 or nod deletion mutants were able to help each other form nodules when co-inoculated together in the absence of the wild-type. However, as previously observed, individual nod mutants significantly increased nodule initiation by low dosages of co-inoculated wild-type cells. Thus, nod mutants do produce certain signal substances or other factors which overcome limits to nodule initiation by the wild-type. When pairs of nod mutants were co-inoculated together with the wild-type, the stimulation of nodulation provided by individual nodABC mutants was not additive. However, clearly additive or synergistic stimulation was observed between pairs of mutants with a defective host-specificity gene (nodE, nodF, or nodH). Each pair of host-specificity mutants stimulated first nodule formation to nearly the maximum levels obtainable with high dosages of the wild-type. Mutant bacteria were recovered from only about 10% of these nodules, whereas the co-inoculated wild-type was present in all these nodules and substantially outnumbered mutant bacteria in nodules occupied by both. Thus, these mutant co-inoculants appeared to help their parent in situ even though they could not help each other. Sterile culture filtrates from wild-type cells stimulated nodule initiation by low dosages of the wild-type, but only when a host-specificity mutant was also present. The results from our studies seem consistent with the possibility that pairs of host-specificity mutants are able to help the wild-type initiate nodule formation by sustained production of complementary signals required for induction of symbiotic host responses.  相似文献   

8.
9.
Mutants of Rhizobium meliloti defective in succinate metabolism.   总被引:10,自引:13,他引:10       下载免费PDF全文
We characterized mutants of Rhizobium meliloti SU47 that were unable to grow on succinate as the carbon source. The mutants fell into five groups based on complementation of the succinate mutations by individual recombinant plasmids isolated from a R. meliloti clone bank. Enzyme analysis showed that mutants in the following groups lacked the indicated common enzyme activities: group II, enolase (Eno); group III, phosphoenolpyruvate carboxykinase (Pck); group IV, glyceraldehyde-3-phosphate dehydrogenase (Gap), and 3-phosphoglycerate kinase (Pgk). Mutants in groups I and V lacked C4-dicarboxylate transport (Dct-) activity. Wild-type cells grown on succinate as the carbon source had high Pck activity, whereas no Pck activity was detected in cells that were grown on glucose as the carbon source. It was found that in free-living cells, Pck is required for the synthesis of phosphoenolpyruvate during gluconeogenesis. In addition, the enzymes of the lower half of the Embden-Meyerhoff-Parnas pathway were absolutely required for gluconeogenesis. Eno, Gap, Pck, and one of the Dct loci (ntrA) mapped to different regions of the chromosome; the other Dct locus was tightly linked to a previously mapped thi locus, which was located on the megaplasmid pRmeSU47b.  相似文献   

10.
11.
12.
Summary Alfalfa seeds, inoculated with an antibiotic-resistantRhizobium meliloti strain, were planted in three replicated field plots at Clayton, N.C. Core samples were taken three times in the next year at 0, 10, and 20 cm from the edge of each plot. Soil subsamples were taken from within each core sample at 0, 6, 12, and 18 cm depths. The numbers of the inoculum Rhizobium strain in each soil subsample were determined by inoculation of alfalfa plants with diluted soil samples. In general the distribution of rhizobia showed some movement outward and downward in the soil. Lower counts were obtained at the surface during summer. The Rhizobium persistence pattern in the soil differed in the three plots which is consistent with the variability in Rhizobium numbers often observed in established alfalfa stands. Cooperative investigation of the United States Department of Agriculture, Science and Education Administration, Agricultural Research and the North Carolina Agricultural Research Service, Raleigh, North Carolina. Paper No. 6818 of the Journal Series of the North Carolina Agricultural Research Service at Raleigh.  相似文献   

