首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Hidden diversity within an invasive ‘species’ can mask both invasion pathways and confound management goals. We assessed taxonomic status and population structure of the monkey goby Neogobius fluviatilis across Eurasia, comparing genetic variation across its native and invasive ranges. Location Native populations were analysed within the Black and Caspian Sea basins, including major river drainages (Dnieper, Dniester, Danube, Don and Volga rivers), along with introduced locations within the upper Danube and Vistula river systems. Methods DNA sequences and 10 nuclear microsatellite loci were analysed to test genetic diversity and divergence patterns of native and introduced populations; phylogenetic analysis of mtDNA cytochrome b and nuclear RAG‐1 sequences assessed taxonomic status of Black and Caspian Sea lineages. Multivariate analysis of morphology was used to corroborate phylogenetic patterns. Population genetic structure within each basin was evaluated with mtDNA and microsatellite data using FST analogues and Bayesian assignment tests. Results Phylogenetic analysis of mitochondrial and nuclear sequences discerned a pronounced genetic break between monkey gobies in the Black and Caspian Seas, indicating a long‐term species‐level separation dating to c. 3 million years. This pronounced separation further was confirmed from morphological and population genetic divergence. Bayesian inference showed congruent patterns of population structure within the Black Sea basin. Introduced populations in the Danube and Vistula River basins traced to north‐west Black Sea origins, a genetic expansion pattern matching that of other introduced Ponto‐Caspian gobiids. Main conclusions Both genetic and morphological data strongly supported two species of monkey gobies that were formerly identified as subspecies: N. fluviatilis in the Black Sea basin, Don and Volga Rivers, and the Kumo‐Manych Depression, and Neogobius pallasi in the Caspian Sea and Volga River delta. Genetic origins of introduced N. fluviatilis populations indicated a common invasion pathway shared with other introduced Ponto‐Caspian fishes and invertebrates.  相似文献   

2.
Crane Prairie Reservoir in the upper Deschutes River Basin has historically supported a wild population of migratory Deschutes River redband trout. Owing to its status as a premier destination for recreational angling in Oregon, the reservoir has been stocked with domesticated hatchery rainbow trout since 1955. In recent years the wild redband trout population has experienced a substantial decline. Effects on productivity related to genetic interaction with naturally spawning hatchery-origin fish (fitness risks) have not been determined. The species Oncorhynchus mykiss has been characterized with substantial genetic diversity throughout the Deschutes River Basin that further heightens the challenge of identifying specific conservation needs of wild populations. A conservation plan for Crane Prairie wild redband trout requires a better understanding of the natural reproductive success of out-of-basin hatchery trout in the reservoir tributaries, and the similarity between Crane Prairie redband trout with other extant redband trout populations in the basin. Using a suite of 17 microsatellite nuclear DNA markers, we evaluated the genetic structure among Crane Prairie Reservoir redband trout, hatchery rainbow trout, and two adjacent populations of redband trout from within the Upper Deschutes River Basin. We observed significant heterogeneity between the hatchery and wild Crane Prairie populations that may reflect differences in life histories, differential productivity and assortative mating. The genetic distinctions observed among the three redband trout populations suggest restricted gene flow and genetic drift within the upper basin. Temporally stratified sampling and larger numbers of samples will be necessary to confirm these conclusions.  相似文献   

