首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiogenesis plays an important role in tumor progression. Piperine, a major alkaloid constituent of black pepper, has diverse physiological actions including killing of cancer cells; however, the effect of piperine on angiogenesis is not known. Here we show that piperine inhibited the proliferation and G1/S transition of human umbilical vein endothelial cells (HUVECs) without causing cell death. Piperine also inhibited HUVEC migration and tubule formation in vitro, as well as collagen-induced angiogenic activity by rat aorta explants and breast cancer cell-induced angiogenesis in chick embryos. Although piperine binds to and activates the cation channel transient receptor potential vanilloid 1 (TRPV1), its effects on endothelial cells did not involve TRPV1 since the antiproliferative effect of piperine was not affected by TRPV1-selective antagonists, nor did HUVECs express detectable TRPV1 mRNA. Importantly, piperine inhibited phosphorylation of Ser 473 and Thr 308 residues of Akt (protein kinase B), which is a key regulator of endothelial cell function and angiogenesis. Consistent with Akt inhibition as the basis of piperine's action on HUVECs, inhibition of the phosphoinositide-3 kinase/Akt signaling pathway with LY-294002 also inhibited HUVEC proliferation and collagen-induced angiogenesis. Taken together, these data support the further investigation of piperine as an angiogenesis inhibitor for use in cancer treatment.  相似文献   

2.
AMP-activated protein kinase (AMPK) is a stress-activated protein kinase that is regulated by hypoxia and other cellular stresses that result in diminished cellular ATP levels. Here, we investigated whether AMPK signaling in endothelial cells has a role in regulating angiogenesis. Hypoxia induced the activating phosphorylation of AMPK in human umbilical vein endothelial cells (HUVECs), and AMPK activation was required for the maintenance of pro-angiogenic Akt signaling under these conditions. Suppression of AMPK signaling inhibited both HUVEC migration to VEGF and in vitro differentiation into tube-like structures in hypoxic, but not normoxic cultures. Dominant-negative AMPK also inhibited in vivo angiogenesis in Matrigel plugs that were implanted subcutaneously in mice. These data identify AMPK signaling as a new regulator of angiogenesis that is specifically required for endothelial cell migration and differentiation under conditions of hypoxia. As such, endothelial AMPK signaling may be a critical determinant of blood vessel recruitment to tissues that are subjected to ischemic stress.  相似文献   

3.
Cell to cell interaction is one of the key processes effecting angiogenesis and endothelial cell function. Wnt signalling is mediated through cell-cell interaction and is involved in many developmental processes and cellular functions. In this study, we investigated the possible function of Wnt5a and the non-canonical Wnt pathway in human endothelial cells. We found that Wnt5a-mediated non-canonical Wnt signalling regulated endothelial cell proliferation. Blocking this pathway using antibody, siRNA or a down-stream inhibitor led to suppression of endothelial cell proliferation, migration, and monolayer wound closure. We also found that the mRNA level of Wnt5a is up-regulated when endothelial cells are treated with a cocktail of inflammatory cytokines. Our findings suggest non-canonical Wnt signalling plays a role in regulating endothelial cell growth and possibly in angiogenesis.  相似文献   

4.
Recently, it has been suggested osteocytes control the activities of bone formation (osteoblasts) and resorption (osteoclast), indicating their important regulatory role in bone remodelling. However, to date, the role of osteocytes in controlling bone vascularisation remains unknown. Our aim was to investigate the interaction between endothelial cells and osteocytes and to explore the possible molecular mechanisms during angiogenesis. To model osteocyte/endothelial cell interactions, we co-cultured osteocyte cell line (MLOY4) with endothelial cell line (HUVECs). Co-cultures were performed in 1:1 mixture of osteocytes and endothelial cells or by using the conditioned media (CM) transfer method. Real-time cell migration of HUVECs was measured with the transwell migration assay and xCELLigence system. Expression levels of angiogenesis-related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of vascular endothelial growth factor (VEGF) and mitogen-activated phosphorylated kinase (MAPK) signaling were monitored by western blotting using relevant antibodies and inhibitors. During the bone formation, it was noted that osteocyte dendritic processes were closely connected to the blood vessels. The CM generated from MLOY4 cells-activated proliferation, migration, tube-like structure formation, and upregulation of angiogenic genes in endothelial cells suggesting that secretory factor(s) from osteocytes could be responsible for angiogenesis. Furthermore, we identified that VEGF secreted from MLOY4-activated VEGFR2–MAPK–ERK-signaling pathways in HUVECs. Inhibiting VEGF and/or MAPK–ERK pathways abrogated osteocyte-mediated angiogenesis in HUVEC cells. Our data suggest an important role of osteocytes in regulating angiogenesis.  相似文献   

