首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary This report describes the development of a culture system for long-term growth and cloning of human fetal adrenocortical cells. Optimal conditions for stimulating clonal growth were determned by testing the efficacy of horse serum (HS), fetal bovine serum (FBS), fibroblast growth factor (FGF), epidermal growth factor (EGF), fibronectin, and a combination of growth factors, UltroSer G, in stimulating growth from low density. Optimal conditions for clonal growth were achieved using fibronectin-coated dishes and DME/F12 medium with 10% FEBS, 10% HS, 2% UltroSer G, and 100 ng/ml FGF or 100 pM EGF. Conditions for growth at clonal density were found to be optimal for growth of early passage, nonclonal cultures at higher densities. The improved growth conditions used for cloning were shown to allow continued long-term growth of nonclonal human adrenocortical cells without fibroblasts overgrowth. All cells in cultures grown in HS, FBS, and UltroSer G had morphologic characteristics of adrenocortical cells, whereas cells grown in FBS only rapidly became overgrown with fibroblasts. Clonal and nonclonal early passage human adrenocortical cells had smilar mitogenic responses to FGF and EGF. Whereas FGF, EGF, and UltroSer G showed similar stimulation of DNA synthesis and clonal growth in human adrenocortical cells and human adrenal gland fibroblasts, the tumor promoter 12-O-teradecanoylphorbol-13-acetate stimulated growth only in adrenocortical cells and was strongly inhibitory to growth in fibroblasts. In both cell types, forskolin inhibited DNA synthesis. Human adrenocortical cell cultures were functional and synthesized cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate. The improved growth conditions for clonal growth of human adrenocortial cells also provided optimal conditions for long-term growth of cultured rat adrenocortical cells and ncreased the cloning efficiency of cultured bovine adrenocortical cells. This work was supported by Research grants AG-00936 and AG-06108 from the National Institute on Aging, Bethesda, MD.  相似文献   

2.
Summary An optimized basal nutrient medium, MCBD 131, has been developed that supports clonal growth of human microvascular endothelial cells (HMVEC) with as little as 0.7% dialyzed fetal bovine serum (dFBS) when also supplemented with 10 ng/ml epidermal growth factor (EGF) and 1 μg/ml hydrocortisone. An extensive initial survey of available media showed that MCDB 402, a medium optimized for low-serum growth of Swiss 3T3 cells, supported the best clonal growth of HMVEC with 10% dFBS. Quantitative adjustment of the composition of MCDB 402 for improved clonal growth of HMVEC with reduced amounts of dFBS resulted in development of MCDB 131. Although many different adjustments contributed to the optimal properties of MCDB 131 for growth of HMVEC, the most unusual feature of this medium is its high magnesium concentration. A major benefit was achieved by increasing Mg2+ from 0.8 mM in MCDB 402 to 10.0 mM in MCDB 131. In the absence of defined supplements, MCDB 131 supports good clonal growth of HMVEC with 2% dFBS. This can be reduced to 0.7% by adding EGF and hydrocortisone, which act synergistically to improve growth with low levels of dFBS. This research was supported by grant CA 15305 from the National Cancer Institute, Bethesda, MD.  相似文献   

3.
Summary Improved culture conditions have been developed that will support clonal growth of Swiss mouse embryo 3T3 cells at concentrations of serum protein as low as 125μg/ml. Survival of the cells under completely protein-free conditions also is enhanced greatly. The improvements that made these results possible include: (a) use of medium MCDB 402, which was developed specifically for Swiss 3T3 cells by adjusting the concentrations of all components of Dulbecco's modified Eagle's medium to optimum values for clonal growth with minimal serum protein and by adding other nutrients such as trace elements and “nonessential” amino acids that were not in the original formula; (b) use of culture surfaces that are coated with a positively charged polymer, poly-d-lysine; and (c) use of gentle low temperature trypsinization technique that minimizes cellular damage and the need to neutralize residual trypsin. Portions of this work were reported at the Thirtieth Annual Meeting of the Tissue Culture Association in Seattle, Washington. This work was supported by Grant CA-15305 from the National Cancer Institute  相似文献   