3.
Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.  相似文献   

4.
1. Habitat fragmentation has been implicated as a primary cause for the ongoing erosion of global biodiversity, yet our understanding of the consequences in lotic systems is limited for many species and regions. Because of harsh environmental conditions that select for high colonisation rates, prairie stream fishes may be particularly vulnerable to the effects of fragmentation. Hence, there is urgent need for broader understanding of fragmentation in prairie streams such that meaningful conservation strategies can be developed. Further, examination at large spatial scales, including multiple impoundments and un‐impounded catchments, will help identify the spatial extent of species movement through the landscape. 2. Our study used data from 10 microsatellite loci to describe the genetic structure of creek chub (Semotilus atromaculatus) populations across four catchments (three impounded and one un‐impounded) in the Kansas River basin. We investigated whether genetic diversity was eroded in response to habitat fragmentation imposed by reservoirs and whether intervening lentic habitat increased resistance to dispersal among sites within a catchment. 3. Our analyses revealed that genetic diversity estimates were consistent with large populations regardless of the location of the sampled tributaries, and there was little evidence of recent population reductions. Nevertheless, we found a high degree of spatial genetic structure, suggesting that catchments comprise a set of isolated genetic units and that sample sites within catchments are subdivided into groups largely defined by intervening habitat type. Our data therefore suggest that lentic habitat is a barrier to dispersal among tributaries, thus reducing the opportunity for genetic rescue of populations in tributaries draining into reservoirs. Isolation by a reservoir, however, may not be immediately deleterious if the isolated tributary basin supports a large population.  相似文献   

5.
Summary 1. Fishes can often rebound numerically and distributionally from short‐term (i.e. seasonal) drought, yet their capacity to recover from decades or centuries of drought is less apparent. An exceedingly warm and dry period swept the intermontane west of North America ca. 7500 years BP, concomitant with an abrupt extinction of >35 mammal species. Were larger fishes in mainstem rivers also impacted by this drought? 2. The Colorado River Basin encompasses seven states in western North America and drains 600 000 km2. Its endemic mainstem fish community is ancient (i.e. Miocene) but depauperate. 3. We evaluated one widely distributed candidate species (flannelmouth sucker, Catostomus latipinnis) for basin‐wide genetic and geographic structure at three fast‐evolving mitochondrial (mt) DNA genes, ND2 with 589 bp and ATPase 8 and 6 with 642 bp. It is hypothesized that a concomitant signature would be present in the mtDNA of this species, if indeed it had been seriously bottlenecked by post‐Pleistocene drought. A total of 352 individuals were sequenced from 24 populations (4–40 individuals/population; average of 14.7). 4. Only 49 unique haplotypes were found, 53% of which represented single individuals. Haplotype diversity was high (0.905 ± 0.007) whereas nucleotide diversity was low (0.002 ± 0.000). 5. A significant and positive geographical cline (P < 0.001) in nucleotide diversity was observed as sampling locations progressed upstream from southwest to northeast. These results divided the Colorado River Basin into three reaches: the lower reach with six populations and 83 individuals; the upper reach with seven populations and 83 individuals; and the middle reach with 11 populations and 186 individuals. An analysis of molecular variance (amova ) revealed that 81.5% of the total genetic variation was within populations, 16% among populations within reaches and 2.5% among reaches. Only the last was significant. Populations from the three reaches diverged from one another by 3400–11 000 years BP. Haplotype distribution suggested populations in the upper Colorado River are expanding. 6. The lack of genetic variation and recent coalescence of lineages in C. latipinnis are unusual given its fossil history, broad geographical sampling, the rapid rate of mtDNA evolution and the number (and evolutionary rate) of the genes examined. The most parsimonious explanation for these data is a rapid expansion following a recent period of low effective population size at the end of the Pleistocene. 7. The intense drought is suggested at the end of the Pleistocene (late‐to‐mid‐Holocene), severely impacted not only large mammals but also larger fishes in western North American rivers. These perspectives have important implications for management of endangered and threatened species in this region.  相似文献   

6.
Razorback sucker (Xyrauchen texanus) was once common and widely distributed throughout the Colorado River drainage of western North America. Water development and predation by non-native species led to significant decrease in the species’ range, and dramatic reduction in size of remaining populations. Previous analyses of mtDNA variation determined that most variation was found within locations and that haplotypes were randomly distributed relative to geography, indicating these samples represent remnants of a single, basin-wide population. In addition, both diversity and number of haplotypes declined progressively down- to upstream, consistent with geologically-recent expansion into the northern portions of the basin. Analyses of variation at 13 microsatellite loci also identified a decrease in genetic variation from down- to upstream, also consistent with the hypothesis of recent expansion. Analyses of population structure identified three distinct groups, but the majority of microsatellite variation was found within populations. Most individuals from the upper Colorado River were identified as a discrete unit. These individuals exhibited high levels of relatedness, indicating this represented an isolated group of closely related individuals. There also were significant differences between populations above and below the Grand Canyon; however, estimates of Θ were relatively low. Given nothing is known of local adaptation in this species, populations above and below the canyon should be managed as independent units; however, if numbers become too low it will be possible to translocate individuals from southern populations northward to increase levels of genetic variability and decrease relatedness within units. These results also illustrate the need for careful consideration of all available information when using molecular data in identifying units for management.  相似文献   

