首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold nanoparticles (GNP) have been used in a variety of localized surface plasmon resonance (LSPR)-based optical sensor systems and in a variety of forms, such as colloidal suspensions, immobilized GNP on flat surfaces or optical fibres. A key parameter affecting the sensitivity of these systems is the effective depth of penetration of the surface plasmons. This study aims to determine the plasmon penetration depth in the case of an immobilized GNP-based LSPR optical biosensor. The optical biosensor used for experimentation is a U-bend fibre optic probe of 200-μm core diameter and 1.5-mm bend diameter on which GNP is immobilized. Formation of multilayered nanostructures on the immobilized GNP was used to investigate the field of the localized surface plasmons. Two multilayered nanostructures were explored in this study, viz. a polyelectrolyte multilayer formed by layer-by-layer (LBL) deposition of oppositely charged polyelectrolytes and an immunoglobulin G (IgG) multilayer formed through sequential immobilization of two mutually specific antibodies. Measurement of LSPR absorbance change with deposition of each analyte layer was used to determine the plasmon penetration depth (d P) of the LSPR biosensor. Probing the plasmon field with an IgG multilayer gave rise to at least twofold higher d P compared to d P obtained from the polyelectrolyte multilayer. The effect of GNP size was also studied, and GNP of three diameters, viz. 18, 36 and 45 nm, were used. The 36-nm-diameter GNP exhibited the highest d P. The outcomes of this study may provide leads for optimization of LSPR-based sensors for various biosensing applications.  相似文献   

2.
Gold nanorods (GNRs) are synthesized with a surfactant template, which often poses toxicity issues for biomedical applications. In addition, blue shift of longitudinal surface plasmon resonance (LSPR) peak of GNR is an inherent problem that needs to be addressed for time-course studies. In this work, we resolve these issues by optimizing the encapsulation of GNRs with polyethylene glycol (PEG) where biocompatibility is improved by ~20 % and blue shift over a period of 8 days is reduced from 20 nm in the case of CTAB-GNR to 2 nm for PEG-encapsulated GNR. The encapsulated GNRs were then bioconjugated for targeted dark-field imaging of cancer cells. As an application, we also demonstrate the contrast-enhancing capability of GNRs in optical coherence tomography (OCT) imaging of tumor xenograft where the LSPR closely matches the OCT excitation wavelength. Our study proves that incorporating GNRs enhances the contrast of tumor tissue interfaces along with a considerable broadening in OCT depth profile by six times.  相似文献   

3.
In this paper, we investigate the ability of the gold nanorods (GNRs) to detect some proteins and demonstrate their potential to be used as plasmonic nanobiosensors. The GNRs were synthesized by a two-step seed-mediated growth procedure at room temperature. Firstly, a seed solution of gold nanoparticles was synthesized in the presence of cetyltrimethylammonium bromide surfactant and, subsequently, incorporated with appropriate amount of silver nitrate and tetrachloroauric acid solutions to grow GNRs with average length of 50 nm and diameter of 14 nm. We study the interaction of GNRs with proteins whose molecular weight varies from 6.5 up to 75 kDa. We investigate the resulting solutions by means of UV–vis absorption spectroscopy to determine the effect of the proteins characteristics on the shift of the localized surface plasmon resonance (LSPR). We show that for the case when proteins are in large excess compared to the GNRs concentration, whatever the protein is, the LSPR shift is constant and does not depend on the protein molecular weight. Moreover, we have been able to demonstrate that the sensitivity of such LSPR sensor is around 10–9 M/nm on a concentration range from 10–10 to 10–8 M. Some comparison with finite-difference time-domain simulations have also shown that the number of proteins adsorbed at the GNRs surface is around 40.  相似文献   

