首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Before a bolus is pushed into the pharynx, oral sensory processing is critical for planning movements of the subsequent pharyngeal swallow, including hyoid bone and laryngeal (hyo-laryngeal) kinematics. However, oral and pharyngeal sensory processing for hyo-laryngeal kinematics is not fully understood. In 11 healthy adults, we examined changes in kinematics with sensory adaptation, sensitivity shifting, with oropharyngeal swallows vs. pharyngeal swallows (no oral processing), and with various bolus volumes and tastes. Only pharyngeal swallows showed sensory adaptation (gradual changes in kinematics with repeated exposure to the same bolus). Conversely, only oropharyngeal swallows distinguished volume differences, whereas pharyngeal swallows did not. No taste effects were observed for either swallow type. The hyo-laryngeal kinematics were very similar between oropharyngeal swallows and pharyngeal swallows with a comparable bolus. Sensitivity shifting (changing sensory threshold for a small bolus when it immediately follows several very large boluses) was not observed in pharyngeal or oropharyngeal swallowing. These findings indicate that once oral sensory processing has set a motor program for a specific kind of bolus (i.e., 5 ml water), hyo-laryngeal movements are already highly standardized and optimized, showing no shifting or adaptation regardless of repeated exposure (sensory adaptation) or previous sensory experiences (sensitivity shifting). Also, the oral cavity is highly specialized for differentiating certain properties of a bolus (volume) that might require a specific motor plan to ensure swallowing safety, whereas the pharyngeal cavity does not make the same distinctions. Pharyngeal sensory processing might not be able to adjust motor plans created by the oral cavity once the swallow has already been triggered.  相似文献   

3.
The mechanical stability of gels applied for entrapment and retention of biocatalysts in bioreactors is of crucial importance for successful scale-up applications. Gel abrasion in agitated reactors will depend on liquid shear, bubble shear, and wall shear, as well as collisions between the gel particles. As a simplified standardized model system, abrasion of gel beads was studied in 1-m-high bubble columns with controlled aeration, and quantified by measuring the loss of gel material into solution. Gel beads were also taken out to measure stress-strain response during controlled compression. More general rheological properties of different gels were studied by applying a variety of regimes of controlled compression of standardized gel cylinders: Gel strength was measured by recording the fracture properties and the Young's modulus. Viscoelastic properties were revealed by recording creep during compression as well as recovery after compression. Oscillation tests up to 1000 cyclic compressions were applied to compare the fatigue of different gels. Results obtained for Ca-alginate gels, gels of chemically modified polyvinyl alcohol with stilbazolium groups (PVA-SbQ) as well as mixed gels of Ca-alginate and PVA-SbQ are compared with previously published data for kappa-carrageenan, agar, and polyethylene glycol (PEG) gels. It is concluded that material fatigue rather than mechanical properties such as stiffness or fracture stress should be considered when selecting a suitable gel material on the basis of abrasion resistance. The very soft and superelastic PVA-SbQ gel showed no significant fatigue in mechanical tests and no abrasion was detected in the standardized model system used. Ca-alginate gels, however, showed severe irreversible changes due to fatigue at oscillating loads and creep at constant load. Due to their similarities with kappa-carrageenan gels in mechanical tests, it is likely that Ca-alginate would also be sensitive to abrasion. Mixed gels of Ca-alginate and PVA-SbQ represent a complex system with intermediate properties, showing significant fatigue and creep, but elastic properties from the PVA-SbQ gel make it less sensitive than the pure Ca-alginate gel.  相似文献   

4.
Non-esterified fatty acids (NEFA) are reportedly detectable through taste mechanisms in the human oral cavity. However, wide variability has been observed in NEFA taste sensitivity between and within subjects as well as across research groups. Some of this variability may be due to the hydrophobic nature of the NEFA and the methods used to make stimuli emulsions. As NEFA are poorly soluble in water, emulsification is necessary for delivery of stimuli to taste receptors. However, properties of emulsions may also be detected by somatosensory cues complicating attribution of sensory findings to taste. Additionally, learning (improved test performance) has been observed when using traditional tests for measuring sensitivity to NEFA, which may contribute greatly to within-subject variability if not standardized. Factors such as sex, diet, and BMI have been proposed to affect NEFA taste sensitivity, but the degree to which these individual factors influence NEFA detection thresholds remains to be fully established. Improved knowledge of stimulus properties and individual sensory capabilities will be needed to further evaluate the posited taste component to human oral fat detection. Progress in this area should facilitate the translation of findings on how NEFA taste may contribute to or reflect food choice and chronic disease risk.  相似文献   