7.
The effects of landscape features on gene flow in threatened and endangered species play an important role in influencing the genetic structure of populations. We examined genetic variation of trout in the species Oncorhynchus mykiss at 22 microsatellite loci from 20 sites in the Russian River basin in central California. We assessed relative patterns of genetic structure and variation in fish from above and below both natural (waterfalls) and man-made (dams) barriers. Additionally, we compared sites sampled in the Russian River with sites from 16 other coastal watersheds in California. Genetic variation among the 20 sites sampled within the Russian River was significantly partitioned into six groups above natural barriers and one group consisting of all below barrier and above dam sites. Although the below-barrier sites showed moderate gene flow, we found some support for sub-population differentiation of individual tributaries in the watershed. Genetic variation at all below-barrier sites was high compared to above-barrier sites. Fish above dams were similar to those from below-barrier sites and had similar levels of genetic diversity, indicating they have not been isolated very long from below-barrier populations. Population samples from above natural barriers were highly divergent, with large F st values, and had significantly lower genetic diversity, indicating relatively small population sizes. The origins of populations above natural barriers could not be ascertained by comparing microsatellite diversity to other California rivers. Finally, below-barrier sites farther inland were more genetically differentiated from other watersheds than below-barrier sites nearer the river’s mouth.  相似文献   

8.
An analysis of population structure and genetic diversity was conducted on samples of Oncorhynchus mykiss (steelhead/rainbow trout) from 33 sites in the Klamath–Trinity River basin. Genotype data from 16 microsatellite loci in almost 1,700 fish revealed genetic differentiation between most sampled locations. Two pairs of samples from the same sites in different years were not significantly different, indicating stability of population structure, at least on a short time scale. Most sampling sites were genetically distinct from all other sampling sites, and there was an evidence of geographic structure within the Klamath–Trinity River basin, although populations from tributaries within the watershed (e.g. Salmon River, Scott River, Clear Creek) did not always constitute distinct genetic lineages. Population structure was evident using phylogeographic trees, isolation by distance analyses and individual assignment tests, which all found a relationship between geographic and genetic distance. Populations in the lower Klamath region, below the confluence with the Trinity River, consistently clustered together in phylogeographic analyses and had patterns of genetic diversity that suggest reduced gene flow between these sites and sites above the confluence. Finally, in an analysis that included data from other coastal California rivers, the populations closest to the mouth of the Klamath River appeared intermediate between populations from adjacent watersheds and the lineage formed by the other populations in the Klamath–Trinity basin.  相似文献   

9.
Two small cyprinid fishes, Hemigrammocypris rasborella and Pseudorasbora pumila subsp. (sensu Nakamura 1963), inhabit similar habitats and often occur sympatrically in the Ise Bay basin, central Honshu Island, Japan. Their genetic population structures were revealed, using sequence data from the mitochondrial cytochrome b gene, and then compared. Hemigrammocypris rasborella populations in the Ise Bay area formed a monophyletic group that has been isolated from eastern (Tenryu River) and western (Lake Biwa–Yodo River) populations at least for several hundred thousand years. Pseudorasbora pumila subsp., endemic to the Ise Bay area, was estimated to have become isolated from its sister subspecies, P. p. pumila, about 5 million years ago. Both H. rasborella and P. pumila subsp. had centers of genetic diversity around the Okazaki Plain in the eastern part of the basin and showed trans-bay distribution of haplotypes or haplotype groups. Their common population structure was explained by geological features in the Ise Bay area, in which a large paleo-river system developed in regression periods, suggesting gene flow among populations of each species in the mid to lower reaches of the paleo-river. Based on the estimated expansion or divergence time, however, not all populations experienced gene flow during the Last Glacial. In contrast to the maintenance of high genetic diversity in H. rasborella, almost all populations of P. pumila subsp. have lost mitochondrial DNA genetic diversity. This implies that effective population size of P. pumila subsp. tended to be smaller, probably because of differences in reproductive ecology, even though the two species have been exposed to similar environmental changes. For conservation of the two species, genetic and adaptive differentiation among local populations should be considered, and attention should be paid to inbreeding depression, especially in P. pumila subsp. An erratum to this article can be found at  相似文献   