4.
Gold nanoshells (GNSs) were self-assembled on the surface of transparent glasses modified with 3-aminopropyltrimethoxysilane (APTES) to form GNS self-assembled monolayers (SAMs). Because the localized surface plasmon resonance (LSPR) of GNSs can be controlled in the near-infrared (NIR) region of the spectrum, where the optical transmission through tissue and whole blood is optimal, GNSs would be used as an effective signal transduction in whole blood. Accordingly, after modified with cystamine and biotin-NHS (N-hydroxy succinimide), GNS SAMs were used as a novel optical biosensor for real-time detection of streptavidin-biotin interactions in diluted human whole blood within short assay time, without any sample purification/separation. An UV-vis-NIR spectrophotometer was used to monitor the absorbance changes at 730 nm as a function of time for different concentrations of streptavidin in 20% whole blood, and the results showed that the biosensor displayed low detection limit of approximately 3 microg/mL and wide dynamic range of approximately 3-50 microg/mL. This approach provides an opportunity to construct LSPR biosensor for protein sensing and cellular analysis in diluted whole blood.  相似文献   

5.

Noble metal nanoparticles (NPs) have attracted much attention due to their unique physical and chemical properties such as tunable surface plasmonics, high-efficiency electrochemical sensing, and enhanced fluorescence. We produced two biosensor chips consisting of Ag@Au bimetallic nanoparticles (BNPs) on a carbon thin film by simple RF-sputtering and RF-plasma-enhanced chemical vapor co-deposition. We deposited Au NPs with average size of 4 nm (Au1 NPs) or 11 nm (Au2 NPs) on a sensor chip consisting of Ag NPs with mean size of 15 nm, and we investigated the effect of shell size (Au NPs) on the chemical activities of the resulting Ag@Au1 BNPs and Ag@Au2 BNPs. We estimated the average size and morphology of Ag@Au BNPs by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. X-ray diffraction (XRD) patterns revealed that Ag NPs and Au NPs had face-centered cubic (FCC) structure. We studied aging of the biosensor chips consisting of Ag@Au BNPs by localized surface plasmon resonance (LSPR) spectroscopy for up to 3 months. UV–visible aging of the prepared samples indicated that Ag@Au1 BNPs, which corresponded to Ag NPs covered with smaller Au NPs, were more chemically active than Ag@Au2 BNPs. Furthermore, we evaluated changes in the LSPR absorption peaks of Ag@Au1 BNPs and bare Ag NPs in the presence of a DNA primer decamer at fM concentrations, to find that Ag@Au1 BNPs were more sensitive biosensor chips within a short response time as compared to bare Ag NPs.

  相似文献   

6.
A localized surface plasmon resonance (LSPR) sensor surface was fabricated by the deposition of gold nanorods on a glass substrate and subsequent immobilization of the DNA aptamer, which specifically bind to thrombin. This LSPR aptamer sensor showed a response of 6‐nm λmax shift for protein binding with the detection limit of at least 10 pM, indicating one of the highest sensitivities achieved for thrombin detection by optical extinction LSPR. We also tested the LSPR sensor fabricated using gold bipyramid, which showed higher refractive index sensitivity than the gold nanorods, but the overall response of gold bipyramid sensor appears to be 25% less than that of the gold nanorod substrate, despite the approximately twofold higher refractive index sensitivity. XPS analysis showed that this is due to the low surface density of aptamers on the gold bipyramid compared with gold nanorods. The low surface density of the aptamers on the gold bipyramid surface may be due to the effect of shape of the nanostructure on the kinetics of aptamer monolayer formation. The small size of aptamers relative to other bioreceptors is the key to achieving high sensitivity by biosensors on the basis of LSPR, demonstrated here for protein binding. The generality of aptamer sensors for protein detection using gold nanorod and gold nanobipyramid substrates is anticipated to have a large impact in the important development of sensors toward biomarkers, environmental toxins, and warfare agents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
We developed a localized surface plasmon resonance (LSPR)-based label-free optical biosensor for detection of salbutamol (Sal). Hollow gold nanoparticles (HGNs) which deposited on transparent indium tin oxide (ITO) film coated glass was used to sensing platform. Antibody against Sal was immobilized on HGN surface to recognize the target Sal molecules. Thus, the change of LSPR peak was proportional to the concentration of Sal in the solution. The experimental results demonstrated that the LSPR immunosensor possessed a good sensitivity and a high selectivity for Sal. The detection range for Sal was from 0.05 to 0.8 μg/mL with a correlation coefficient of 0.996. The biosensor was applied for the detection for Sal in spiked animal feed and pork liver samples, and the recoveries were in the range of 97–105 %. Therefore, it is expected that this approach may offer a new method in designing label-free LSPR immunosensor for detection of small molecules.  相似文献   

8.