13.
A mutant of Rhizobium meliloti, 4R3, which is unable to grow on aspartate has been isolated. The defect is specific to aspartate utilization, since 4R3 is not an auxotroph and grows as well as its parent strain on other carbon and nitrogen sources. The defect was correlated with an inability to fix nitrogen within nodules formed on alfalfa. Transport of aspartate into the mutant cells was found to be normal. Analysis of enzymes involved in aspartate catabolism showed a significantly lower level of aspartate aminotransferase activity in cell extracts of 4R3 than in the wild type. Two unrelated regions identified from a genomic cosmid bank each complemented the aspartate catabolism and symbiotic defects in 4R3. One of the cosmids was found to encode an aspartate aminotransferase enzyme and resulted in restoration of aspartate aminotransferase activity in the mutant. Analysis of the region cloned in this cosmid by transposon mutagenesis showed that mutations within this region generate the original mutant phenotypes. The second type of cosmid was found to encode an aromatic aminotransferase enzyme and resulted in highly elevated levels of aromatic aminotransferase activity. This enzyme apparently compensated for the mutation by its ability to partially utilize aspartate as a substrate. These findings demonstrate that R. meliloti contains an aspartate aminotransferase activity required for symbiotic nitrogen fixation and implicate aspartate as an essential substrate for bacteria in the nodule.  相似文献   

14.
alpha-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti.   总被引:7,自引:19,他引:7       下载免费PDF全文
A mutant of Rhizobium meliloti selected as unable to grow on L-arabinose also failed to grow on acetate or pyruvate. It grew, but slower than the parental strain, on many other carbon sources. Assay showed it to lack alpha-ketoglutarate dehydrogenase (kgd) activity, and revertants of normal growth phenotype contained the activity again. Other enzymes of the tricarboxylic acid cycle and of the glyoxylate cycle were present in both mutant and parent strains. Enzymes of pyruvate metabolism were also assayed. L-Arabinose degradation in R. meliloti was found to differ from the known pathway in R. japonicum, since the former strain lacked 2-keto-o-deoxy-L-arabonate aldolase but contained alpha-ketoglutarate semialdehyde dehydrogenase; thus, it is likely that R. meliloti has the L-arabinose pathway leading to alpha-ketoglutarate rather than the one to glycolaldehyde and pyruvate. This finding accounts for the L-arabinose negativity of the mutant. Resting cells of the mutant were able to metabolize the three substrates which did not allow growth.  相似文献   

15.
Succinate dehydrogenase mutant of Rhizobium meliloti.   总被引:5,自引:6,他引:5       下载免费PDF全文
A succinate dehydrogenase mutant strain of Rhizobium meliloti was isolated after nitrosoguanidine mutagenesis. It failed to grow on succinate, glutamate, acetate, pyruvate, or arabinose but grew on glucose, sucrose, fructose, and other carbohydrates. The mutant strain showed delayed nodulation of lucerne plants, and the nodules were white and ineffective. A spontaneous revertant strain of normal growth phenotype induced red and effective nodules.  相似文献   

16.
Interaction of nod and exo Rhizobium meliloti in alfalfa nodulation   总被引:2,自引:0,他引:2  
Among the genes of Rhizobium meliloti SU47 that affect nitrogen-fixing symbiosis with alfalfa are nod genes, in which mutations block nodule induction, and exo genes, in which mutations allow nodule formation but block rhizobial exopolysaccharide production as well as nodule invasion and nitrogen fixation. To investigate whether an exo+ bacterium can "help" (that is, reverse the symbiotic defect of) an exo mutant in trans, we have coinoculated alfalfa with pairs of rhizobia of different genotypes. Coinoculant genotypes were chosen so that the exo+ helper strain was nif while the exo "indicator" strain was nif+, and thus any fixation observed was carried out by the exo coinoculant. We find that a nod exo+ coinoculant can help an exo mutant both to invade nodules and to fix nitrogen. However, a nod+ exo+ coinoculant cannot help an exo mutant: Few exo bacteria are recovered from nodules, some bacteroids differentiate into bizarre aberrant forms, and the nodules fail to fix nitrogen. In a triple coinoculation, the effect of nod+ helper supersedes that of nod helper. Implications of these results for interaction of nod and exo gene products are discussed.  相似文献   

