首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Encapsulating fish oil by spray drying with an adequate wall material was investigated to determine if stable powders containing emulsified fish-oil-droplets can be formed. In particular, the dextrose equivalent (DE) of maltodextrin (MD) affects the powder structure, surface-oil ratio, and oxidative stability of fish oil. The carrier solution was prepared using MD with different DEs (DE = 11, 19, and 25) and sodium caseinate as the wall material and the emulsifier, respectively. The percentage of microcapsules having a vacuole was 73, 39, and 38% for MD with DE = 11, 19, and 25, respectively. Peroxide values (PVs) were measured for the microcapsules incubated at 60 °C. The microcapsules prepared with MD of DE = 25 and 19 had lower PVs than those prepared with MD of DE = 11. The difference in PV can be ascribed to the difference in the surface-oil ratio of the spray-dried microcapsules.  相似文献   

2.
Spray dried microcapsules of mint oil were prepared using gum Arabic alone and its blends with radiation or enzymatically depolymerized guar gum as wall materials. Microcapsules were evaluated for retention of mint oil during 8-week storage during which qualitative changes in encapsulated mint oil was monitored using principal component analysis. The microcapsules with radiation depolymerized guar gum as wall material component could better retain major mint oil compounds such as menthol and isomenthol. The t(1/2) calculated for mint oil in microcapsules of gum Arabic, gum Arabic:radiation depolymerized guar gum (90:10), gum Arabic:enzyme depolymerized guar gum (90:10) was 25.66, 38.50, and 17.11 weeks, respectively. The results suggested a combination of radiation depolymerized guar gum and gum Arabic to show better retention of encapsulated flavour than gum Arabic alone as wall material.  相似文献   

3.
Powdery encapsulation of shiitake flavors, extracted from dried shiitake, was investigated by spray drying. Flavor retention increased with an increase in drying air temperature and solid content, and decreased with an increase in dextrose equivalents of maltodextrin. A heat-treatment of the extract liquid made the lenthionine concentration increase, but did not influence the concentrations of the other flavors. The formation of lenthionine with heat-treatment could be described by the consecutive unimolecular-type first order reaction. Lenthionine content in a spray-dried powder prepared with the heated extracted liquid significantly increased. alpha-Cyclodextrin was the most suitable encapsulant of alpha-, beta-, and gamma-cyclodextrins to prepare the spray-dried powder, including lenthionine. The flavor retentions were markedly increased by using of alpha-cyclodextrin and maltodextrin in combination as an encapsulant.  相似文献   

4.
The effect of the size of oil droplets on the oxidative stability of flaxseed oil in spray-dried powders was investigated. Maltodextrin with a dextrose equivalent of 25 was used as a wall material, and sodium caseinate and transglutaminase-polymerized sodium caseinate were used as emulsifiers. The oxidative stability of flaxseed oil encapsulated in the spray-dried powders was evaluated using lipid oxidation and conductometric determination tests at 105 °C. The powders containing larger oil droplets exhibited higher surface oil content after spray drying, and higher peroxide value and conductivity after storage at 105 °C. Removal of the surface oil from the powders by washing with hexane significantly decreased the conductivity. The results indicated that the surface oil of the spray-dried flaxseed oil powders affected the oxidation stability.  相似文献   

5.
灵芝孢子油微胶囊制备技术   总被引:2,自引:1,他引:1  
灵芝孢子油是从灵芝孢子粉中提取的具有一定药理活性的脂质成分。为提高灵芝孢子油稳定性,以大豆分离蛋白和麦芽糊精为壁材,采用喷雾干燥法和冷冻干燥法制备灵芝孢子油微胶囊。通过试验优化了制备工艺条件并比较了两者干燥方式制备微胶囊的理化性质。结果表明:最佳工艺为大豆分离蛋白和麦芽糊精质量比1:1、固形物含量20%、均质压力30MPa、壁材芯材质量比4:1。两种干燥方式微胶囊流动性、溶解性均较好,差异不显著。但两种微胶囊形态差异较大,喷雾干燥微胶囊整体呈球状、表面紧密无裂缝有凹陷,包埋率为90.84%;冷冻干燥微胶囊结构疏松呈片状,表面多孔。因此喷雾干燥法更适合包埋灵芝孢子油。  相似文献   

