首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Affinity chromatography was used to partially purify the troponin complex from crude regulatory proteins obtained from bovine brain cortex. Three components were obtained from this partially purified troponin complex by treatment with 6 M-urea and 1 mM-EGTA followed by chromatography on DEAE-Sephadex-A50. The effects of the three components on skeletal muscle actin activated MgATPase activity of muscle myosin (ATP phosphohydrolase, EC 3.6.1.3.) suggested that they were analogous to that of the skeletal muscle troponins I, C, and T. The apparent molecular weights of the brain troponin subunits (I, C, and T) were 18, 700, 14, 000 and 36, 400, respectively. The molecular weights of the former two proteins were less than those reported for the analogous skeletal muscle troponins. Thus, brain actomyosin complex may be regulated in a manner similar to that of striated muscle actomyosin.  相似文献   

2.
1. A troponin C-like protein was prepared from frozen chicken gizzard by preparative polyacrylamide gel electrophoresis and its apparent molecular weight was estimated to be about 15,500 daltons. 2. In urea gel electrophoresis, the mobility of the troponin C-like protein increased slightly in the presence of Ca2+, like that of skeletal muscle troponin C. On the other hand, the mobility of the the troponin C-like protein in glycerol gel electrophoresis, unlike that of skeletal muscle troponin C, was significantly decreased by Ca2+. 3. In alkaline gel electrophoresis, the troponin C-like protein formed a Ca2+-dependent complex with troponin I or troponin T from skeletal muscle. 4. The troponin C-like protein could neutralize the inhibitory effect of skeletal muscle troponin I on the Mg2+-activated ATPase of actomyosin from rabbit skeletal muscle, but could not confer Ca2+-sensitivity on the actomyosin in the presence of troponin I and troponin T from skeletal muscle.  相似文献   

3.
A method of minor protein P55 isolation from extract of soluble proteins of A-zone of the sarcomere from rabbit skeletal muscle is described. It is shown that this protein inhibits Ca2+-ATPase of myosin and Mg2+-ATPase of reconstructed actomyosin, but it does not affect superprecipitation of actomyosin. The molecular weight which is determined by mobility and its polypeptide chain polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate is about 35 000 dalton.  相似文献   

4.
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (+/-2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37 degrees C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 muM Ca2+ concentration (CaEGTA binding constant equals 4.4 - 10(5) at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6-9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8- and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6-10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle.  相似文献   

5.
Gary Bailin 《BBA》1976,449(2):310-326
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (±2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37°C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 μM Ca2+ concentration (CaEGTA binding constant = 4.4 · 105 at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6–9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8-and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6–10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle  相似文献   

6.
1. 1. Immunochemical studies have shown that the major forms of troponin T present in fast skeletal, slow skeletal and cardiac muscles are different proteins.
2. 2. Similar studies indicate that the major form of troponin C present in fast skeletal muscles differs from troponin C present in slow skeletal and cardiac muscle cells. The forms of troponin C present in slow skeletal and cardiac muscles are immunochemically very similar.
3. 3. The antibodies to the polymorphic forms of troponin T and troponin C are specific for the muscle type, except in the case of the slow skeletal and cardiac muscle forms of troponin C.
4. 4. By the immunoperoxidase technique, it has been shown that the fast skeletal muscle troponin T is localized in type II cells and slow skeletal muscle troponin T in type I cells.
5. 5. Fast skeletal muscle troponin C is present in type II cells and a different troponin C, identified by its reaction with the antibody against cardiac troponin C, is present in type I cells.
6. 6. It is concluded that in normal adult skeletal muscle, fast muscle forms of troponin I, troponin T and troponin C are present together as a homocomplex in type II cells and the slow muscle forms exist as an analagous homocomplex in type I cells.
  相似文献   