5.
Zhang H  Han Y  Tao J  Liu S  Yan C  Li S 《Experimental cell research》2011,(20):2904-2913
The migration of vascular endothelial cells plays a critical role in a variety of vascular physiological and pathological processes, such as embryonic development, angiogenesis, wound healing, re-endothelialization, and vascular remodeling. This study clarified the role and mechanism of a new vascular homeostasis regulator, Cellular repressor of E1A-stimulated genes (CREG), in the migration of primary human umbilical vein endothelial cells (HUVECs). A wound healing assay and transwell migration model showed that upregulation of CREG expression induced HUVEC migration and it was positively correlated with the expression of vascular endothelial growth factor. Furthermore, wild type integrin-linked kinase reversed the poor mobility of CREG knock-down HUVECs; in contrast, kinase-dead integrin-linked kinase weakened the migration of HUVECs. We also studied the effect of CREG on HUVEC migration by the addition of an mTOR inhibitor, recombinant vascular endothelial growth factor165, neutralizing antibody of vascular endothelial growth factor165 and AKT siRNA, and we concluded that CREG induces endothelial cell migration by activating the integrin-linked kinase/AKT/mTOR/VEGF165 signaling pathway.  相似文献   

6.
7.
8.
The Wnt signaling pathway is critical in normal development, and mutation of specific components is frequently observed in carcinomas of diverse origins. However, the potential involvement of this pathway in lung tumorigenesis has not been established. In this study, analysis of multiple Wnt mRNAs in non-small cell lung cancer (NSCLC) cell lines and primary lung tumors revealed markedly decreased Wnt-7a expression compared with normal short-term bronchial epithelial cell lines and normal uninvolved lung tissue. Wnt-7a transfection in NSCLC cell lines reversed cellular transformation, decreased anchorage-independent growth, and induced epithelial differentiation as demonstrated by soft agar and three-dimensional cell culture assays in a subset of the NSCLC cell lines. The action of Wnt-7a correlated with expression of the specific Wnt receptor Frizzled-9 (Fzd-9), and transfection of Fzd-9 into a Wnt-7a-insensitive NSCLC cell line established Wnt-7a sensitivity. Moreover, Wnt-7a was present in Fzd-9 immunoprecipitates, indicating a direct interaction of Wnt-7a and Fzd-9. In NSCLC cells, Wnt-7a and Fzd-9 induced both cadherin and Sprouty-4 expression and stimulated the JNK pathway, but not beta-catenin/T cell factor activity. In addition, transfection of gain-of-function JNK strongly inhibited anchorage-independent growth. Thus, this study demonstrates that Wnt-7a and Fzd-9 signaling through activation of the JNK pathway induces cadherin proteins and the receptor tyrosine kinase inhibitor Sprouty-4 and represents a novel tumor suppressor pathway in lung cancer that is required for maintenance of epithelial differentiation and inhibition of transformed cell growth in a subset of human NSCLCs.  相似文献   