10.
Xiao Y  Zhang Y  Yanagimoto T  Li J  Xiao Z  Gao T  Xu S  Ma D 《Genetica》2011,139(2):187-198
Intraspecific phylogenies can provide useful insights into how populations have been shaped by historical and contemporary processes. To determine the population genetic structure and the demographic and colonization history of Cleisthenes herzensteini in the Northwestern Pacific, one hundred and twenty-one individuals were sampled from six localities along the coastal regions of Japan and the Yellow Sea of China. Mitochondrial DNA variation was analyzed using DNA sequence data from the 5′ end of control region. High levels of haplotype diversity (>0.96) were found for all populations, indicating a high level of genetic diversity. No pattern of isolation by distance was detected among the population differentiation throughout the examined range. Analyses of molecular variance (AMOVA) and the conventional population statistic Fst revealed no significant population genetic structure among populations. According to the exact test of differentiation among populations, the null hypothesis that C. herzensteini within the examined range constituted a non-differential mtDNA gene pool was accepted. The demographic history of C. herzensteini was examined using neutrality test and mismatch distribution analyses and results indicated Pleistocene population expansion (about 94–376 kya) in the species, which was consistent with the inference result of nested clade phylogeographical analysis (NCPA) showing contiguous range expansion for C. herzensteini. The lack of phylogeographical structure for the species may reflect a recent range expansion after the glacial maximum and insufficient time to attain migration-drift equilibrium.  相似文献   

11.
High genetic diversity is thought to characterize successful invasive species, as the potential to adapt to new environments is enhanced and inbreeding is reduced. The red swamp crayfish, Procambarus clarkii, native to northeastern Mexico and south-central USA was introduced to Nanjing, China from Japan in 1929. Little is known about the genetic diversity and population structure of this species in China. We examined the genetic diversity and population structure of six P. clarkii populations using nine polymorphic microsatellites. Among the six populations, Nanjing population showed the highest allele number, allele richness and gene diversity, which is consistent with records indicating Nanjing may be the first site of introduction. In all six populations, significant heterozygote deficit was observed, suggesting founder effects and non-random mating. Analysis of bottleneck under infinite allele model, stepwise mutation model and two-phased model of mutation revealed evidence of a recent bottleneck in all these populations. Pairwise genetic distance analysis, AMOVA and assignment tests demonstrated high genetic differentiation between populations. Pairwise genetic distance did not fit the pairwise geographic distance, suggesting that human mediated dispersal have played a role in the population expansion and genetic differentiation.  相似文献   

12.
The genetic diversity and population structure of Lippia origanoides, a species of the Verbenaceae family that shows promise as a crop plant, was investigated along an altitudinal gradient in the basin of the Chicamocha River in northeastern Colombia. The economic importance of the species, quality of its essential oils, and the fact that it is restricted to some few semiarid areas in northern South America may put the species at risk in a scenario of uncontrolled harvest of natural populations. Lippia origanoides was sampled along an altitudinal gradient from 365 to 2595 m.a.s.l. throughout Chicamocha River Canyon, a semiarid area in northeastern Colombia. Genetic diversity was assessed by means of AFLP markers. The number of AFLP loci (355) and the number of individuals sampled (173) were sufficient to reliably identify four populations at contrasting altitudes (FST = 0.18, P‐value < 0.0000), two populations in the lower basin, one population in the medium basin, and one population in the upper basin, with a low level of admixture between them. In average, genetic diversity within populations was relatively high (Ht = 0.32; I = 0.48); nevertheless, diversity was significantly reduced at higher altitude, a pattern that may be consistent with a scenario of range expansion toward higher elevations in an environment with more extreme conditions. The differences in altitude among the basins in the Chicamocha River seem to be relevant in determining the genetic structure of this species.  相似文献   