7.
1. Hybrid or reconstituted troponins were prepared from troponin components of rabbit skeletal muscle and porcine cardiac muscle and their effect on the actomyosin ATPase activity was measured at various concentrations of Ca2+ or Sr2+. The Ca2+ concentration required for half-maximum activation of actomyosin ATPase with troponin containing cardiac troponin I was slightly higher than that with troponin containing skeletal troponin I. The Sr2+ concentration required for half-maximum activation of actomyosin ATPase with troponin containing skeletal troponin C was higher than that with troponin containing cardiac troponin C. 2. Reconstituted cardiac troponin was phosphorylated by cyclic AMP-dependent protein kinase. The Ca2+ sensitivity of actomyosin ATPase with cardiac troponin decreased upon phosphorylation of troponin I; maximum ATPase activity was depressed and the Ca2+ concentration at half-maximum activation increased. On the other hand, phosphorylation of troponin I did not change Sr2+ sensitivity. 3. The inhibitory effect of cardiac troponin I on the actomyosin ATPase activity was neutralized by increasing the amount of brain calmodulin at high Ca2+ and Sr2+ concentrations but not at low concentrations. 4. ATPase activity of actomyosin with a mixture of troponin I and calmodulin was assayed at various concentrations of Ca2+ or Sr2+. The Ca2+ or Sr2+ sensitivity of actomyosin ATPase containing skeletal troponin I was approximately the same as that of actomyosin ATPase containing cardiac troponin I. Phosphorylation of cardiac troponin I did not change the Ca2+ sensitivity of the ATPase. 5. The Ca2+ or Sr2+ concentration required for half-maximum activation of actomyosin ATPase with troponin I-T-calmodulin was higher than that of actomyosin ATPase with the mixture of troponin I and calmodulin. Maximum ATPase activity was lower than that with the mixture of troponin I and calmodulin.  相似文献   

8.
Structural and functional properties of the non-muscle tropomyosins   总被引:10,自引:0,他引:10  
Summary The non-muscle tropomyosins (TMs), isolated from such tissues as platelets, brain and thyroid, are structurally very similar to the muscle TMs, being composed of two highly -helical subunits wound around each other to form a rod-like molecule. The non-muscle TMs are shorter than the muscle TMs; sequence analysis demonstrates that each subunit of equine platelet TM consists of 247 amino acids, 37 fewer than for skeletal muscle TM. The major differences in sequence between platelet and skeletal muscle TM are found near the amino and carboxyl terminal ends of the proteins. Probably as the result of such alterations, the non-muscle TMs aggregate in a linear end-to-end manner much more weakly than do the muscle TMs. Since end-to-end interactions are responsible for the highly cooperative manner in which TM binds to actin, the non-muscle TMs have a lower affinity for actin filaments than do the muscle TMs. However, the attachment of other proteins to actin (e.g. the Tn-I subunit of skeletal muscle troponin or the S-1 subfragment of skeletal muscle myosin) can increase the affinity of actin filaments for non-muscle TM. The non-muscle TMs interact functionally with the Tn-I component of skeletal muscle troponin to inhibit the ATPase activity of muscle actomyosin and with whole troponin to regulate the muscle actomyosin ATPase in a Ca++-dependent manner, even though one of the binding sites for troponin on skeletal TM is missing in non-muscle TM. A novel actomyosin regulatory system can be produced using Tn-I, calmodulin and non-muscle TM; in this case inhibition is released when the non-muscle TM detaches from the actin filament in the presence of Ca++. Although it has not yet been demonstrated that the non-muscle TMs participate in a Ca++-dependent contractile regulatory system in vivo it does appear that they are associated with actin filaments in vivo.  相似文献   

9.
1. The CNBr digest of troponin C from rabbit fast skeletal muscle was shown to possess many of the functional properties of the whole troponin C molecule. 2. A peptide corresponding to residues 83-134 was isolated, which forms a Ca(2+-dependent complex with troponin I and neutralizes the inhibition by troponin I of the Mg(2+-stimulated adenosine triphosphatase of desensitized actomyosin. 3. The peptide inhibits the phosphorylation of fast-skeletal-muscle, but not cardiac-muscle, troponin I, by 3' :5'-cyclic AMP-dependent protein kinase. In this property it was as effective as whole skeletal-muscle troponin C when compared on a molar basis. 4. Biological activity was also present in other fractions obtained from the CNBr digest. 5. By gel filtration and affinity chromatography of the whole CNBr digest of troponin C, two peptides, one of which was identified as representing residues 83-134, were shown to form Ca(2+-dependent complexes with troponin I. 6. The significance of these findings for the mechanism of interaction of troponin C and troponin I is discussed.  相似文献   