5.
The effect of increasing water composition on the rheological and microstructural behavior of a ternary cellulose acetate (CA)/N,N-dimethylacetamide (DMA)/water system is examined. Addition of water to the CA/DMA system results in enhanced steady shear viscosity and dynamic viscoelastic properties and ultimately to phase-separated gel formation. The changes in dynamic rheological behavior of the system during gelation correlate well with the combined solubility parameter (delta) and, in particular, the Hansen hydrogen-bonding solubility parameter index (delta(h)) of the solvent system, suggesting hydrogen-bonding interactions may be the major route initiating the sol-gel process. For all gels studied, the elastic modulus and the critical stress to yield shifts to higher values with increasing CA concentration and/or water content. In addition, the elastic modulus exhibits a power-law behavior with water content, with the same power-law exponent observed for gels containing different CA concentrations. Addition of water leads to formation of a denser gel network, as evidenced from direct visualization of the gel microstructure through confocal microscopy.  相似文献   

6.
Aggregation and gelation of proteins are key reactions used to generate food texture. Heat-induced gelation of globular proteins produces two general types of gels designated as fine-stranded and particulate. Fine-stranded gels are formed from denatured proteins that aggregate into curved, flexible strands (pH > pI) or rigid, linear fibrils (pH < pI). The latter can be described as amyloid fibrils. During mastication, fine-stranded gels formed at pH > pI breakdown into large, inhomogeneous particles that have irregular shapes and do not form a cohesive mass or stick to the teeth during chewing. In contrast, particulate gels are formed from proteins with a lower degree of unfolding that aggregate into large particles. Particulate gels break down rapidly into a homogeneous distribution of small particles forming a cohesive mass that adheres to teeth during chewing. This review discusses the mechanisms related to the formation and breakdown of fine-stranded and particulate gels. Although there has been extensive research on gel formation, understanding gel breakdown based on mechanical (rheological and fracture properties) and sensory testing is limited. Further research is required to understand how the nanostructure of a gel network translates into the complex fracture pattern seen when evaluating the macroscopic property of food texture.Paper No. FSR-05-30 of the Journal Series of the Department of Food Science, North Carolina State University, Raleigh, NC 27695-7624, USA.  相似文献   

7.
The morphology and distribution of taste buds in the outer integument of the body and in the oral cavity of two forms (blind cave and sighted terrestrial ones) of the astyanax Astyanax fasciatus and in intact and blinded individuals of the Buenos Aires tetra Hyphessobrycon anisitsi have been studied using electronic scanning and light microscopy. In sighted individuals of both species, the morphometric parameters of the taste apparatus and the distribution of taste receptors are similar; the taste apparatus in the oral cavity is more developed than in the outer covers. Morphologically different taste zones were found in the oral cavity of characins. In blind fish, the taste apparatus of the maxillary zones is distinguished by smaller taste buds and a greater density of their distribution. The sensory field of taste buds in blind and sighted individuals of astyanax and tetra has a similar ultrastructure; it is formed by taste cells of three types. In blind astyanaxes and blinded individuals of tetra, numerous modified epidermal cells were found for the first time in the epithelium of the taste zones and in contact with taste buds, which are regarded as tactile receptors and a constituent element of polysensory taste-tactile complexes localized in blind fish in mainly ventral sensory zones.  相似文献   