6.
The taste and flavor of spray-dried powdered products are the most important quality factors. In the present study, molecular encapsulation in cyclodextrin was applied to prevent the loss of a hydrophobic flavor compound (l-menthol) during the drying of a droplet. beta-Cyclodextrin appeared to be a better encapsulant for menthol than alpha- and gamma-cyclodextrin. The retention of menthol increased with increasing concentration of both cyclodextrin and maltodextrin. A simple mathematical model is proposed for estimating the flavor retention. The theoretical results by this model estimated well the final retention of menthol encapsulated in a blend of beta-cyclodextrin and maltodextrin.  相似文献   

7.
为了制备包埋率高、稳定性好的火麻仁油微胶囊,拓展其在食品领域的应用范围,以火麻仁油为芯材、单双脂肪酸甘油酯为乳化剂、酪蛋白酸钠为壁材、固体玉米糖浆为填充剂、柠檬酸钠为缓冲盐、抗坏血酸棕榈酸钠为抗氧化剂,通过喷雾干燥法制备60%载油率的火麻仁油微胶囊,以微胶囊包埋率为响应值,在单因素实验的基础上,以干物浓度、进风温度、出风温度为实验因素,采用Box-Behnken响应面分析法进行优化。随后通过扫描电镜观察火麻仁油微胶囊表面形态结构,以确定包埋效果。并利用油脂氧化分析仪检测火麻仁油微胶囊的氧化稳定性。研究确定微胶囊的最佳工艺条件为:干物浓度42%、进风温度168 ℃、出风温度74 ℃,在此条件下制备得到的火麻仁油微胶囊包埋率可达92.15%。通过扫描电镜观察到火麻仁油微胶囊表面圆滑无裂痕,表明火麻仁油微胶囊包埋效果比较理想。经油脂氧化分析仪测定,与对照组(火麻仁油)相比,试验组(火麻仁油微胶囊)的氧化诱导期时间较长,能够达到30 h以上,说明通过对火麻仁油进行微胶囊包埋可以较大程度地提高油脂的稳定性。研究结果为火麻仁油在食品工业领域的开发和应用提供了理论支持。  相似文献   

8.
Microcapsules of a water-in-oil-in-water (W/O/W) emulsion, which contained a hydrophilic substance, 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA), in its inner aqueous phase, was prepared by hot-air-drying or freeze-drying the emulsion using a single-droplet-drying method. Pullulan, maltodextrin, or gum arabic was used as a wall material, and the oily phase was tricaprylin, oleic acid, olive oil, or a mixture of tricaprylin and olive oil. An encapsulation efficiency higher than 0.95 was reached except for the microcapsules prepared using gum arabic and oleic acid. The hot-air-dried microcapsules were generally more stable than the freeze-dried microcapsules at 37 degrees C and various relative humidities. The stability was higher for the microcapsules with tricaprylin as the oily phase than for the microcapsules with oleic acid. The higher stability of the microcapsules with tricaprylin would be ascribed to the lower partition coefficient of PTSA to the oily phase. There was a tendency for the stability to be higher at lower relative humidity for both the hot-air- and freeze-dried microcapsules. The volumetric fraction of olive oil in its mixture with tricaprylin did not significantly affect either the encapsulation efficiency or the stability of the hot-air-dried microcapsules.  相似文献   

9.
Microcapsules of a water-in-oil-in-water (W/O/W) emulsion, which contained a hydrophilic substance, 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA), in its inner aqueous phase, was prepared by hot-air-drying or freeze-drying the emulsion using a single-droplet-drying method. Pullulan, maltodextrin, or gum arabic was used as a wall material, and the oily phase was tricaprylin, oleic acid, olive oil, or a mixture of tricaprylin and olive oil. An encapsulation efficiency higher than 0.95 was reached except for the microcapsules prepared using gum arabic and oleic acid. The hot-air-dried microcapsules were generally more stable than the freeze-dried microcapsules at 37°C and various relative humidities. The stability was higher for the microcapsules with tricaprylin as the oily phase than for the microcapsules with oleic acid. The higher stability of the microcapsules with tricaprylin would be ascribed to the lower partition coefficient of PTSA to the oily phase. There was a tendency for the stability to be higher at lower relative humidity for both the hot-air- and freeze-dried microcapsules. The volumetric fraction of olive oil in its mixture with tricaprylin did not significantly affect either the encapsulation efficiency or the stability of the hot-air-dried microcapsules.  相似文献   