10.
A new technique for obtaining a myofibril-like preparation from vertebrate smooth muscle has been developed. An actomyosin can be readily extracted from these myofibrils at low ionic strength and in yields 20 times as high as previously reported. The protein composition of all preparations has been monitored using dodecylsulfate-gel electrophoresis. By this method smooth muscle actomyosin showed primarily only the major proteins, myosin, actin and tropomyosin, while the myofibrils contained, additionally, three new proteins not previously described with polypeptide chain weights of 60000, 110000 and 130000. The ATPase activities of both the myofibrils and actomyosin preparations are considerably higher than previously described for vertebrate smooth muscle. They are sensitive to micromolar Ca2+ ion concentrations to the same degree as comparable skeletal and cardiac muscle preparations, even though troponin-like proteins could not be identified in these smooth muscle preparations. From the latter observation and the presence of Ca2+-sensitivity in tropomyosin-free actomyosin it is suggested that this calcium sensitivity is, as in some invertebrate muscles, a property of the myosin molecule.  相似文献   

11.
The regulatory proteins of Ascaris suum striated skeletal muscle were partially purified and characterized. A tropomyosin isoform (Mr 41K) and three troponin subunits identified as troponin T (Mr 37.5K), troponin I (Mr 25.5K) and troponin C (Mr 18.5K) were purified. Three myosin light chains (Mr 25K, 19K, and 17K) were isolated from washed Ascaris actomyosin; the 19K subunit was phosphorylated in vitro. A calcium/calmodulin-dependent myosin light chain kinase activity was identified in the muscle. In contrast to previously reported data suggesting that Ascaris obliquely striated muscle contraction is regulated by a myosin-mediated mechanism, these data indicate that all of the proteins required for actin-mediated, calcium-dependent muscle contraction are present in this tissue.  相似文献   

12.
1. 1. Antibodies raised against troponin I isolated from human cardiac and rabbit fast and slow skeletal muscles have been shown to be specific for the polymorphic forms of troponin I against which they were raised, i.e. they are tissue specific.
2. 2. These antibodies reacted with the polymorphic forms of troponin I, against which they were raised, that are present in tissues of other species such as the rhesus monkey, hamster and rat, i.e. they were species non-specific.
3. 3. Using the immunoperoxidase staining technique it has been shown that the fast and slow forms of troponin I are located in different cells in virtually all adult normal muscles examined.
4. 4. By comparison of the ATPase staining of skeletal muscle sections at pH 9.4 and 4.2 it is concluded that the fast form of troponin I is located in type II fibres and the slow form in type I fibres.
5. 5. It is suggested that immunoperoxidase staining with the antibodies to the fast and slow forms of troponin I provides an unambiguous new method of muscle fibre typing.
  相似文献   

13.
1. Chymotrypsin cleaved troponin-T of skeletal muscle into two subfragments, i.e., troponin-T1 and -T2, each of which could be isolated by the use of DEAE-Sephadex. Troponin-T1 was a single subfragment with a molecular weight of 26,000 (chicken) or 22,000 (rabbit) daltons. Troponin-T2 consisted of two subfragments with molecular weights of about 13,000 daltons. Results obtained indicated that the smaller subfragment was formed by digestion of the larger subfragment of troponin-T2. 2. Antibodies against troponin-T1 and -T2 formed regular transverse striations along the whole length of thin filaments with 38 nm intervals, as was found reviously using antibodies against whole troponin complex as well as troponin components (Ohtsuki, I. et al., 1967; Ohtsuki, I. 1974 and 1975). 3. The first anti-troponin-T1 striation was situated 40 nm from the top of the filament. The first anti-troponin-T2 striation was 27 nm from the filament top and coincided with the first striations formed by antibodies against troponin-C or -I. 4. Troponin-T1 and the larger subfragment of troponin-T2 bound to tropomyosin which had been coupled to Sepharose, whereas the smaller subfragment of troponin-T2 did not.  相似文献   

14.
Myosin has been separated from Physarum polycephalum actomyosin in confirmation of the results of Hatano and Tazawa. In an intermediate step, myosin-enriched actomyosin has also been obtained. The mean yield of free myosin was 4.4 mg from 100 g of mold. It was obtained as water-clear solutions at µ = 0.055 with calcium ATPase activity of up to 0.5 µM Pi/min per mg. Negatively stained preparations were examined by electron microscopy. Physarum myosin in 0.5 M KCl interacted with actin from rabbit skeletal muscle to form polarized arrowhead complexes similar to but less regular than those of natural actomyosin from muscle or myosin-enriched Physarum actomyosin. The Physarum myosin-enriched actomyosin at low ionic strength displayed evidence of head-to-tail and tail-to-tail aggregation attributable to the myosin component. Yet Physarum myosin alone did not produce detectable filaments at µ = 0.055 at pH 7, 6.5, or 5.8, nor when dialyzed against 0.01 M ammonium acetate, nor when the dielectric constant of the medium was reduced. However, aggregation approaching the extent of ‘thick filaments’ up to 0.3 µ long was found in some preparations of myosin-enriched actomyosin put into solutions containing adenosine triphosphate. Myosin alone in such solutions did not form filaments. The results are compatible with the idea that head-to-tail aggregations are favored by actin-myosin interactions in Physarum, possibly due to alignment of the extended or tail portions of this myosin molecule.  相似文献   