8.
The mechanical stability of biocatalyst particles in bioreactors is of crucial importance for applications of immobilized-cell technology in bioconversions. The common methods for evaluation of the strength of polymer beads (mostly force-to-fracture or tensile tests) are, however, not yet proven to be relevant for the assessment of their mechanical stability in bioreactors. Therefore, we tested fracture properties of gel materials and investigated their relevance for abrasion in bioreactors. Abrasion of gel beads was assumed to be a continuous fracturing of the bead surface. At first, three rheological properties were considered: stress at fracture; strain at fracture; and the total fracture energy. If stress at fracture is the most important property, beads having a similar fracture energy, but a smaller stress at fracture, would abrade faster in a bioreactor than beads with a larger stress at fracture; if fracture energy the determining factor, beads that require less energy to fracture would abrade faster than those having a larger fracture energy for the same fracture stress. To determine this, beads of kappa-carrageenan and agar (at two different polymer concentrations) were tested for abrasion in four identical bubble columns under the same operating conditions. Agar beads were expected to abrade faster than those of carrageenan because agar had either a lower stress at fracture or a lower fracture energy. However, no correlation between fracture properties and abrasion rate was found in any of the combinations tested. Carrageenan beads abraded faster than those of agar in all combinations. Furthermore, both the stress and strain at fracture of agar and carrageenan beads decreased during the run and those of carrageenan decreased faster, suggesting that the gels are liable to fatigue in different ways. This hypothesis was confirmed by oscillating experiments in which gel samples were subjected to repeated compressions below their fracture levels. Their resistance to compression clearly decreased with the number of oscillations. Fatigue is probably related to the development of microcracks and microfracture propagation within the material. We concluded that: (a) the use of tests based on bead rupture do not provide relevant information on the mechanical stability of gel beads to abrasion; and (b) abrasion of polymer beads is likely to be related to fatigue of the gel materials. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 517-529, 1997.  相似文献   

9.
Study of the structural organization of gustatory apparatus in rainbow trout Parasalmo mykiss performed using electron scanning microscopy demonstrated that external taste buds are absent in this species in skin covers of the head and in the circumoral region. In the oropharyngeal cavity (oral and gill cavities and pharynx) of the rainbow trout, a well-developed gustatory receptor apparatus was found. In correspondence with specific features of morphology and anatomy of the skull, taste buds form seven gustatory zones. Morphometric analysis demonstrated differences between gustatory zones in the pattern and density of distribution of taste buds, as well as in average sizes of their sensory field. Zones of similar innervation have many common features in morphology. Morphologically similar zones form three regions in the oropharyngeal cavity: rostral, central, and caudal. A tendency for a decrease in the concentration of taste buds in the rostrocaudal direction common for all sensory zones was revealed. The highest concentration of taste buds was recorded at papillae of rostral regions near big teeth. A typical feature of taste buds in rainbow trout is irregular shape of the taste pore. Analysis of ultrastructural specific features of apical processes of taste cells allows us to distinguish five cell shapes in the composition of taste buds. The numeric ratio of cell shapes varies in buds of different localization. The quantitative distribution of taste buds over sensory zones, specific features of morphology and sizes of their sensory field are discussed in relation to the feeding pattern of the species.  相似文献   

10.
l-glutamate not only confers cognitive discrimination for umami taste in the oral cavity, but also conveys sensory information to vagal afferent fibers in the gastric mucosa. We used RT-PCR, western blotting, and immunohistochemistry to demonstrate that mGluR1 is located in glandular stomach. Double staining revealed that mGluR1 is found at the apical membrane of chief cells and possibly in parietal cells. Moreover, a diet with 1% l-glutamate induced changes in the expression of pepsinogen C mRNA in stomach mucosa. These data suggest that mGluR1 is involved in the gastric phase regulation of protein digestion.  相似文献   

11.
Investigation of the structure of the gustatory apparatus and morphometric features of the brain in two age groups (1.5 and 6 months) of Siberian sturgeon Acipenser baerii shows a well-developed gustatory system in all studied exemplars. In the oral cavity of the sturgeon, 14 sensory zones are separated, and eight zones are supplied by gustatory receptors. During the growth of the juveniles, morphometric parameters of the zones can change. The zones of the dorsal and ventral linings of the oral cavity are similar by morphology and size, and they are complementary. The largest zone of the oral cavity of the sturgeon with a complex structure is the palate organ. The taste buds of the sturgeon are characterized by a large variation in shapes of apical protrusions of receptor cells. Weight indices of the brain parts and estimated sensory coefficients show an increasing degree of development of the gustatory and olfactory systems during growth of the juveniles. Two age groups of the juveniles are characterized by similar morphometric parameters of the gustatory receptor apparatus with external localization, but the morphology of the gustatory apparatus of the oral cavity is different. The features of the gustatory system morphology are discussed in connection with biology of the species.  相似文献   

