首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The multimeric nature of NADPH-nitrate reductase from Aspergillus nidulans   总被引:2,自引:0,他引:2  
R J Downey 《Microbios》1973,7(25):53-60
  相似文献   

2.
Summary The role of the cnxH+ gene specified polypeptide in the formation and function of the NADPH-nitrate reductase in Aspergillus nidulans was examined with the use of two complementing mutant strains which were grown as forced heterocaryons in the presence of nitrate. The niaD-421 structural gene mutant and the cnxH-318 co-factor gene mutant produce two components of the NADPH-cytochrome c reductase co-activity which can be distinguished by their enzymatic and physical behavior. This combination enabled us to isolate the de novo synthesis of niaD+ gene specified protomers from the constitutively formed co-factor at two stages of development. The proportion of induced and constitutively formed protomers in the isolated holoenzyme was measured after pulsing with [3H]-histidine or [14C]-histidine prior to induction with nitrate. The newly formed nitrate reductase was resolved by agarose gel electrofocusing and activity staining. In vivo assembly of a 7.8s enzyme in the heterocaryotic mycelium of the above strains is apparently achieved by the convener action of the cnxH+ gene directed polypeptide from the niaD strain on the niaD+ gene directed protomers of the cnxH partner. This occurs with or without Mo as a co-factor.  相似文献   

3.
4.
5.
Formation of pellets by Aspergillus nidulans is primarily due to agglomeration of the fungal conidiospores. Although agglomeration of conidiospores has been known for a long time, its mechanism has not been clearly elucidated. To study the influence of the fungal conidiospore wall hydrophobicity on conidiospore agglomeration, pellet formation of an A. nidulans wild type and strains deleted in the conidiospore-wall-associated hydrophobins DewA and RodA was compared at different pH values. From contact angle measurements, RodA was found to be more important for the surface hydrophobicity than DewA. The absence of either hydrophobin led to a decrease in the relative amount of biomass present as pellets at all pH values as well as a decrease in the average size of the pellets. For all strains, an increasing alkalinity of the medium resulted in an increased pellet formation. Together with measurements of electrophoretic mobility, it is concluded that both the electrical charge and hydrophobicity of the conidiospores affects the pellet formation but that the conidiospore agglomeration process cannot be ascribed to these factors alone.  相似文献   

6.
7.
8.
9.
Summary Mutants of A. nidulans at several loci lack detectable NADPH-nitrate reductase activity. These loci include niaD, the structural gene for the nitrate reductase polypeptide, and five other loci termed cnxABC, E, F, G and H which are presumed to be involved in the formation of a molybdenum-containing component (MCC) necessary for nitrate reductase activity. When frozen mycelia from A. nidulans deletion mutant niaD26 were homogenized in a Ten Broeck homogenizer together with frozen mycelia from either enzA6, cnxE29, cnxF12, enxG4 or cnxH3 strains grown on urea+nitrate as the nitrogen source, nitrate reductase activity was detectable in the extract. Similar results were obtained by co-homogenizing niaD mycelia with Neurospora crassa nit-1 mycelia induced on nitrate. Thus, all A. nidulans cnx mutants are similar to the N. crassa nit-1 strain in their capacity to yield NADPH-nitrate reductase in the presence of the presumed MCC. As judged by the amounts of nitrate reductase formed, niaD26 mycelia grown on urea±nitrate contained much more available MCC than ammonium-grown mycelia. No NADPH-nitrate reductase activity was found in extracts prepared by co-homogenizing mycelia from all five A. nidulans cnx strains. Wild-type A. nidulans NADPH-nitrate reductase acid dissociated by adjustment to pH 2.0–2.5 and re-adjusted to pH 7 could itself re-assemble to form active nitrate reductase and thus was not a sueful source of MCC for these experiments. These results are consistent with the conclusion that the active nitrate reductase complex is composed of polypeptide components which are the niaD gene product, plus the MCC which is formed through the combined action of the cnx gene products. Further, the production of MCC may be regulated in response to the nitrogen nutrition available to the organism.  相似文献   

10.
The filamentous fungus Aspergillus nidulans grows by polarized extension of hyphal tips. The actin cytoskeleton is essential for polarized growth, but the role of microtubules has been controversial. To define the role of microtubules in tip growth, we used time-lapse microscopy to measure tip growth rates in germlings of A. nidulans and in multinucleate hyphal tip cells, and we used a green fluorescent protein-alpha-tubulin fusion to observe the effects of the antimicrotubule agent benomyl. Hyphal tip cells grew approximately 5 times faster than binucleate germlings. In germlings, cytoplasmic microtubules disassembled completely in mitosis. In hyphal tip cells, however, microtubules disassembled through most of the cytoplasm in mitosis but persisted in a region near the hyphal tip. The growth rate of hyphal tip cells did not change significantly in mitosis. Benomyl caused rapid disassembly of microtubules in tip cells and a 10x reduction in growth rate. When benomyl was washed out, microtubules assembled quickly and rapid tip growth resumed. These results demonstrate that although microtubules are not strictly required for polarized growth, they are rate-limiting for the growth of hyphal tip cells. These data also reveal that A. nidulans exhibits a remarkable spatial regulation of microtubule disassembly within hyphal tip cells.  相似文献   

11.
12.
Xylanase production by Aspergillus nidulans   总被引:1,自引:0,他引:1  
Abstract The effect of phagocyte activation by TNF-α on the ability to trigger a chemiluminescence (CL) response, associated with the release of oxidizing species was evaluated in healthy human mononuclear cells in the presence of Mycobacterium leprae . Recombinant TNF-α (r-TNF-α) increased the CL response of unstimulated M. bovis BCG- and PMA-stimulated cells but did not reverse the M. leprae defective activation of the human phagocyte oxidative burst. M. leprae was less well phagocytosed than M. bovis BCG but phagocytosis of mycobacteria was not altered by addition of r-TNF-α. The failure of activation of oxygen-free radical production might have some relevance to the pathogenesis of leprosy.  相似文献   