4.
Summary A new medium (MCDB 104) has been developed which will support clonal growth of WI-38 cells at concentrations of serum protein as low as 25 μg per ml (equivalent to 0.05% serum). The principal factors responsible for reduction of the protein requirement are: (a) adjustment of all nutrient concentrations in medium F12 to experimentally determined optimum values for WI-38 cells; (b) supplementation with trace elements; (c) replacement of hypoxanthine and folic acid with adenine and folinic acid; and (d) coating of the culture surface with polylysine. Individually, many of these modifications exert only a small effect on cellular growth at reduced protein concentrations, but collectively their effect has been very substantial. Other strains of fibroblast-like human diploid cells from amniotic fluid, fetal lung and newborn foreskin also will grow at reduced concentrations of serum protein in the new medium. This work was supported by Grant No. AG00310 from the National Institute on Aging, and by Contract No. 223-74-1156 from the Bureau of Biologics, U.S. Food and Drug Administration.  相似文献   

5.
A new medium (MCDB 104) has been developed which will support clonal growth of WI-38 cells at concentrations of serum protein as low as 25 micrograms per ml (equivalent to 0.05% serum). The principal factors responsible for reduction of the protein requirement are: (a) adjustment of all nutrient concentrations in medium F12 to experimentally determined optimum values for WI-38 cells; (b) supplementation with trace elements; (c) replacement of hypoxanthine and folic acid with adenine and folinic acid; and (d) coating of the culture surface with polylysine. Individually, many of these modifications exert only a small effect on cellular growth at reduced protein concentrations, but collectively their effect has been very substantial. Other strains of fibroblast-like human diploid cells from amniotic fluid, fetal lung and newborn foreskin also will grow at reduced concentrations of serum protein in the new medium.  相似文献   

6.
Summary Multiplication of normal diploid cells in culture is controlled by a complex set of interacting extracellular variables. The amount of serum protein needed for colony formation by such cells is affected directly by many of the other variables, including the nature of the culture surface, the type of trypsinization procedure used, and the qualitative and quantitative composition of the culture medium. By a sequential process of adjusting all of these variables to optimum values for cellular multiplication with minimal amounts of serum protein, we have been able to obtain clonal growth of normal human and chicken cells with less than 500 μg per ml dialyzed serum protein. Precise quantitative adjustment of nutrient concentrations is particularly important. The multiplication-promoting functions of serum can be classified operationally as “replaceable” (those that can be replaced by modifying the medium or the culture conditions) and “nonreplaceable” (those that we have not yet been able to replace). Elimination of the requirement for replaceable functions of serum has improved greatly the specificity and sensitivity of the bioassay for the nonreplaceable functions. The nonreplaceable multiplication-promoting activity from fetal bovine serum for human diploid fibroblasts has been separated from fetuin and serum albumin and purified approximately 15-fold. Presented in the Opening Symposium on Nutritional Factors and Differentiation at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. This work was supported by Contract 223-74-1156 from the Bureau of Biologics, U.S. Food and Drug Adminsstration, Grant AG 00310 from the National Institute on Aging, and Grant CA 15305 from the National Cancer Institute.  相似文献   

7.
R G Ham  W L McKeehan 《In vitro》1978,14(1):11-22
Multiplication of normal diploid cells in culture is controlled by a complex set of interacting extracellular variables. The amount of serum protein needed for colony formation by such cells is affected directly by many of the other variables, including the nature of the culture surface, the type of trypsinization procedure used, and the qualitative and quantitative composition of the culture medium. By a sequential process of adjusting all of these variables to optimum values for cellular multiplication with minimal amounts of serum protein, we have been able to obtain clonal growth of normal human and chicken cells with less than 500 microgram per ml dialyzed serum protein. Precise quantitative adjustment of nutrient concentrations is particularly important. The multiplication-promoting functions of serum can be classified operationally as "replaceable" (those that can be replaced by modifying the medium or the culture conditions) and "nonreplaceable" (those that we have not yet been able to replace). Elimination of the requirement for replaceable functions of serum has improved greatly the specificity and sensitivity of the bioassay for the nonreplaceable functions. The nonreplaceable multiplication-promoting activity from fetal bovine serum for human diploid fibroblasts has been separated from fetuin and serum albumin and purified approximately 15-fold.  相似文献   