9.
Neuropilin-1 (NRP-1) has been found to be expressed by endothelial cells and tumor cells as an isoform-specific receptor for vascular permeability factor/vascular endothelial growth factor (VEGF). Previous studies were mainly focused on the extracellular domain of NRP-1 that can bind to VEGF165 and, thus, enables NRP-1 to act as a co-receptor for VEGF165, which enhances its binding to VEGFR-2 and its bioactivity. However, the exact functional roles and related signaling mechanisms of NRP-1 in angiogenesis are not well understood. In this study we constructed a chimeric receptor, EGNP-1, by fusing the extracellular domain of epidermal growth factor receptor to the transmembrane and intracellular domains of NRP-1 and transduced it into HUVECs with a retroviral expression vector. We observed that NRP-1/EGNP-1 mediates ligand-stimulated migration of human umbilical vein endothelial cells (HUVECs) but not proliferation. Our results show that NRP-1 alone can mediate HUVEC migration through its intracellular domain, and its C-terminal three amino acids (SEA-COOH) are essential for the process. We demonstrate that phosphatidylinositol 3-kinase inhibitor Ly294002 and the p85 dominant negative mutant can block NRP-1-mediated HUVEC migration. NRP-1-mediated migration can be significantly reduced by overexpression of the dominant negative mutant of RhoA (RhoA-19N). In addition, Gq family proteins and Gbetagamma subunits are also required for NRP-1-mediated HUVEC migration. These results show for the first time that NRP-1 can independently promote cell signaling in endothelial cells and also demonstrate the importance of last three amino acids of NRP-1 for its function.  相似文献   

10.
Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLCβ2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLCβ2/Ca2+ signal transduction in endothelial cells.  相似文献   

11.
Glycoprotein (GP) Ib, an adhesion receptor expressed on both platelets and endothelial cells, mediates the binding of von Willebrand factor (vWF). Platelet GPIb plays an important role in platelet adhesion and activation, whereas the interaction of vWF and endothelial GPIb is not fully understood. We report here that agkistin, a snake venom protein, selectively blocks the interaction of vWF with human endothelial GPIb and inhibits angiogenesis in vivo. Agkistin specifically blocked human umbilical vein endothelial cell (HUVEC) adhesion to immobilized vWF in a concentration-dependent manner. Fluorescein isothiocyanate (FITC)-conjugated agkistin bound to HUVECs in a saturable manner. AP1, a monoclonal antibody (mAb) raised against GPIb, specifically inhibited the binding of FITC-conjugated agkistin to HUVECs in a dose-dependent manner, but other anti-integrin mAbs raised against alpha(v)beta(3), alpha(2)beta(1), and alpha(5)beta(1) did not affect this binding reaction. However, neither agkistin (2 microgram/ml) nor AP1 (40 microgram/ml) apparently reduced HUVEC viability. Both agkistin and AP1 exhibited a profound anti-angiogenic effect in vivo when assayed by using the 10-day-old embryo chick chorioallantoic membrane model. These results suggest endothelial GPIb plays a role in spontaneous angiogenesis in vivo, and the anti-angiogenic effect of agkistin may be because of disruption of the interaction of endogenous vWF with endothelial GPIb.  相似文献   

12.
13.
Here, we studied the underlying mechanism of aldosterone (Aldo)-induced vascular endothelial cell damages by focusing on ceramide. We confirmed that Aldo (at nmol/L) inhibited human umbilical vein endothelial cells (HUVEC) survival, and induced considerable cell apoptosis. We propose that ceramide (mainly C18) production might be responsible for Aldo-mediated damages in HUVECs. Sphingosine-1-phosphate (S1P), an anti-ceramide lipid, attenuated Aldo-induced ceramide production and following HUVEC damages. On the other hand, the glucosylceramide synthase (GCS) inhibitor PDMP or the ceramide (C6) potentiated Aldo-induced HUVEC apoptosis. Eplerenone, a mineralocorticoid receptor (MR) antagonist, almost completely blocked Aldo-induced C18 ceramide production and HUVEC damages. Molecularly, ceramide synthase 1 (CerS-1) is required for C18 ceramide production by Aldo. Knockdown of CerS-1 by targeted-shRNA inhibited Aldo-induced C18 ceramide production, and protected HUVECs from Aldo. Reversely, CerS-1 overexpression facilitated Aldo-induced C18 ceramide production, and potentiated HUVEC damages. Together, these results suggest that C18 ceramide production mediates Aldo-mediated HUVEC damages. MR and CerS-1 could be the two signaling molecule regulating C18 ceramide production by Aldo.  相似文献   