15.
Two distinctly different high molecular weight forms of renin are present in mouse plasma in addition to the well-recognized active 40 000 dalton form. The biggest form has a molecular weight of about 800 000, and is stable in 4 M urea, but can be converted to the active 40 000 dalton form, by storage, exposure to acid and limited proteolysis. The 70 000 dalton form can be activated by acid and limited proteolysis. However, the 70 000 dalton form does not change molecular weight with activation. By measuring renin, not only by its enzymatic activity, but also by the direct radioimmunoassay for the renin molecule, which measures enzymatically active as well as inactive renin, it was found that both forms were activated but neither of them completely. The validity of the currently used term "total" renin as the enzymatic renin activity after acid activation, is, therefore, questionable. The quantitative significance of this must await methods which can ensure complete conversion or activation of the high molecular weight forms of renin in plasma.  相似文献   

16.
Comparison of the myofibrillar proteins from several adult rabbit skeletal muscles has led to the identification of multiple forms of fast and slow troponin T. In Briggs et al. (Briggs, M. M., Klevit, R., and Schachat, F. H. (1984) J. Biol. Chem. 259, 10369-10375) two species of rabbit fast skeletal muscle troponin T (TnT), TnT1f and TnT2f, were characterized. Here, the distribution of these fast TnT species and the alpha- and beta- tropomyosin (Tm) subunits is characterized in fast muscles and in single muscle fibers. Evidence is also presented for two forms of slow skeletal muscle TnT. The presence of each fast TnT species is associated with the presence of a different Tm dimer: TnT1f with alpha beta-Tm and TnT2f with alpha 2-Tm. Histochemical analysis shows that expression of the fast TnT-Tm combinations is not due to differences in the distribution of fast-twitch glycolytic and fast-twitch oxidative-glycolytic fiber types. The absence of a correlation between histochemical typing and the composition of the thin filament Ca2+-regulatory complex is more apparent in individual fast muscle fibers where both fast TnT-Tm combinations appear to be expressed in a continuum. The implications of these observations for mammalian skeletal muscle fiber diversity are discussed.  相似文献   

17.
Procedures are described by which troponin and tropomyosin can be isolated from cardiac muscle rapidly, with minimal damage by oxidation. Cardiac relaxing proteins inhibit actomyosin ATPase activity in the presence of ethyleneglycoltetraacetic acid (EGTA), and permit graded stimulation by Ca2+. This stimulation is independent of preexisting inhibition, and greater than that obtained with skeletal proteins. Characteristics of Scatchard plots for Ca2+ binding suggest that troponin contains one class of sites which interact at high fractional occupancy. Interaction appears to be enhanced by tropomyosin. Mean values for the estimated maximum affinity and capacity of six canine cardiac troponin preparations were: 4.92·106 M−1, and 21.58·10−6 moles·g−1. Values for skeletal troponin were not significantly different. Native tropomyosin bound about half as much Ca2+ per g, with maximum affinity the same as troponin. Pure tropomyosin bound no Ca2+. Cardiac and skeletal proteins differ in that the former are much more labile, and more readily influenced by ions and drugs.  相似文献   