12.
The sense of taste, although a relatively undistinguished sensory modality in most mammals, is a highly developed sense in many fishes, e.g., catfish, gadids, and carps including goldfish. In these species, the amount of neural tissue devoted to this modality may approach 20% of the entire brain mass, reflecting an enormous number of taste buds scattered across the external surface of the animal as well as within the oral cavity. The primary sensory nuclei for taste form a longitudinal column of nuclei along the dorsomedial surface of the medulla. Within this column of gustatory nuclei, the sensory system is represented as a fine-grain somatotopic map, with external body parts being represented rostrally within the column, and oropharyngeal surfaces being represented caudally. Goldfish have a specialization of the oral cavity, the palatal organ, which enables them to sort food particles from particulate substrate material such as gravel. The palatal organ taste information reaches the large, vagal lobe with a complex laminar and columnar organization. This lobe also supports a radially-organized reflex system which activates the musculature of the palatal organ to effect the sorting operation. The stereotyped, laminated structure of this system in goldfish has facilitated studies of the circuitry and neurotransmitter systems underlying the goldfish’s ability to sort food from stones.  相似文献   

13.
Cold-set whey protein (WP) gels with addition of xanthan or guar were evaluated by mechanical properties and scanning electron microscopy. Gels were formed after the addition of different amounts of glucono-δ-lactone to thermally denatured WP solutions, leading to different acidification rates and final pH values. At lower acidification rates and higher final pH, gels showed more discontinuous structure and weaker and less elastic network, which was attributed to a predominance of phase separation during gel formation due to slower gelation kinetics. In contrast, at higher acidification rates and lower final pHs, gelation prevailed over phase separation, favoring the formation of less porous structures, resulting in stronger and more elastic gels. The gels’ fractal dimension (D f; structure complexity) and lacunarity were also influenced by the simultaneous effects of gelation and phase separation. For systems where phase separation was the prevailing mechanism, greater lacunarity parameters were usually observed, describing the heterogeneity of pore distribution, while the opposite occurred at prevailing gelation conditions. Increase in guar concentration or lower final pH of xanthan gels entailed in D f reduction, while the increase in xanthan concentration resulted in higher D f. Such a result suggests that the network contour length was rugged, but this pattern was reduced by the increase of electrostatic interactions among WP and xanthan. Guar addition caused the formation of gel network with smoother surfaces, which could be attributed to the guar–protein excluded volume effects leading to an increase in protein–protein interactions.  相似文献   

14.
Water holding capacity and microstructure of gellan gels   总被引:4,自引:0,他引:4  
This project studied the water holding capacity of gellan gels as affected by gel composition and microstructure. When not subjected to external forces such as centrifugal force, gellan gel properties including water holding capacity and texture properties were stable at room temperatures. The water losses from gellan gels after four months storage at 4°C were only 1–2%, independent of calcium concentrations. The freeze–thaw stability of gellan gels was poor. Water holding capacity of gellan gels, when subjected to centrifugal forces, was dependent on calcium concentrations, and was related to the texture properties. Two discrete pore-size distributions in gel matrix on the order of 0.1 and 1 μ were observed with scanning electronic microscopy. Large pores were formed with thick strings while the small ones were formed by a thin web structure. Defects in the large pore structure were observed at high calcium concentrations. The small pores may be responsible for the water holding capacity during storage, while large pore structures provide the strength of gels.  相似文献   

15.
Comparative study of the taste attractiveness of different aquatic invertebrates (daphnids Daphnia longispina and D. pulex, larvae of Chironomidae, whirligig Gyrinus marinus, water skaters Gerris spp.) and plants (duckweed Lemna minor, filamentous alga Cladophora sp.) for roach Rutilus rutilus, bitterling Rhodeus sericeus amarus, and rainbow trout Oncorhynchus mykiss has been performed. Roach’s taste preferences for agar-agar pellets, containing the aqueous extracts of the organisms under study, varies from maximum (daphnids, filamentous alga, larvae of chironomids) to minimum (duckweed) or it can be absent (whirligig). Different taste preferences to pellets containing the extracts of aquatic organisms has been also found in bitterling (daphnids, larvae of chironomids, water skaters) but not in rainbow trout (daphnids, water skaters). It has been suggested that whirligigs and water skaters do not contain any deterrent substances ensuring chemical defense from predators. It has been demonstrated that intraoral gustatory reception of food items follows two alternative behavioral stereotypes that are different from each other in the time during which food items are retained in the oral cavity and the number of manipulations (subsequent grasps of a food item) during the perception process. We discuss the importance of gustatory reception as the major sensory mechanism that ensures feeding selectivity of fish and decreases interspecific competition over food.  相似文献   

