首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence spectroscopy was used to study the shortwave fluorescence of bidistilled water treated in the cathode and anode chambers of two types of electrolyzers made of different materials. Electrochemical treatment in the quartz glass electrolyzer did not induce intrinsic fluorescence of the anolyte or catholyte. An increase in the shortwave fluorescence of the anolyte and catholyte was observed in the electrolyzer made of Plexiglass, which was probably due to the release of microcontaminants from components of the electrolyzer.  相似文献   

2.
The biological activity of the catholyte and anolyte of bidistilled water in experiments with the germination of wheat grains in the period from March to May has been studied. The activity of solutions, which was characterized by the grain germination index, was high at the beginning of the period, then it gradually decreased and was equal to zero at the middle of the period; at the end of the period it gradually increased almost to initial values. It has been established that the effectiveness of bidistilled water anolyte was as a rule higher than that of catholyte throughout the observation period. At the beginning and end, the stimulating effect of anolyte was 5-5.5 times greater than that of catholyte. The seasonal changes in the biological activity of M 9 medium catholyte were compared with those of bidistilled water anolyte and catholyte. The stimulating effect of M 9 catholyte was estimated by changes in the growth of E. coli cells. The stimulating effect, which was estimated from an increase in the optical density of cell suspension in the initial period at a cultivation temperature of 20 degrees C was 55-60% relative to control (untreated medium). Then it decreased almost to zero in the middle of the period to increase again approximately to the initial values. The assumption has been made that the physicochemical causes of the influence of catholyte and anolyte of bidistilled water on wheat grains and of the culture medium catholyte on E. coli cells are of different nature.  相似文献   

3.
The biological activity of the catholyte and anolyte of double distilled water was studied in experiments on the germination of wheat grains in the period from March to May. The activity of the solutions, which was characterized by a growth index, was high early in this period, then decreased almost to zero in the middle of the period, and then increased to about the initial value by the end of the period. Throughout, the efficiency of the anolyte of double distilled water generally exceeded the efficiency of the catholyte. Early and late in the period, the stimulatory effect of the anolyte exceeded that of the catholyte by a factor of 5–5.5. The changes in the biological activity of the catholyte and anolyte of double distilled water were also compared with the changes in the biological activity of the catholyte of nutrient medium M9. The stimulatory effect of the catholyte of the nutrient medium was evaluated from the change in the growth of E. coli cells. Early in the period at a cultivation temperature of 20°C, the stimulatory effect determined from the increase in the optical density of the cell suspension in the experiment with respect to a reference value was 55–60%. Next, the stimulatory effect decreased almost to zero in the middle of the period and increased to approximately initial value by the end of the period. It was assumed that the physicochemical mechanisms of action of the catholyte and anolyte of double distilled water on the wheat seed germination and of the catholyte of the nutrient medium on E. coli cell growth are of different nature.  相似文献   

4.
Changes in the physicochemical parameters (pH, redox potential and electroconductivity) of catholyte and anolyte produced by membrane electrolysis of distilled water and dilute (c < 10(-3) M) sodium chloride solutions were studied. The relaxation of these parameters after electrolysis and the influence of catholyte and anolyte on the growth of roots of Tradescantia viridis grafts, the development of duckweed, and the motive activity of infusoria Spirostomum ambiguum were investigated. It was found that the anolyte of distilled water stimulated development of these biological objects. The direction of shift of physicochemical parameters of catholyte and anolyte from equilibrium values and the type of their biological activity (stimulation or inhibition) depend on salt concentration in initial solution. Barbotage of initial distilled water with argon or nitrogen leads to a greater decrease in the redox potential of catholyte during electrolysis. The physicochemical parameters relax to equilibrium values, and the biological activity of catholite and anolyte decreases with time and practically disappears by the end of the day. It was found that the oxidation of reducing agent by atmospheric oxygen is not the sole cause of the relaxation of catalyte redox potential. The increase in the ionic strength of catholite and anolyte by the addition of concentrated sodium chloride after electrolysis decreases the rate of redox potential relaxation several times. The redox potential can be maintained for long periods by freezing.  相似文献   