E. coli O157:H7 is one of the most important pathogens in food-borne diseases and is the main cause of the pseudo pandemic development of hemorrhagic colitis and hemolytic uremic syndrome. Also E. coli O157:H7 is the most common serotype of Shiga-toxin-producing E. coli. Traditional methods for detecting E. coli O157:H7 are expensive, time-consuming, and less sensitive. A method with high sensitivity and high-resolution optical detection is utilizes the LSPR property of spherical gold nanoparticles (GNP). In this work, we constructed a novel nano-bio probe to detect E. coli O157:H7 by synthesizing citrate gold nanoparticle conjugated (non-covalent bond) with specific chicken anti-E. coli O157:H7 antibody (IgY) by changing the pH of the nanoparticles’ environment. UV-visible and DLS methods were used to confirm the bonding between the antibody and nanoparticles and the LSPR sensitivity of the nano-bio probe was evaluated by ELISA method. We could optically detect this bacterium in less than 2 h by measuring the LSPR band λ max shifts of GNPs. The sensitivity of this novel biosensor was determined by about 10 CFU/ml, using the LSPR property of spherical gold nanoparticles. So that, the LSPR λ max red shifted from 530 to 543 nm in presence of 10 CFU bacterium. In conclusion, this nano biosensor can be used to detect this important pathogen among the clinical specimens.

  相似文献   

9.
Zhu Y  Qu C  Kuang H  Xu L  Liu L  Hua Y  Wang L  Xu C 《Biosensors & bioelectronics》2011,26(11):4387-4392
In this work, we report on the application of versatile gold nanorods (GNRs) in optical sensors for the detection of antibiotics. The target analyte, Gentamicin (GM) and ovalbumin (OVA)-antigen-modified GNRs together competed with antibody-modified GNRs, then influenced the formation of side-by-side aggregates of the GNRs by antibody-antigen interactions. Accordingly, the UV-vis absorption intensity of the side-by-side aggregates was changed in the presence of the target analyte. This assay allowed the selective determination of GM in the range of 0.1-20 ng/mL, and the limit of detection (LOD) of GM was 0.05 ng/mL. Furthermore, compared with the traditional plate-based immunoassay, the developed method was easy to perform without washing cycles and the results could be read as soon as the nanoprobe-analyte incubation was complete. Therefore, the developed method could be a promising tool for the detection of antibiotic residues.  相似文献   

10.
A Fiber-Optic Localized Surface Plasmon Resonance (FO LSPR) sensor was fabricated using spherical gold nanoparticles (Au NPs) on a flattened end-face of the optical fiber. The Au NPs were easily synthesized by the Turkevich method and were immobilized on the end-face of the optical fiber by using a self-assembled monolayer (SAM). In order to examine the possibility of its application as a biosensor for label-free immunoassays, the fabricated FO LSPR sensor was used for the detection of the antibody-antigen reaction of interferon-gamma (IFN-γ) and the limit of detection (LOD) was approximately 2pg/ml. Herein, The antibodies and bovine serum albumins (BSAs) were immobilized on the Au NPs by physisorption. Also, the FO LSPR sensor was used for the detection of a prostate-specific antigen (PSA) and the LOD was 1pg/ml below. The fabricated FO LSPR sensor can be used for real-time label-free immunoassay having fast detection time, high resolution and sensitivity. In addition, the proposed sensor platform has the advantages of low cost, simple optical setup, remote sensing, simple fabrication, real-time detection, low sample volume, and potential application to in-vivo detection systems.  相似文献   