13.
Bittersweet (Solanum dulcamara), a European native weed, is widespread across a variety of habitats and often occurs as a coloniser of open, disturbed, ephemeral environments or wetlands, although it is also found in mountain habitats and on forest edges. As recent studies have shown the potential utility of the species in plant breeding programs, we assembled a collection of bittersweet germplasm from natural populations found in Europe. This collection was analysed with conserved DNA‐derived polymorphism (CDDP) and intron‐targeting (IT) markers to assess genetic diversity found within and among the populations. We found that there is limited genetic variability within the collected S. dulcamara accessions, with a greater proportion of allelic variation distributed among populations and considerably greater population structure at higher regional levels. Although bittersweet is an outcrossing species, its population structure might be affected by its perennial self‐compatible nature, reducing genetic diversity within regional populations and enhancing inbreeding leading to high interpopulation or spatial differentiation. We found that populations have been separated by local selection of alleles, resulting in regional differentiation. This has been accompanied by concurrent loss of genetic diversity within populations, although this process has not affected species‐level genetic diversity. Germplasm collecting strategies should be aimed at preserving overall genetic diversity in bittersweet nightshade by expanding sampling to southern Europe and to smaller regional geographic levels in northern and central Europe.  相似文献   

14.
Adaptive divergence is a key mechanism shaping the genetic variation of natural populations. A central question linking ecology with evolutionary biology is how spatial environmental heterogeneity can lead to adaptive divergence among local populations within a species. In this study, using a genome scan approach to detect candidate loci under selection, we examined adaptive divergence of the stream mayfly Ephemera strigata in the Natori River Basin in northeastern Japan. We applied a new machine‐learning method (i.e., random forest) besides traditional distance‐based redundancy analysis (dbRDA) to examine relationships between environmental factors and adaptive divergence at non‐neutral loci. Spatial autocorrelation analysis based on neutral loci was employed to examine the dispersal ability of this species. We conclude the following: (a) E. strigata show altitudinal adaptive divergence among the populations in the Natori River Basin; (b) random forest showed higher resolution for detecting adaptive divergence than traditional statistical analysis; and (c) separating all markers into neutral and non‐neutral loci could provide full insight into parameters such as genetic diversity, local adaptation, and dispersal ability.  相似文献   

15.
Chen Q  Wang C  Lu G  Zhao J  Chapman DC  Zsigmond J  Li S 《Genetica》2012,140(4-6):115-123
Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.  相似文献   

16.
The temporal components of genetic diversity and geographical structure of invasive mosquitofish populations are poorly known. Through the genetic monitoring of four consecutive cohorts of Gambusia holbrooki from three different river basins we aimed to determine temporal patterns of regional genetic variation and dispersal rates within invasive populations. Despite showing evidence of strong population size fluctuations, genetic diversity levels were maintained among local cohorts. We only detected temporal allele frequency changes associated with seasonal flooding that did not modify major trends on population structure among cohorts. Downstream gene flow coupled with increased connectivity at lowland locations to increase genetic diversity levels in these areas. A large proportion of local fish (up to 50 %) were dispersers, often originated from locations within the same river basin. High dispersal capability, ecological tolerance, and reproductive traits likely promote river colonization. Finally, our results also confirmed that human-assisted translocations promote within and among basin gene flow and maintained levels of genetic diversity, particularly in upstream locations.  相似文献   