5.
The formation of hydrogen peroxide in catholytes and anolytes of electrochemically activated solutions: bidistilled water and solutions of sodium chloride and nutrition medium M9 was studied. The concentration of hydrogen peroxide was determined by the method of enhanced chemiluminescence in a system peroxidase-luminol-p-iodophenol. It was shown that the concentration of hydrogen peroxide depends on the ionic content of the solution and varies from a few fractions of a micromole in catholytes of bidistilled water and sodium chloride solutions (10(-5) divided by 10(-2) M) to 20-25 microM in catholytes of medium M9. The concentration of H2O2 in anolytes of various solutions was 15-20 times lower than in the corresponding catholytes and was equal to a few nanomoles in bidistilled water and a few micromoles in medium M9. The biological activity of the catholyte of medium M9 was determined from changes in the growth of E. coli cells. It was found that this catholyte stimulates the cell growth. The stimulating effect was 20-25% and did not change after the decomposition of hydrogen peroxide in the catholyte by catalase. The addition of H2O2 at the corresponding concentration to the inactivated nutrient medium produced no stimulating effect. These data suggest that hydrogen peroxide formed in the catholyte of nutrient medium M9 does not affect its biological activity.  相似文献   

6.
It was shown that bidistilled modified water induces a marked decrease in the intensity of intrinsic fluorescence of bovine serum albumin and increases the binding of this protein to the fluorescent probe 1.8 ANS. These effects can be interpreted as a denaturing action of bidistilled modified water on the protein and a change in its conformational state, which is probably caused by changes in the microenvironment of the protein molecule. In addition, a substantial increase in the intrinsic fluorescence of bidistilled modified water, as compared with that of distilled water, was found.  相似文献   

7.
Miroshnikov AI 《Biofizika》2004,49(5):866-871
To study the causes of the biological effect of electrochemically activated solutions, nutrient growth media M 9 were prepared using catholyte and anolyte solutions containing separate components of the nutrient medium, such as distilled water, phosphate buffer, phosphate buffer with chlorides (NaCl, NH4Cl), and chlorides. The biological activity of different nutrient media was assessed by a comparison with the stimulation or inhibition of the growth of Escherichia coli cells in the catholyte and anolyte of the complete nutrient medium M 9. It was shown that medium M 9 prepared on the catholytes of different initial solutions acquired the stimulating properties only if the initial solution contained salts containing chlorine. The stimulating effect of the initial solution was 18-24%. Electrochemical treatment of solutions containing no chlorides (distilled water, phosphate buffer) and subsequent addition of the components of nutrient medium to exposed solutions had neither a stimulating nor the inhibiting effect on cell growth. The cultivation of cells in a nutrient medium based on the catholyte of preliminarily treated hydrochloric acid showed that it is the presence of chlorine ions in solution during electrolysis that causes the stimulating effect of the nutrient medium based on the catholyte. The formation of oxidizers and the inhibitory effect of the anolyte described previously was also observed if the solution contained chlorine ions during electrolysis. Possible mechanisms of the biological effect of catholytes containing chlorides during electrolysis were discussed.  相似文献   

8.
pH gradients in buffer electrofocusing on polyacrylamide gel (BEF) have been stabilized for at least 100 hr, 25°C, by replacing the strongly acidic and basic anolyte and catholyte with isoelectric buffers identical to the terminal constituents of the pH gradient and gel. Such stabilization leads to a constant pI position of an electrofocused protein. No stabilization of pH gradients is achieved under otherwise identical conditions when strongly acidic and basic anolyte and catholyte are used.  相似文献   

9.
Muroshnikov AI 《Biofizika》2002,47(2):304-308
The effect of pretreatment of growth medium M-9 with direct electric current in the cathode and the anode compartments of a diaphragm electrolyzer on the growth of Escherichia coli cells was studied. The cells were cultured separately in the catholyte and the anolyte of the growth medium. The cell growth was registered as a change in optical density of the culture suspension by the method of turbidimetry. It was found that cells grown in the catholyte at a temperature of 37 degrees C yielded a 20-30% increase in amount as compared to the control. No cell growth was observed in the anolyte, and a part of the initial cells were lysed. Possible mechanisms of stimulation and inhibition of cell growth and the reasons of discrepancies in the earlier published data are discussed.  相似文献   

10.
This work examines a pH control method using ammonium (NH(4)(+)) as a sustainable proton shuttle in a CEM-equipped BES. Current generation was sustained by adding NH(3) or ammonium hydroxide (NH(4)OH) to the anolyte, controlling its pH at 7. Ammonium ion migration maintained the catholyte pH at approximately 9.25. Such NH(4)(+)/NH(3) migration accounted for 90±10% of the ionic flux in the BES. Reintroducing the volatilized NH(3) from the cathode into the anolyte maintained a suitable anolyte pH for sustained microbial-driven current generation. Hence, NH(4)(+)/NH(3) acted as a proton shuttle that is not consumed in the process.  相似文献   