17.
Ornithine cyclodeaminase activity in Rhizobium meliloti   总被引:1,自引:0,他引:1  
Abstract Deamination of L-ornithine to L-proline by ornithine cyclodeaminase is an unusual enzyme reaction that has been shown to occur in only a few bacteria. Rhizobium meliloti strains GR4, 2011 and 41 are able to use ornithine as the sole carbon and nitrogen source. The main pathway of ornithine utilization in strain GR4 depends on ornithine cyclodeaminase activity. In addition, this enzymatic activity has been found to be dependent on NAD+ and L-arginine similar to Agrobacterium ornithine cyclodeaminases. The ornithine cyclodeaminase activity is also expressed in R. meliloti strains 2011 and 41 growing with L-ornithine.  相似文献   

18.
Ineffective alfalfa nodules formed by Rhizobium meliloti nif::Tn5 mutants were examined by light and electron microscopy. R. meliloti nifH::Tn5 mutants formed nodules that were similar in structure to wild-type nodules except that nifH- bacteroids accumulated a compact, electron-dense body. In contrast to nodules induced by wild type and nifH mutants, nifDK- R. meliloti mutants induced nodules which contained numerous starch grains and prematurely senescent bacteroids. In addition, meristematic activity in nifDK- nodules ceased significantly earlier than in nifH- nodules. All mutant nodules exhibited elevated levels of rough endoplasmic reticulum and Golgi membranes compared to wild-type nodule cells. These elevated levels may reflect either a response to nitrogen starvation in the ineffective nodules or an abnormal synthesis and export of nodule-specific proteins during later developmental stages.  相似文献   

19.
A transposon Tn5-induced mutant of Rhizobium meliloti Rm2011, designated Rm6963, showed a rough colony morphology on rich and minimal media and an altered lipopolysaccharide (LPS). Major differences from the wild-type LPS were observed in (i) hexose and 2-keto-3-deoxyoctonate elution profiles of crude phenol extracts chromatographed in Sepharose CL-4B, (ii) silver-stained sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis patterns of crude and purified LPS fractions, and (iii) immunoreactivities otherwise present in purified LPS of the parental strain Rm2011. In addition, Rm6963 lost the ability to grow in Luria-Bertani medium containing the hydrophobic compounds sodium deoxycholate or SDS and showed a decrease in survival in TY medium supplemented with high calcium concentrations. The mutant also had altered symbiotic properties. Rm6963 formed nodules that fixed nitrogen but showed a delayed or even reduced ability to nodulate the primary root of alfalfa without showing changes in the position of nodule distribution profiles along the roots. Furthermore, 2 to 3 weeks after inoculation, plants nodulated by Rm6963 were smaller than control plants inoculated with wild-type bacteria in correlation with a transient decrease in nitrogen fixation. In most experiments, the plants recovered later by expressing a full nitrogen-fixing phenotype and developing an abnormally high number of small nodules in lateral roots after 1 month. Rm6963 was also deficient in the ability to compete for nodulation. In coinoculation experiments with equal bacterial numbers of both mutant and wild-type rhizobia, only the parent was recovered from the uppermost root nodules. A strain ratio of approximately 100 to 1 favoring the mutant was necessary to obtain an equal ratio (1:1) of nodule occupancy. These results show that alterations in Rm6963 which include LPS changes lead to an altered symbiotic phenotype during the association with alfalfa that affects the timing of nodule emergence, the progress of nitrogen fixation, and the strain competitiveness for nodulation.  相似文献   

20.
A mutation in the ilvC gene of Sinorhizobium meliloti 1021 determines a symbiotically defective phenotype. ilvC mutants obtained from different S. meliloti wild-type strains are able to induce root hair deformation on alfalfa roots and show variable activation of the common nodulation genes nodABC. All of these mutants are noninfective. The presence of extra copies of nodD3-syrM in an IlvC- background does not promote nod expression but allows the detection of low levels of Nod factor production. The sulphation of the Nod factor metabolites, however, is not affected. Furthermore, IlvC- strains induce a specific pattern of starch accumulation on alfalfa roots as well as of early nodulin expression. Hence, the pleiotropic action of the ilvC gene in S. meliloti may reveal novel complexities involved in the symbiotic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号