10.
In this study, melamine-formaldehyde microcapsules were prepared viain situ polymerization using peppermint oil as a core material, melamine-formaldehyde as the wall material, Tween 20 as the emulsifier, and poly (vinyl alcohol) as a protective colloid. The melamine-formaldehyde microcapsules prepared in this study were then evaluated with regard to their structures, thermal properties, particle size distributions, morphologies, and release behaviors.  相似文献   

11.
The release characteristics of flavor in boiling water and the flavor retention in the rice after cooking were investigated by using spray dried powder in encapsulated in or emulsified with d-limonene or ethyl n-hexanoate in cyclodextrin and maltodextrin, or in gum arabic and maltodextrin. The behavior of flavor release into the boiling water was well simulated by Avrami's equation. The retention of d-limonene and ethyl n-hexanoate in cooked rice was correlated in each case with the flavor amount of spray-dried powder added.  相似文献   

12.
S-Adenosyl-L -methionine (SAM) is an essential metabolite in all living organisms. In clinical research, SAM has also been suggested as a chemotherapeutic agent in various diseases. The main problem of SAM is its instability at high temperatures, at neutral and alkaline pH, and in the presence of humidity. SAM retention in spray-dried powder was determined under various conditions of spray-drying. The highest SAM retention was obtained when maltodextrin (dextrose equivalent, DE, of 25) was used as the carrier solid with the SAM feed liquid at pH 4.0. The water content in the powder had a significant effect on the stability of SAM. SAM powder with lower water content exhibited higher stability.  相似文献   

13.
Microcapsules containing fragrant oils as a core material were prepared byin situ polymerization, using melamine-formaldehyde prepolymer as the wall material. The several parameters, such as stirring times, stirring rates, emulsifier types, emulsifier concentrations, and the viscosity of the core materials, affect the characteristics of the microcapsules. These parameters were investigated by the analyses of microcapsule size, particle size distribution, and morphology. The average microcapsule size decreased with an increase in stirring time, stirring rate, emulsifier concentration, and viscosity of the core material. It was also found that poly(vinyl alcohol) as a protective colloid could enhance the stability of the melamine-formaldehyde microcapsules.  相似文献   

14.
Aflatoxin B1 production by Aspergillus flavus was studied in yeast extract sucrose broth in the presence of cinnamon, clove, almond and cardamom oils. Growth and aflatoxin B1 production was inhibited by 0.5 μl cinnamon oil ml-1 medium and by 1 μl clove oil ml-1. Almond and cardamom oils only affected growth when their concentration exceeded 1.25 μl ml-1 medium. Aflatoxin B1 production was stimulated by 0.75 and 1 μl almond oil ml-1 medium or by 0.25 and 0.5 μl cardamom oil ml-1.  相似文献   

15.
Toxicity of cardamom and clove seed powder and extracted compounds against the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae), was assessed in laboratory exposure experiments. The treatments comprised different amounts of seed powder of cardamom (0.8, 1, 3, and 5 mg) and clove (1, 3, 5, 7 mg), and extract concentrations (0.2, 0.4, 0.5, 0.6, 0.7, and 0.8) for both plants using ether petroleum or chloroform. Data showed that 5 mg of cardamom powdered seed resulted in 93% mortality after one day and 100% mortality after two days. Whereas after two days, lower amounts (0.8, 1, and 3 mg) resulted in 26%, 40%, 46%, respectively. A similar result was obtained for clove seed powder, where 7 mg caused 53% mortality after one day and 100% mortality after three days, other amounts (1, 3, and 5 mg) resulted in 33%, 73%, and 80%, mortality respectively, after three days. We found that all amounts of extract of both plants resulted in 100% mortality after three days. GC-MS analysis of the cardamom and clove extracts revealed the presence of a large number of terpenes of particular note was eugenol and two novel compounds Hydroxy-alpha-Terpenyl Acetate and Labda -8(17),13(E)- Diene- 15. The current work aims at the possibility of benefiting from natural plants pesticides as being safer as well as on the separation of volatile oils, which was known to be important in the control pests.  相似文献   