11.
In this study, the temporal dynamic changes in optical properties of gold nanorods (GNR) embedded tumor phantom, during photothermal interaction, are reported for plasmonic photothermal therapeutics. Tumor mimicking bilayer phantoms were prepared by using 1% agarose incorporated with 0.1% coffee powder, 0.3% intralipid solution as epidermis layer; 3% intralipid solution and 0.3% human hemoglobin (Hb) powder as dermis layer. On incorporating GNRs of concentrations 10, 20, and 40 μg/ml within the phantom, the absorption coefficients increases 4–8 times, while there is minimal change in the reduced scattering coefficients. Further the absorption coefficient increased by ~8% with the incorporation of GNRs of concentration 40 μg/ml, while no considerable dynamic change in the optical properties is observed for the phantom embedded with GNRs of concentrations 10, and 20 μg/ml. The discussed results are useful for the selection of GNRs dose for pre-treatment planning of plasmonic photothermal cancer therapeutics.  相似文献   

12.
目的:研究金纳米棒(GNRs)IgG生物学标记及其在抗人IgG检测中的应用。方法:利用种子生长法制备GNRs,用巯基十一酸(MUA)对GNRs端头邀111妖晶面进行化学修饰,MUA提供的羧基可与人IgG结合;抗人IgG与活化的GNRs反应引起GNRs表面等离子体共振(SPR)特征变化,通过读取SPR值判断免疫反应的结果。结果:合成了不同长径比(AR)的GNRs,成功地将人IgG标记于GNRs(AR=3.7)的端头;利用标记后的GNRs对抗人IgG进行检测,其SPR最大吸收峰发生9nm红移,检测灵敏度可达纳摩尔量级。结论:基于人IgG-抗人IgG免疫反应建立了GNRs用于免疫检测的方法,为GNRs用于免疫检测进而研制免疫传感器奠定了基础。  相似文献   

13.
Herein we demonstrate a sensitive approach for protein detection based on peak shifts of localized surface plasmon resonance (LSPR) induced by aptamer-antigen-antibody sandwich structures. The applicability of the proposed method is demonstrated using human α-thrombin as a model analyte. While the binding of thrombin to its specific receptor, thrombin binding aptamer (TBA) modified on Au nanorods (AuNRs), causes a measurable LSPR shift, a subsequent binding of an anti-thrombin antibody to the captured thrombin can exhibit a nearly 150% amplification in the LSPR response. This enhanced signal essentially leads to an improvement of limit of detection (LOD) by more than one order of magnitude. In addition, the use of TBA as thrombin recognition units makes the biosensor reusable. The feasibility of the proposed method was further exploited by the detection of thrombin in human serum, opening the possibility of a real application for diagnostics and medical investigations.  相似文献   

14.
近年来纳米材料的不断引入,为生物传感技术提供了新的研究途径,大大提高了生物传感器的性能。其中,二硫化钼(MoS2)纳米材料由于比表面积大、带隙可调、电子迁移率高等独特性质,在生物传感器中被广泛应用。本文首先介绍了基于MoS2纳米材料的电化学、场效应晶体管、表面增强拉曼散射、比色、双模式生物传感器的基本原理、研究进展及性能对比,重点分析了MoS2纳米复合材料的结构、组分等对传感器灵敏度、检测范围、检测限、特异性等性能的影响,总结了MoS2生物传感器的优势并对其未来发展趋势进行了展望,为MoS2生物传感器在生物检测领域的进一步应用以及未来研究方向提供了思路。  相似文献   

15.
The novel cellular-like gold nanofeet (CGNF) with movable gold core, which are derived from gold/silver core shell nanorods, have been generated by galvanic reaction protocol at room temperature. The optical property based on localized surface plasmon resonance (LSPR) has been evaluated in comparison with solid gold nanofeet, suggesting that obviously high LSPR sensitivity of CGNF contributes to enhancing optical effect for detection of analytes. In contrast with superquenching properties of nanogold for fluorescence detection of pollutants, highly sensitive detection of heavy metal contaminations, e.g., mercury ions, have been implemented via DNA functionalized silica-coated CGNF on the basis of surface enhanced fluorescence (SEF) approach.  相似文献   