11.
The effect of bidistilled modified water obtained by treating bidistilled water with static electric field in the cathode compartment of a diaphragm electrolyzer on the production of tumor necrosis factor and activity of natural killer cells of mice was studied. It was found that bidistilled modified water added to cultured murine macrophages increases the tumor necrosis factor production 2.5-3-fold. A similar degree of stimulation of tumor necrosis factor production was observed after peroral administration of bidistilled modified water for 10-25 days. The activity of natural killer cells under these conditions increased by 150%. The stimulation of these immunity system components responsible for the resistance of the organism to tumors led to a suppression of tumor growth in tumor-bearing mice receiving bidistilled modified water.  相似文献   

12.
Cathode and catholyte are usually optimized to improve microbial electrosynthesis process, whereas the anodic counter reaction was not systematically investigated and optimized for these applications yet. Nevertheless, the anolyte and especially the anode material can limit the cathodic bioelectrochemical process. This paper compares for the first time the performance of different anode materials as counter electrodes for a cathodic bioelectrochemical process, the bioelectromethanogenesis. It was observed that depending on the anode material the cathodic methane production varies from 0.96 µmol/d with a carbon fabric anode to 25.44 µmol/d with a carbon felt anode of the same geometrical surface area. The used anolyte also affected the methane production rate at the cathode. Especially, the pH of the anolyte showed an impact on the system; an anolyte with pH 5 produced up to 2.0 times more methane compared to one with pH 8.5. The proton availability is discussed as one reason for this effect. Although some of the measured effects cannot be explained completely so far this study advises researchers to strongly consider the anode impact during process development and optimization of a cathodic bioelectrochemical synthesis process.  相似文献   

13.
It was shown that bidistilled modified water substantially enhances the hydrolysis of the peptide the bovine insulin B-chain. The exposure of the peptide to bidistilled modified water for 20 hours at room temperature leads to an almost complete hydrolysis of its molecule into fragments that differ from the initial molecule in elution time from a column in high-performance liquid chromatography.  相似文献   

14.
It has been shown that the Rhodococcus erythropolis sH-5 strain can produce surfactants associated and not associated with the cell wall. Their content depends on medium composition, the nature of the carbon source, and oxygen supply. The highest biosurfactant (bioSF) yield is achieved by growing R. erythropolis sH-5 in medium with 2% kerosene at neutral pH. It has been found that the bioSF yield and emulsification index for various hydrocarbons depend on the kind of the nitrogen source used by the bacterium, increasing with replacement of KNO3 by NaNO3. The yields of biomass and bioSF in R. erythropolis depend on growth temperatures (max at 30 degrees C) but not on water quality (bidistillate, catholyte, or anolyte). It has been found that sH-5 produces more cell-associated bioSF than extracellular species.  相似文献   

15.
Electrophoresis of poliovirus capsid polypeptides and of nonviral test proteins was carried out in 12.5% acrylamide gels in the presence of sodium dodecyl sulfate. The gels were prepared at pH 7.2. The electrode buffers were (i) both at pH 7.2 (normal conditions), (ii) both at pH 9, 10, or 11, or (iii) the catholyte was at pH 11 and the anolyte was at pH 6.5. The VP1 = 3 group of poliovirus polypeptides yielded the classical three bands under the first (i) set of conditions, except that VP2 and VP3 each yielded two bands in protracted runs; up to six bands were obtained under the second (ii) and third (iii) sets of conditions. When the catholyte was pH 11, there was a molecular weight-dependent, progressive deceleration of the migration of all proteins. In addition, a pH gradient was formed in the gels, and these expanded markedly. The improved resolution of the poliovirus polypeptides is discussed in the light of these observations.  相似文献   

16.
A miniature-microbial fuel cell (mini-MFC, chamber volume: 1.2 mL) was used to monitor biofilm development from a pure culture of Shewanella oneidensis DSP10 on graphite felt (GF) under minimal nutrient conditions. ESEM evidence of biofilm formation on GF is supported by substantial power density (per device cross-section) from the mini-MFC when using an acellular minimal media anolyte (1500 mW/m2). These experiments demonstrate that power density per volume for a biofilm flow reactor MFC should be calculated using the anode chamber volume alone (250W/m3), rather than with the full anolyte volume. Two oxygen reduction cathodes (uncoated GF or a Pt/vulcanized carbon coating on GF) were also compared to a cathode using uncoated GF and a 50mM ferricyanide catholyte solution. The Pt/C-GF (2-4% Pt by mass) electrodes with liquid cultures of DSP10 produced one order of magnitude larger power density (150W/m3) than bare graphite felt (12W/m3) in this design. These advances are some of the required modifications to enable the mini-MFC to be used in real-time, long-term environmental power generating situations.  相似文献   