14.
IL-8, a member of the chemokine family, has been shown to play an important role in tumor growth, angiogenesis, and metastasis. The objective of this study was to determine the mechanism of IL-8-mediated angiogenesis. We examined the direct role of IL-8 in angiogenesis by examining IL-8 receptor expression on endothelial cells and their proliferation, survival, and matrix metalloproteinases (MMPs) production. We demonstrate that HUVEC and human dermal microvascular endothelial cells constitutively express CXCR1 and CXCR2 mRNA and protein. Recombinant human IL-8 induced endothelial cell proliferation and capillary tube organization while neutralization of IL-8 by anti-IL-8 Ab blocks IL-8-mediated capillary tube organization. Incubation of endothelial cells with IL-8 inhibited endothelial cell apoptosis and enhanced antiapoptotic gene expression. Endothelial cells incubated with IL-8 had higher levels of Bcl-x(L):Bcl-x(S) and Bcl-2:Bax ratios. Furthermore, incubation of endothelial cells with IL-8 up-regulated MMP-2 and MMP-9 production and mRNA expression. Our data suggest that IL-8 directly enhanced endothelial cell proliferation, survival, and MMP expression in CXCR1- and CXCR2-expressing endothelial cells and regulated angiogenesis.  相似文献   

15.
16.
Myoseverin, a new microtubule-binding molecule, acts reversibly on myoblast proliferation without the cytotoxic effects displayed by nonpurine-based microtubule-disrupting molecules, like taxol, vinblastine, nocodazole, and the colchicines. In this study, we examined the effects of myoseverin on in vitro function of endothelial cells and endothelial progenitor cell differentiation in order to explore the possibility for the application of myoseverin as a reversible antiangiogenic agent. Myoseverin potently inhibited proliferation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner with an IC50 of approximately 8 microM. When myoseverin was removed after treatment for 3 days, all the cells pretreated at a concentration range of 2.5-80 microM resumed the cell growth. It also inhibited VEGF-induced HUVEC migration dose dependently. When mononuclear cells (MNCs) isolated from human cord blood were cultured on fibronectin-coated plates for 7 days, myoseverin decreased the number of adherent cells in a dose-dependent manner with IC50 of approximately 9 microM. It also suppressed the development of ac-LDL uptake ability as well as the expression of endothelial lineage markers, KDR, CD31, and vWF. Finally, it inhibited formation of HUVECs or ex vivo cultivated EPCs into capillary-like structure on Matri-gel and in vivo angiogenesis on the chick chorioallantoic membrane. Therefore, these results suggest that myoseverin can be effectively used for the inhibition of new vessel growth by inhibiting endothelial cell function and differentiation of progenitor cells.  相似文献   

17.
Antiangiogenic therapy mediated by food components is an established strategy for cancer chemoprevention. Growth factors play critical roles in tumor angiogenesis. A conditioned medium containing growth factors from human gastric adenocarcinoma SGC-7901 cell conditioned medium was used as an angiogenic stimulus in this study. The purpose of this study was to evaluate the inhibitory effect and possible mechanism of γ-tocotrienol on tumor angiogenesis. The results showed that γ-tocotrienol (10-40 μmol/L) significantly suppressed proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) induced by SGC-7901 cell conditioned medium in a dose-dependent manner. γ-Tocotrienol (800-1200 μg/egg) also inhibited new blood vessel formation on the growing chick embryo chorioallantoic membrane in a dose-dependent manner. Moreover, the inhibitory effects of γ-tocotrienol on HUVECs were correlated with inducing the apoptosis and arresting cell cycle at the G0/G1 phase at a dose of 40 μmol/L γ-tocotrienol. In addition, γ-tocotrienol inhibited angiogenesis in HUVECs by down-regulation of β-catenin, cyclin D1, CD44, phospho-VEGFR-2 and MMP-9. The antiangiogenic effects of γ-tocotrienol on HUVECs may be attributable to regulation of Wnt signaling by decreasing β-catenin expression. Thus, our results suggest that γ-tocotrienol has a potential chemopreventive agent via antiangiogenesis.  相似文献   