16.
Scattering efficiencies of Ag–Cu, Ag–Au, and Au–Cu alloy nanoparticles are studied based on Mie theory for their possible applications in solar cells. The effect of size (radius), surrounding medium, and alloy composition on the scattering efficiency at the localized surface plasmon resonance (LSPR) wavelengths has been reported. In the alloy nanoparticles of Ag1?x Cu x , Au1?x Cu x and Ag1?x Au x ; the scattering efficiency gets red-shifted with increase in x. Moreover, the scattering efficiency enhancement can be tuned and controlled with both the alloy composition and the surrounding medium refractive index. A linear relationship which is in good agreement to the experimental observations between the scattering efficiency and metal composition in the alloys are found. The effect of nanoparticle size and LSPR wavelength (scattering peak position) on the full width half maxima and scattering efficiency has also been studied. Comparison of Au–Ag, Au–Cu, and Ag–Cu alloy nanoparticles with 50-nm radii shows the optical response of Ag–Cu alloy nanoparticle with wide bandwidth in the visible region of the electromagnetic spectrum making them suitable for plasmonic solar cells. Further, the comparison of Ag–Cu alloy and core@shell nanoparticles of similar size and surrounding medium shows that Cu@Ag nanoparticle exhibits high scattering efficiency with nearly the same bandwidth.  相似文献   

17.

Background

Urinary tract infection (UTI) is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management.

Methodology/Principal Findings

The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both).

Conclusion/Significance

We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for multiplexed detection of nucleic acid and protein as the next generation of urinary tract infection diagnostics.  相似文献   

18.
Although it has been revealed that astrocytes, generally known as star‐shaped glial cells, play critical roles in the functions of central nervous system, there have been few efforts to directly modulate their activities and responses. In this study, an optical stimulation strategy for producing intracellular Ca2+ transients of astrocytes is demonstrated using near‐infrared (NIR) light and localized surface plasmon resonance. It is presented that NIR stimulation of micro‐second duration combined with gold nanorods (GNRs) efficiently produces stronger Ca2+ transients of astrocytes, which seems to be associated with a local heat generation by photothermal effects of GNRs. Since the proposed scheme can directly activate astrocytes with a high reliability, it is expected that GNR‐mediated NIR stimulation could be utilized to facilitate minimally invasive physiological studies on the astrocyte functions.

Photos of intracellular Ca2+ transient of astrocytes with membrane‐bound GNRs after optical stimulation at 30 s.  相似文献   


19.
This study reports on the development and application of theragnostic agents targeting the HER2 receptors in breast tumors. The agent was constructed by loading silica-coated gold nanorods (GNRs) and a perfluorohexane liquid into PLGA-PEG nanoparticles, followed by surface conjugation with antibody Herceptin. The particle uptake in human breast cancer MDA-MB-231 (HER2-negative) and BT474 (HER2-positive) cell lines was tested. A proof of principle in vivo study was also performed using a xenograft mouse bilateral tumor model (16 mice, 32 tumors). Photoacoustic imaging was performed using a VevoLAZR device at 720/750/850 nm illuminations and 21 MHz central frequency. The relative concentrations of GNRs in the tumor were quantified using a linear spectral unmixing technique. The therapeutic efficacy of these nanoparticles was evaluated through optical droplet vaporization, and cell damage was confirmed using tissue immunofluorescence and histology. Our results demonstrate the potential of PLGA-GNRs as theragnostic agents for anti-HER2 breast cancer therapy.  相似文献   

20.
A photonic crystal (PhC) waveguide based optical biosensor capable of label-free and error-corrected sensing was investigated in this study. The detection principle of the biosensor involved shifts in the resonant mode wavelength of nanocavities coupled to the silicon PhC waveguide due to changes in ambient refractive index. The optical characteristics of the nanocavity structure were predicted by FDTD theoretical methods. The device was fabricated using standard nanolithography and reactive-ion-etching techniques. Experimental results showed that the structure had a refractive index sensitivity of 10(-2) RIU. The biosensing capability of the nanocavity sensor was tested by detecting human IgG molecules. The device sensitivity was found to be 2.3±0.24×10(5) nm/M with an achievable lowest detection limit of 1.5 fg for human IgG molecules. Additionally, experimental results demonstrated that the PhC devices were specific in IgG detection and provided concentration-dependent responses consistent with Langmuir behavior. The PhC devices manifest outstanding potential as microscale label-free error-correcting sensors, and may have future utility as ultrasensitive multiplex devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号