17.
It has been shown that the Rhodococcus erythropolis sH-5 strain can produce surfactants associated and not associated with the cell wall. Their content depends on medium composition, the nature of the carbon source, and oxygen supply. The highest biosurfactant (bioSF) yield is achieved by growing R. erythropolis sH-5 in medium with 2% kerosene at neutral pH. It has been found that the bioSF yield and emulsification index for various hydrocarbons depend on the kind of the nitrogen source used by the bacterium, increasing with replacement of KNO3 by NaNO3. The yields of biomass and bioSF in R. erythropolis depend on growth temperatures (max at 30°C) but not on water quality (bidistillate, catholyte, or anolyte). It has been found that sH-5 produces more cell-associated bioSF than extracellular species.  相似文献   

18.
Stable pH gradients were formed and focusing of proteins was carried out in polyacrylamide gels containing mixtures of simple, amphoteric buffers, replacing the Ampholine hitherto used in isoelectric focusing (IF). Stable pH gradients can also be formed between acid anolyte and basic catholyte if Ampholine is replaced by nonamphoteric buffers. The fact that focusing can be carried out with nonampholytes shows that focusing in this case is, and in all other cases may be, nonisoelectric. It is postulated that the pH gradient in IF forms by steady-state stacking (isotachophoresis) and forms within the stack. In distinction to ordinary steady-state stacking, however, the stack remains confined within the gel (or density gradient) since the strong acid and base in the electrolyte reservoirs bar by deprotonation or electrostatic repulsion migration into the electrode chambers.  相似文献   

19.
In order to correlate how the solvent affects emission properties of tryptophan, the fluorescence and phosphorescence emission spectra of tryptophan and indole model compounds were compared for solid sugar glass (trehalose/sucrose) matrix and glycerol/water solution and under the same conditions, these matrices were examined by infrared spectroscopy. Temperature was varied from 290 to 12 K. In sugar glass, the fluorescence and phosphorescence emission spectra are constant over this temperature range and the fluorescence remains red shifted; these results are consistent with the static interaction of OH groups with tryptophan in the sugar glass. In sugar glass containing water, the water retains mobility over the entire temperature range as indicated by the HOH infrared bending frequency. The fluorescence of tryptophan in glycerol/water shifts to the blue as temperature decreases and the frequency change of the absorption of the HOH bend mode is larger than in the sugar glass. These results suggest rearrangement of glycerol and water molecules over the entire temperature change. Shifts in the fluorescence emission maximum of indole and tryptophan were relatively larger than shifts for the phosphorescence emission-as expected for the relatively smaller excited triplet state dipole for tryptophan. The fluorescence emission of tryptophan in glycerol/water at low temperature has maxima at 312, 313, and 316 nm at pH 1.4, 7.0, and 10.6, respectively. The spectral shifts are interpreted to be an indication of a charge, or Stark phenomena, effect on the excited state molecule, as supported by ab initio calculations. To check whether the amino acid remains charged over the temperature range, the infrared spectrum of alanine was monitored over the entire range of temperature. The ratio of infrared absorption characteristic of carboxylate/carbonyl was constant in glycerol/water and sugar glass, which indicates that the charge was retained. Tryptophan buried in proteins, namely calcium parvalbumin from cod and aldolase from rabbit, showed temperature profiles of the fluorescence spectra that were largely independent of the solvent (glycerol/water or sugar glass) and temperature whereas the fluorescence and phosphorescence yields were dependent. The results demonstrate how the rich information found in tryptophan luminescence can provide information on the dipolar nature and dynamics of the matrix.  相似文献   

20.
A modified version of capillary isoelectric focusing (cIEF) was developed to separate hemoglobin variants contained within single human erythrocytes. Laser-induced native fluorescence with 275 nm excitation was used to detect the separated hemoglobins. In this method, baseline fluctuations were minimized and detection sensitivity was improved by using dilute solutions of anolyte, catholyte, and carrier ampholytes (with methylcellulose). Since electrosmotic flow was used for mobilization of the focused bands, separation and detection were integrated into a single step. The capillary was first filled with only ampholyte solution, and the cell (or standard) was injected as in capillary zone electrophoresis. The ∼90 fl injection volume for individual cells is 7×104 times lower than those previously reported. Adult (normal and elevated A1), sickle (heterozygous), and fetal erythrocytes were analyzed, with the amounts of hemoglobins A0, A1c, S and F determined. The pH gradient for cIEF was linear (r2 = 0.9984), which allowed tentative identification of Hb Fac. Variants differing by as little as 0.025 pI units were resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号