13.
The regulation of formation of the single intracellular beta-galactosidase activity of Aspergillus nidulans was investigated. beta-Galactosidase was not formed during growth on glucose or glycerol, but was rapidly induced during growth on lactose or D-galactose. L-Arabinose, and -- with lower efficacy -- D-xylose also induced beta-galactosidase activity. Addition of glucose to cultures growing on lactose led to a rapid decrease in beta-galactosidase activity. In contrast, in cultures growing on D-galactose, addition of glucose decreased the activity of beta-galactosidase only slightly. Glucose inhibited the uptake of lactose, but not of D-galactose, and required the carbon catabolite repressor CreA for this. In addition, CreA also repressed the formation of basal levels of beta-galactosidase and partially interfered with the induction of beta-galactosidase by D-galactose, L-arabinose, and D-xylose. D-Galactose phosphorylation was not necessary for beta-galactosidase induction, since induction by D-galactose occurred in an A. nidulans mutant defective in galactose kinase, and by the non-metabolizable D-galactose analogue fucose in the wild-type strain. Interestingly, a mutant in galactose-1-phosphate uridylyl transferase produced beta-galactosidase at a low, constitutive level even on glucose and glycerol and was no longer inducible by D-galactose, whereas it was still inducible by L-arabinose. We conclude that biosynthesis of the intracellular beta-galactosidase of A. nidulans is regulated by CreA, partially repressed by galactose-1-phosphate uridylyl transferase, and induced by D-galactose and L-arabinose in independent ways.  相似文献   

14.
S D Harris  P R Kraus 《Genetics》1998,148(3):1055-1067
In Aspergillus nidulans, germinating conidia undergo multiple rounds of nuclear division before the formation of the first septum. Previous characterization of temperature-sensitive sepB and sepJ mutations showed that although they block septation, they also cause moderate defects in chromosomal DNA metabolism. Results presented here demonstrate that a variety of other perturbations of chromosomal DNA metabolism also delay septum formation, suggesting that this is a general cellular response to the presence of sublethal DNA damage. Genetic evidence is provided that suggests that high levels of cyclin-dependent kinase (cdk) activity are required for septation in A. nidulans. Consistent with this notion, the inhibition of septum formation triggered by defects in chromosomal DNA metabolism depends upon Tyr-15 phosphorylation of the mitotic cdk p34nimX. Moreover, this response also requires elements of the DNA damage checkpoint pathway. A model is proposed that suggests that the DNA damage checkpoint response represents one of multiple sensory inputs that modulates p34nimX activity to control the timing of septum formation.  相似文献   

15.
16.
A mutant (nit8) with a lowered activity of glutamine synthetase (GS) was isolated in Aspergillus nidulans. The levels of GS and of an arginine catabolic enzyme, ornithine transaminase (OTA) were assayed under a variety of growth conditions leading to repression, depression and induction of OTA in the wild type, nit8 and several regulatory mutants. The results obtained appear to exclude the possibility of involvement of GS in the regulation of arginine catabolism in A. nidulans.  相似文献   

17.
Tubulins in Aspergillus nidulans   总被引:2,自引:0,他引:2  
The discovery and characterization of the tubulin superfamily in Aspergillus nidulans is described. Remarkably, the genes that encode alpha-, beta-, and gamma-tubulins were all identified first in A. nidulans. There are two alpha-tubulin genes, tubA and tubB, two beta-tubulin genes, benA and tubC, and one gamma-tubulin gene, mipA. Hyphal tubulin is encoded mainly by the essential genes tubA and benA. TubC is expressed during conidiation and tubB is required for the sexual cycle. Promoter swapping experiments indicate that the alpha-tubulins encoded by tubA and tubB are functionally interchangeable as are the beta-tubulins encoded by benA and tubC. BenA mutations that alter resistance to benzimidazole antimicrotubule agents are clustered and define a putative binding region for these compounds. gamma-Tubulin localizes to the spindle pole body and is essential for mitotic spindle formation. The phenotypes of mipA mutants suggest, moreover, that gamma-tubulin has essential functions in addition to microtubule nucleation.  相似文献   

18.
19.
Mitosis in Aspergillus nidulans   总被引:15,自引:0,他引:15  
  相似文献   

20.
We report the identification of a number of mutations that result in amino acid replacements (and their phenotypic characterization) in either the MogA-like domain or domains 2 and 3 of the MoeA-like region of the Aspergillus nidulans cnxE gene. These domains are functionally required since mutations that result in amino acid substitutions in any one domain lead to the loss or to a substantial reduction in all three identified molybdoenzyme activities (i.e., nitrate reductase, xanthine dehydrogenase, and nicotinate hydroxylase). Certain cnxE mutants that show partial growth with nitrate as the nitrogen source in contrast do not grow on hypoxanthine or nicotinate. Complementation between mutants carrying lesions in the MogA-like domain or the MoeA-like region, respectively, most likely occurs at the protein level. A homology model of CnxE based on the dimeric structure of E. coli MoeA is presented and the position of inactivating mutations (due to amino acid replacements) in the MoeA-like functional region of the CnxE protein is mapped to this model. Finally, the activity of nicotinate hydroxylase, unlike that of nitrate reductase and xanthine dehydrogenase, is not restored in cnxE mutants grown in the presence of excess molybdate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号