16.
胡静荣  冯翠萍  于智慧  朱迎春 《菌物学报》2021,40(12):3320-3331
本文研究预热处理(preheat treatment,PT)金针菇蛋白(Flammulina filiformis protein,FFP)对肌原纤维蛋白(myofibrillar protein,MP)凝胶特性的影响。试验将FFP在65、75、85和95℃下分别预热处理30、60、90和120min,以蛋白溶解度、总巯基含量和表面疏水性为指标,确定FFP预热处理的最佳温度与时间;将预热处理的FFP(PT-FFP)与MP以不同的比例(0:10、1:9、2:8、3:7、4:6,M/M)混合制备复合凝胶(总蛋白质量浓度均为40mg/mL),以凝胶强度、持水性、流变学特性与微观结构为指标,考察PT-FFP对MP凝胶特性的影响。结果表明,75℃预热处理60min,FFP的溶解度与表面疏水性最高,总巯基含量最低,故确定该预热处理条件为最佳;将该条件下制备的PT-FFP以不同比例与MP混合制备凝胶,结果发现PT-FFP比FFP更有利于复合凝胶的凝胶强度和持水性的提高(P<0.05),特别是当PT-FFP与MP混合比例为1:9时,复合凝胶的凝胶强度和持水性达到最高值121.38g和85.25%;流变学结果也表明,PT-FFP能够提高复合凝胶的弹性模量Gʹ和损耗模量G″;电镜观察可以看出PT-FFP与MP复合的凝胶具有更强的连续性,结构更为致密。总之,经过75℃预热处理60min后的FFP和MP以1:9混合时能够改善肌原纤维蛋白凝胶特性和流变学特性。  相似文献   

17.
Physically cross-linked beta-lactoglobulin (BLG) protein gels containing theophylline and sulfamethoxazole low molecular weight drugs were prepared in 50% ethanol solution at pH 8 and two protein concentrations (6 and 7% (w/v)). Swelling behavior of cylindrical gels showed that, irrespective of the hydrated or dehydrated state of the gel, the rate of swelling was the highest in water. When the gels were exposed to water, they first showed a swelling phase in which their weight increased 3 and 30 times for hydrated and dehydrated gels, respectively, due to absorption of water, followed by a dissolution phase. The absorption of solvent was however considerably reduced when the gels were exposed to aqueous buffer solutions. The release behavior of both theophylline and sulfamethoxazole drugs from BLG gels was achieved in a time window ranging from 6 to 24 h. The drug release depended mainly on the solubility of the drugs and the physical state of the gel (hydrated or dry form). Analysis of drug release profiles using the model of Peppas showed that diffusion through hydrated gels was governed by a Fickian process whereas diffusion through dehydrated gels was governed partly by the swelling capacities of the gel but also by the structural rearrangements inside the network occurring during dehydration step. By a judicious selection of protein concentration, hydrated or dehydrated gel state, drug release may be modulated to be engineered suitable for pharmaceutical as well as cosmetics and food applications.  相似文献   

18.
The objectives of this study were to compare oral and nonoral sensory evaluation for discrimination of texture of acid skim milk gels and to establish whether nonoral attributes could be correlated to the oral perception of texture. Trained panelists (n = 13) identified 11 nonoral (visual and in-hand) and 4 oral attributes during a preliminary profiling session that could be used to discriminate textures (P < 0.001) in a range of acid gels prepared with different solid contents and heat treatment of the milks. Both methods of sensory appraisal were found to discriminate between gels. Correlation analysis showed high interrelationship between individual oral and nonoral attributes (P < 0.01). Principal component analysis revealed that all 4 oral attributes could be combined into one single attribute (PC1), with equal relative importance of the individual attributes in explaining the variance in the oral sensory data set. Canonical correlation analysis revealed good correlation between the oral and nonoral set of attributes (R2 > 87.5%).  相似文献   

19.
Flavour release was investigated from pure gelatin, pure agarose and mixed gelatin-agarose gels, all containing 25% sucrose and flavoured with p-cymene, ethyl butyrate, pyrazine and ethanol. Gels were characterised by optical microscopy, and rheological techniques to determine phase separation, elastic modulus and melting temperature. Volatile release was measured by monitoring the four volatiles in the expired air from one individual eating the gels, using Atmospheric Pressure Chemical Ionisation-Mass Spectrometry. The release pattern of p-cymene was not affected by gel type. The release of ethanol, ethyl butyrate and pyrazine was affected to different extents by the matrix suggesting that both the properties of the volatile and the matrix determine volatile release in vivo.  相似文献   

20.
Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号