8.
Summary This laboratory recently reported that normal human mesothelial cells require epidermal growth factor (EGF) and hydrocortisone (HC), in addition to fetal calf serum and a complex defined medium component, in order to grow optimally in surface culture (9). We report here that this normal cell type also forms large colonies at high efficiency in semi-solid medium, but exhihits more stringent serum and EGF requirements for anchorage-independent than for surface growth. Mesothelial cells are unable to divide at all in semi-solid medium with added EGF or with less than 2% serum, whereas they grow slowly but progressively in surface culture under such conditions. In semi-solid medium containing 20% serum and HC, mesothelial cells are stimulated to divide by the addition of as little as 30 pg/ml purified EGF. Human urine or male mouse plasma could substitute for purified EGF, yielding growth commensurate with the levels of EGF in these biological fluids previously measured by others using radioreceptor and radioimmune assays. Thus growth of mesothelial cells in semi-solid medium can serve as a highly sensitive assay of EGF biological activity which is unaffected by the presence of serum proteins. In addition, our results demonstrate that fetal calf serum does not provide mitogenic levels of EGF to cultured cells, raising the question of the identity of plasma and serum mitogens. This work was supported by NIH grants RO1 AG02048 and RO1 CA26656 to James G. Rheinwald and by NIH postdoctoral fellowship F32 AG05303 to Paul J. La Rocca.  相似文献   

9.
10.
Summary The control of proliferation of mesoderm-derived cells by EGF and FGF has been examined taking, as an example, the vascular endothelium. The mechanisms by which cell proliferation can be brought to a stop in vivo and in vitro have been reviewed. Presented in the formal symposium on Mechanisms of Cellular Control at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. This work was supported by Grants HL20-197 and HD 11082 from the National Institutes of Health, and VC-194 from the American Cancer Society. B. R. Zetter was supported by Fellowship 5-F32-CA05149-02 from the U.S. Public Health Service.  相似文献   

11.
Summary Rat aortic endothelial cells were found to exhibit clonal variations in response to EGF stimulation in cell growth and prostacyclin synthesis. EGF-induced growth and prostacyclin synthesis appeared to be regulated in a coordinated manner in that a clone with a higher response to EGF growth stimulation also exhibited a higher response to EGF-stimulated prostacyclin synthesis. This observation implys a possible involvement of prostacyclin synthesis in some of the biological effects of EGF on vascular endothelial cells.  相似文献   

12.
Recently improved culture conditions for human adult arterial endothelial and smooth muscle cells from a wide variety of donors have been used to study the effects of lipoproteins on proliferation of both cell types in low serum culture medium. Optimal growth of endothelial and smooth muscle cells in an optimal nutrient medium (MCDB 107) containing epidermal growth factor, a partially purified fraction from bovine brain, and 1% (v/v) lipoprotein-deficient serum was dependent on either high- or low-density lipoprotein. High- and low-density lipoprotein stimulated cell growth by three- and five-fold, respectively, over a 6-day period. Optimal stimulation of both endothelial and smooth muscle cell growth occurred between 20 and 60 micrograms/ml of high- and low-density lipoproteins, respectively. No correlation between the activation of 3-hydroxyl-3-methylglutaryl coenzyme. A reductase activity and lipoprotein-stimulated cell proliferation was observed. Lipid-free total apolipoproteins or apolipoprotein C peptides from high-density lipoprotein were partially effective and together with oleic acid effectively replaced native high-density lipoprotein for the support of endothelial cell growth. In contrast, apolipoproteins or apolipoprotein C peptides from high-density lipoprotein alone or with oleic acid had no effect on smooth muscle cell proliferation. The results suggest a functional role of high- and low-density lipoproteins and apolipoproteins in the proliferation of human adult endothelial and smooth muscle cells.  相似文献   

13.
Numerous studies have demonstrated that several diseases and stress conditions are associated with changes in the levels of zinc in the blood plasma and cellular elements. In this research the association between serum zinc concentrations and other hematic parameters of diagnostic interest has been evaluated. Quantitative determinations of zinc, total plasmatic proteins, albumin, hemoglobin and calculation of mean corpuscular volume were performed on blood samples from 58 males aged 20–61 years. Concentrations measured in our sample are comparable with reference values. Statistically significant correlation coefficients were found between age and albumin (r = - 0.562, P < 0.001), serum zinc and albumin (r = 0.328, P < 0.05), serum zinc and hemoglobin (r = 0.291, P < 0.05), and total plasmatic proteins and albumin (r = 0.463, P < 0.001). These correlation coefficients were significant even after adjustment for age effect. The determination of serum zinc concentration may be useful in the assessment of clinical scenarios. Particularly, it may provide additional information for the diagnosis of specific pathologies, such as hepatic malfunctions. It could also be useful in the identification of different stages of anemia.  相似文献   