18.
Wnts are lipid-modified secreted glycoproteins that regulate diverse biological processes. We report that Wnt5a, which functions in noncanonical Wnt signaling, has activity on endothelial cells. Wnt5a is endogenously expressed in human primary endothelial cells and is expressed in murine vasculature at several sites in mouse embryos and tissues. Expression of exogenous Wnt5a in human endothelial cells promoted angiogenesis. Wnt5a induced noncanonical Wnt signaling in endothelial cells, as measured by Dishevelled and ERK1/2 phosphorylation, and inhibition of canonical Wnt signaling, a known property of Wnt5a. Wnt5a induced endothelial cell proliferation and enhanced cell survival under serum-deprived conditions. The Wnt5a-mediated proliferation was blocked by Frizzled-4 extracellular domain. Wnt5a expression enhanced capillary-like network formation, whereas reduction of Wnt5a expression decreased network formation. Reduced Wnt5a expression inhibited endothelial cell migration. Screening for Wnt5a-regulated genes in cultured endothelial cells identified several encoding angiogenic regulators, including matrix metalloproteinase-1, an interstitial collagenase, and Tie-2, a receptor for angiopoietins. Thus, Wnt5a acts through noncanonical Wnt signaling to promote angiogenesis.  相似文献   

19.
Han YL  Yu HB  Yan CH  Kang J  Meng ZM  Zhang XL  Li SH  Wang SW 《生理学报》2006,58(3):207-216
为阐明Rac1蛋白在人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)衰老中的作用及分子机制,我们采用持续缺氧的方法诱导内皮细胞衰老,检测缺氧前后内皮细胞衰老标志基因SA-β-Gal和PAI-1的表达、细胞周期分布和细胞增殖情况,同时分析缺氧前后细胞内Rac1蛋白的表达.结果显示,持续缺氧96 h后,HUVECs体积变大,细胞浆内颗粒和空泡增多,SA-β-Gal活性明显增加,PAI-1基因表达升高,细胞发生G1期阻滞,细胞增殖受抑,活化型Rac1蛋白表达上调,提示持续缺氧诱导的内皮细胞衰老可能与Rac1蛋白的活化有关.为进一步明确内皮细胞衰老与Rac1蛋白的关系,应用逆转录病毒将持续活化型Rac1(V12Rac1)和主导抑制型Rac1(N17Rac1)基因分别瞬时感染HUVECs,比较三种HUVECs(HUVECs,V12Rac1-HUVECs,N17Rac1-HUVECs)缺氧后的衰老变化,并分析其下游调控分子--血清反应因子(serum response factor,SRF)的表达和定位变化.研究发现,缺氧培养V12Rac1-HUVECs 48 h即可引起细胞衰老,表现为SA-β-Gal活性明显增加,PAI-1基因表达升高,细胞出现明显的G1期阻滞并且细胞增殖受抑,其改变与缺氧96 h的HUVECs相似;而N17Rac1明显抑制缺氧引起的内皮细胞衰老发生.上述结果说明,Rac1蛋白活化可以加速缺氧诱导的内皮细胞衰老,而抑制Rac1蛋白的活性则可抑制缺氧诱导的内皮细胞衰老.为进一步研究Rac1蛋白引起内皮细胞衰老的机制,通过免疫荧光染色及Western blot分析检测三种细胞缺氧处理后SRF的表达,发现:与HUVECs细胞比较,V12Rac1引起缺氧48 h HUVECs核蛋白中SRF的表达明显下降,SRF入核转位受到明显抑制;而N17Rac1感染后,缺氧HUVECs细胞核蛋白中SRF表达明显增多.上述结果提示:缺氧状态下Rac1蛋白活化能够明显加速HUVECs衰老,而抑制Rac1蛋白活性则明显抑制缺氧诱导的HUVECs衰老,SRF蛋白的核转位活化参与了Rac1蛋白调控HUVECs衰老的发生.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号