16.
To enhance the storage stability of essential oils such as d-limonene, a mixed powder of β-cyclodextrin and maltodextrin was used to encapsulate the liquid flavor in a powder state. In this study, powdery encapsulation of d-limonene was done by direct kneading of d-limonene with the mixed powder at low water content, using a twin screw kneader. The retention of d-limonene in the periodically sampled powder reached a maximum when the mass ratio of β-cyclodextrin to maltodextrin in the mixed powder equaled unity and the initial molar ratio of d-limonene to β-cyclodextrin was larger than unity. From X-ray diffraction of the powder, it could be guessed that the maximum retention of d-limonene might come from the adsorption of d-limonene upon maltodextrin. The equilibrium retention of d-limonene in the dry powder depended not only upon the mass ratio of β-cyclodextrin to maltodextrin in the mixed powder, but upon the initial moisture content in the powder. The equilibrium retention could be estimated well by a simple calculation.  相似文献   

17.
This article describes the preparation of starch particles, by spray drying, for possible application to a dry powder coating process. Dry powder coating consists of spraying a fine powder and a plasticizer on particles. The efficiency of the coating is linked to the powder morphological and dimensional characteristics. Different experimental parameters of the spray-drying process were analyzed, including type of solvent, starch concentration, rate of polymer feeding, pressure of the atomizing air, drying air flow, and temperature of drying air. An optimization and screening of the experimental parameters by a design of the experiment (DOE) approach have been done. Finally, the produced spray-dried starch particles were conveniently tested in a dry coating process, in comparison to the commercial initial starch. The obtained results, in terms of coating efficiency, demonstrated that the spray-dried particles led to a sharp increase of coating efficiency value.  相似文献   

18.
目的:本文研究了一种海藻酸钠漂浮微囊的制备方法用以实现胃部持续给药。方法:采用微胶囊发生器制备海藻酸钠漂浮微囊,壁材为海藻酸钠,芯材为食用油的漂浮微囊,衡量不同的制备参数对微囊的理化特性影响;采用克拉霉素作为模型脂溶性药物,测量漂浮药物递送系统的控制释放性质、以及微囊载药特性和小鼠体内漂浮验证。结果:成功制备出了具有漂浮特性的海藻酸钠微囊,其中泵送速度对微囊性质的影响最大。制备出的微囊具有低细胞毒性,可以实现90%的药物包埋率。此外,微囊可以在小鼠的胃中保存超过6小时,具有良好的漂浮特性。结论:海藻酸钠漂浮微囊是一种有效的胃部药物递送系统,可明显延长药物在胃部的滞留时间。  相似文献   

19.
Artemisinin, a poorly water-soluble antimalarial drug, presents a low and erratic bioavailability upon oral administration. The aim of this work was to study an agglomerated powder dosage form for oral administration of artemisinin based on the artemisinin/β-cyclodextrin primary microparticles. These primary microparticles were prepared by spray-drying a water–methanol solution of artemisinin/β-cyclodextrin. β-Cyclodextrin in spray-dried microparticles increased artemisinin water apparent solubility approximately sixfold. The thermal analysis evidenced a reduction in the enthalpy value associated with drug melting, due to the decrease in drug crystallinity. The latter was also evidenced by powder X-ray diffraction analysis, while 13C-NMR analysis indicated the partial complexation with β-cyclodextrin. Agglomerates obtained by sieve vibration of spray-dried artemisinin/β-cyclodextrin primary microparticles exhibited free flowing and close packing properties compared with the non-flowing microparticulate powder. The in vitro dissolution rate determination of artemisinin from the agglomerates showed that in 10 min about 70% of drug was released from the agglomerates, whereas less than 10% of artemisinin was dissolved from raw material powder. Oral administration of agglomerates in rats yielded higher artemisinin plasma levels compared to those of pure drug. In the case of the agglomerated powder, a 3.2-fold increase in drug fraction absorbed was obtained.  相似文献   

20.
The microcapsules with oil core and multi-layers shell were developed from poly-cationic chitosan (CS) and anionic SDS in multistep electrostatic layer by layer deposition technique combined with oil in water emulsification process. The net charge of microcapsules determined by zeta potential indicated that microcapsules are highly positive charged because of poly-cationic nature of CS, and charge neutralization of microcapsules occurred after alkali treatment. The granulometry measurement showed increase in average diameter of microcapsules by alkali treatment suggesting swelling or formation of small aggregates. The morphology analysis of microcapsules by optical microscopy corroborated the results of granulometry, and diameter of microcapsules was found to be decreased in multistep process due to tight packing of layers in outer shell of microcapsules. The alkali treatment of microcapsules to solidify outer shell was optimized with 0.02N NaOH to reduce microcapsules aggregation and gel formation by CS chains as found in optical micrographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号