14.
In this paper, using both immunofluorescence and protein biochemistry techniques, we present definitive evidence that plasma proteins such as albumin are present within normal human epidermis. This result confirms several previous reports supporting the idea that relatively large molecules can diffuse through the epidermal basement membrane into epidermis. Our results bring new insights for discussing how hydrophobic ligands or drugs present in the bloodstream and bound to plasmatic carriers can reach epidermal cells of all layers.Abbreviations CHAPS 3-[3-cholamidopropyl dimethylammonio] propane sulfonate - kD kilodaltons - BSA bovine serum albumin - 2ME 2-mercaptoethanol - DTT dithiothreitol - SDS sodium dodecyl sulfate - pI isoelectric point - Mw molecular weight - Tris Tris-(hydroxymethyl) aminomethane - 1D one dimensional - 2D two dimensional - PAGE poly acrylamide gel electrophoresis - MEM Minimal Eagle's Medium  相似文献   

15.
Insulin-like growth factor-1 (IGF-1) plays a crucial role in cell development, differentiation, and metabolism, and has been a potential therapeutic agent for many diseases. Chinese hamster ovary (CHO) cells are widely used for production of recombinant therapeutic proteins, but the expression level of IGF-1 in CHO cells is very low (1,500?µg/L) and the half-life of IGF-1 in blood circulation is only 4.5?min according to previous studies. Therefore, IGF-1 was fused to long-circulating serum protein human serum albumin (HSA) and expressed in CHO cells. After 8-day fed-batch culture, the expression level of HSA–IGF-1 reached 100?mg/L. The fusion protein HSA–IGF-1 was purified with a recovery of 35% using a two-step chromatographic procedure. According to bioactivity assay, the purified HSA–IGF-1 could stimulate the proliferation of NIH3T3 cells in a dose-dependent fashion and promote the cell-cycle progression. Besides this, HSA–IGF-1 could bind to IGF-1 receptor on cell membrane and activate the intracellular PI3K/AKT signaling pathway. Our study suggested that HSA fusion technology carried out in CHO cells not only provided bioactivity in HSA–IGF-1 for further research but also offered a beneficial strategy to produce other similar cytokines in CHO cells.  相似文献   

16.
PLAC1 is a recently described, trophoblast-specific gene that localizes to a region of the X-chromosome important in placental development. Immunohistochemical analysis demonstrated that PLAC1 polypeptide localizes to the differentiated syncytiotrophoblast throughout gestation (8-41 weeks) as well as a small population of villous cytotrophoblasts. Consistent with these observations, quantitative RT-PCR demonstrated that PLAC1 mRNA increases more than 300-fold during cytotrophoblast differentiation in culture to form syncytiotrophoblasts. Agents known to be relevant to trophoblast differentiation were then tested for the ability to influence PLAC1 expression. Fibroblast growth factor-7 (FGF-7), also known as keratinocyte growth factor (KGF), stimulated PLAC1 mRNA expression approximately two-fold in the BeWo(b30) trophoblast cell line. FGF-7 stimulation was significantly inhibited by PD-98059 and wortmannin suggesting mediation via MAP kinase and PI-3 kinase-dependent signaling pathways. Interestingly, epidermal growth factor (EGF) treatment of trophoblasts had no effect on PLAC1 expression alone, but potentiated the effect of FGF-7, suggesting the presence of a regulatory interaction of the two growth factors. FGF-7 and its receptor, FGFR-2b, exhibited spatial overlap with PLAC1 suggesting these regulatory interactions are physiologically relevant during gestation. These data demonstrate PLAC1 expression is upregulated during trophoblast differentiation, localizing primarily to the differentiated syncytiotrophoblast. Furthermore PLAC1 expression is specifically regulated by peptide growth factors relevant to trophoblast differentiation.  相似文献   