18.
The Ca-regulatory system in squid mantle muscle was studied. The findings were as follows. (a) Squid mantle myosin B (squid myosin B) was Ca-sensitive, and its Ca-sensitivity was unaffected by addition of a large amount of rabbit skeletal myosin (skeletal myosin) or rabbit skeletal F-actin (skeletal F-actin). (b) Squid myosin was prepared from the mantle muscle. It showed a heavy chain component and two light chain components in the SDS-gel electrophoretic pattern: the molecular weights of the latter two were 17,000 and 15,000. Actomyosin reconstituted from squid myosin and skeletal (or squid) actin showed Ca-sensitivity in superprecipitation and Mg-ATPase assays. EDTA- treatment had no effect on the Ca-sensitivity of squid myosin. (c) Squid mantle actin (squid actin) was prepared by the method of Spudich and Watt. Hybrid actomyosin reconstituted by using the pure squid actin preparation with skeletal myosin showed no Ca-sensitivity in Mg-ATPase assay, whereas that reconstituted using crude squid actin showed marked Ca-sensitivity. The crude squid actin contained four protein components which were capable of associating with F-actin in 0.1 M KCl, 1 mM MgCl2 and 20 mM Tris-maleate (pH7.5). (d) Native tropomyosin was prepared from squid mantle muscle, and it conferred Ca-sensitivity on skeletal actomyosin as well as on a hybrid actomyosin reconstituted from squid actin and skeletal myosin. (e) Squid native tropomyosin was separated into troponin and tropomyosin fractions by placing it in 0.4 M LiCl at pH 4.7. The troponin fraction was further purified by DEAE-cellulose chromatography. Squid troponin thus obtained was different in mobility from rabbit skeletal or carp dorsal troponin; three bands of squid troponin corresponded to molecular weights of 52,000, 28,000, and 24,000 daltons. It could confer Ca-sensitivity in the presence of tropomyosin on skeletal actomyosin as well as on a hybrid reconstituted from squid actin and skeletal myosin. (f) Squid myosin B, and two hybrid actomyosins were compared as regards Ca and Sr requirements for their Mg-ATPase activities. The myosin-linked regulatory system rather than the thin-filament-linked regulatory system was predominant in squid myosin B. Squid myosin B required higher Ca2+ and Sr2+ concentrations for Mg-ATPase activity; half-maximal activation of Mg-ATPase was obtained at 0.8 micron Ca2+ and 28 micron Sr2+ with skeletal myosin B, and at 2.5 micron Ca2+ and 140 micron Sr2+ with squid myosin B.  相似文献   

19.
The inhibitory component of the troponin complex (TN-I) was purified from bovine cardiac muscle, using a combination of ion exchange and molecular exclusion chromatographies in the presence of urea. It has the ability to inhibit the Mg2+-activated APTase (EC 3.6.1.3) of a synthetic cardiac actomyosin preparation and this inhibition is reversed by the addition of cardiac calcium binding component of troponin (TN-C). Conventional sedimentation equilibrium experiments suggest a molecular weight for cardiac TN-I of 22 900 +/- 500. However, sodium dodecyl sulfate (SDS) gels indicate a molecular weight of 27 000 +/- 1000. The mobility of TN-I on SDS gels may be anomalous due to the high proportion of basic amino acid residues in the protein. Cardiac TN-I and TN-C interact to form a tight complex, even in the presence of 6 M urea. The results of this study invite direct comparison with results published for rabbit skeletal TN-I.  相似文献   

20.
Jin JP  Yang FW  Yu ZB  Ruse CI  Bond M  Chen A 《Biochemistry》2001,40(8):2623-2631
The primary structure of the COOH-terminal region of troponin I (TnI) is highly conserved among the cardiac, slow, and fast skeletal muscle TnI isoforms and across species. Although no binding site for the other thin filament proteins is found at the COOH terminus of TnI, truncations of the last 19-23 amino acid residues reduce the activity of TnI in the inhibition of actomyosin ATPase and result in cardiac muscle malfunction. We have developed a specific monoclonal antibody (mAb), TnI-1, against the conserved COOH terminus of TnI. Using this mAb, isolation of the troponin complex by immunoaffinity chromatography from muscle homogenate and immunofluorescence microscopic staining of myofibrils indicate that the COOH terminus of TnI forms an exposed structure in the muscle thin filament. Binding of this mAb to the COOH terminus of cardiac TnI induced extensive conformational changes in the protein, suggesting an allosteric role of this region in the functional integrity of troponin. In the absence of Ca2+, the binding of troponin C and troponin T to TnI had very little effect on the conformation of the COOH terminus of TnI as indicated by the unaffected mAb affinity for the TnI-1 epitope. However, Ca2+ significantly increased the accessibility of the TnI-1 epitope on TnI in the presence of troponin C and troponin T. The results provide evidence that the COOH terminus is an essential structure in TnI and participates in the allosteric switch during Ca2+ activation of contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号