17.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an activating ligand for the EGF receptor (HER1/ErbB1) and the high-affinity receptor for diphtheria toxin (DT) in its transmembrane form (proHB-EGF). HB-EGF was immunolocalized within human benign and malignant prostatic tissues, using monospecific antibodies directed against the mature protein and against the cytoplasmic domain of proHB-EGF. Prostate carcinoma cells, normal glandular epithelial cells, undifferentiated fibroblasts, and inflammatory cells were not decorated by the anti-HB-EGF antibodies; however, interstitial and vascular smooth muscle cells were highly reactive, indicating that the smooth muscle compartments are the major sites of synthesis and localization of HB-EGF within the prostate. In marked contrast to prostatic epithelium, proHB-EGF was immunolocalized to seminal vesicle epithelium, indicating differential regulation of HB-EGF synthesis within various epithelia of the reproductive tract. HB-EGF was not overexpressed in this series of cancer tissues, in comparison to the benign tissues. In experiments with LNCaP human prostate carcinoma cells, HB-EGF was similar in potency to epidermal growth factor (EGF) in stimulating cell growth. Exogenous HB-EGF and EGF each activated HER1 and HER3 receptor tyrosine kinases and induced tyrosine phosphorylation of cellular proteins to a similar extent. LNCaP cells expressed detectable but low levels of HB-EGF mRNA; however, proHB-EGF was detected at the cell surface indirectly by demonstration of specific sensitivity to DT. HB-EGF is the first HER1 ligand to be identified predominantly as a smooth muscle cell product in the human prostate. Further, the observation that HB-EGF is similar to EGF in mitogenic potency for human prostate carcinoma cells suggests that it may be one of the hypothesized stromal mediators of prostate cancer growth. J. Cell. Biochem. 68:328-338, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Summary Primary Rhodamine fibrosarcoma (RdF) cells from rats were shown to grow in serum-free medium supplemented with basic fibroblast growth factor (bFGF), albumin, and transferrin, all of which were purified from RdF tissue. Their growth rate with these supplements was similar to that of cells in medium supplemented with calf serum. bFGF purified from RdF tissue (Rd-bFGF), which was previously designated as DNA synthesis factor, stimulated the growth of primary RdF cells maximally at 30 ng/ml in the presence of the other two proteins. Albumin and transferrin were separated from partially purified tumor growth stimulating activity which was previously shown to stimulate growth of primary RdF cells in serum-free medium. The albumin (RdA) and transferrin (RdT) found in the extract of RdF tissue were not due simply to contamination of the tissue with blood, but to their accumulations in the tissue. The growth stimulatory activities of RdA and RdT on primary RdF cells in serum-free medium were maximal at 30 and 10 μg/ml, respectively. These results suggest that Rd-bFGF, RdA, and RdT, all of which accumulate in the tumor tissue, are essential for growth of RdF cells in the tissue. This work was supported by a grant-in-aid for cancer research from the Ministry of Education, Science and Culture of Japan.  相似文献   

19.
Cellular and molecular adaptations of satellite cells isolated from rat hindlimb muscles (n = 10) were investigated in response to serum stimulation. Flow cytometry analysis of the amounts of DNA and RNA indicated that 97.7 +/- 0.7% of satellite cells were in G0 at the end of the isolation procedure, whereas 93.2 +/- 2.0% of cells were cycling after serum exposure. The length of cell division was 34.0 +/- 2.8 h. Myoblast proliferation was asynchronous, suggesting the existence of heterogeneous cell populations in skeletal muscle. Myoblast proliferation was also accompanied by a significant increase in c-met expression, and major adaptations of energetic and proteolytic metabolisms, including an increase in the relative contribution of glycolytic metabolism for energy production, an increase in proteasome and matrix metalloproteinases 2 and 9 activities, and a decrease in plasminogen activator activities. Our data suggest that, along with molecular adaptations leading to cell cycle activation itself, adaptations in energetic and proteolytic metabolisms are crucial events involved in satellite cell activation and myoblast proliferation.  相似文献   

20.
Summary Heparin-binding (fibroblast) growth factors (HBGF) are mitogens for both human aortic endothelial and smooth muscle cells. Under similar conditions, both vascular cells display similar numbers of specific HBGF binding sites with similar apparent affinity for HBGF. The monokines, interleukin-1 and tumor necrosis factor, inhibit endothelial cell growth and stimulate smooth muscle cell growth. The opposite mitogenic effects correlate with reduction and increase in HBGF receptor number displayed by endothelial and smooth muscle cells, respectively. These results suggest that the two monokines may depress endothelial cell regeneration and augment smooth muscle cell hyperplasia by differential modulation of the HBGF receptor in the two vascular cell types. This work was supported by US Public Health Service grants DK35310 and HL33487. H. S. is a visiting scientist from Takeda Chemical Industries, Ltd., Central Research Division, Juso-Honmachi-2, Yodogawa-ku, Osaka 532, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号