17.
Podocnemis lewyana is an endangered endemic river turtle of Colombia. Using ten unlinked polymorphic microsatellite loci and a 691-bp-long DNA fragment corresponding to the more variable portion of the mitochondrial control region, we investigated genetic diversity and population structure throughout its range. Both neutral markers showed extremely low diversity and weak population differentiation. Our data indicate that the genetic history of P. lewyana has been impacted by multiple bottlenecks and population expansion since the Pleistocene. The observed differentiation pattern is most likely the result of historically low genetic variation resulting from restricted geographic range and aggravated by recent anthropogenically induced bottlenecks. Based on slight differences in allele frequencies among populations, we suggest that three regions should be treated as demographically independent Management Units in order to preserve maximal genetic diversity: (1) the Upper Magdalena River Basin, (2) the Lower Magdalena + Lower Cauca + San Jorge River Basins, and (3) the Sinú River Basin. Among the Management Units, only low to moderate levels of gene flow were detected; these are largely unidirectional from Management Units 1 and 3 into Management Unit 2.  相似文献   

18.
The genetic divergence among invasive and native populations of Plagioscion squamosissimus from four Neotropical hydrographic basins was assessed using the hypervariable domain of the mitochondrial DNA (mtDNA) control region. Plagioscion squamosissimus is native to the neighbouring hydrographic basins of the Parnaíba and Amazon Rivers, and the latter includes the Araguaia-Tocantins drainage, but it is invasive in other basins due to introductions. The mtDNA nucleotide polymorphism supported the hypothesis that the Amazon and Parnaíba populations constitute the same species and are separated into two independent evolutionary lineages. Absence of nucleotide polymorphism was observed within and among P. squamosissimus populations invasive to the uppper and middle Paraná River basins. Nucleotide divergence was null or low comparing the Paraná invasive populations with the populations native to the Parnaíba River basin, whereas it was significantly high compared to Tocantins populations. These results ascertain that P. squamosissimus populations invasive to the upper Paraná River basin and to the middle Paraná River basin downstream of the Itaipu dam are derived from the Parnaíba River basin. The genetic data presented are potentially useful to assist further studies on P. squamosissimus taxonomic and geographic distribution, development of ecological guidelines for managing populations invasive to the upper Paraná River basin and for preservation of native fish diversity.  相似文献   

19.
The genetic diversity and structure of invasive species are affected by the time since invasion, but it is not well understood how. We compare likely the oldest populations of Aedes aegypti in continental North America with some of the newest to illuminate the range of genetic diversity and structure that can be found within the invasive range of this important disease vector. Aedes aegypti populations in Florida have probably persisted since the 1600‐1700s, while populations in southern California derive from new invasions that occurred in the last 10 years. For this comparison, we genotyped 1,193 individuals from 28 sites at 12 highly variable microsatellites and a subset of these individuals at 23,961 single nucleotide polymorphisms (SNPs). This is the largest sample analyzed for genetic structure for either region, and it doubles the number of southern California populations previously analyzed. As predicted, the older populations (Florida) showed fewer indicators of recent founder effect and bottlenecks; in particular, these populations have dramatically higher genetic diversity and lower genetic structure. Geographic distance and driving distance were not good predictors of genetic distance in either region, especially southern California. Additionally, southern California had higher levels of genetic differentiation than any comparably sized documented region throughout the worldwide distribution of the species. Although population age and demographic history are likely driving these differences, differences in climate and transportation practices could also play a role.  相似文献   

20.
The Yarkand hare, Lepus yarkandensis, is an endemic, endangered species restricted to the Tarim Basin of the Xinjiang Uygur Autonomous Region, China. The Yarkand hare is distributed in scattered oases which are physically isolated by the desert. Its natural fragmentation habitat makes it an ideal object for studying effect of habitat fragmentation on its genetic structure. To evaluate the effects of habitat fragmentation on genetic diversity of the species, we assessed genetic diversity for 20 sampling populations based on control region and Cytb markers. Relatively low levels of gene diversity are found in most of isolated populations in the southern margin of the Taklamakan Desert. Furthermore, a positive correlation is found between gene diversity and the size of historical effective population. Significant genetic differentiation is detected among most populations by pairwise FST analyses, which is characterized by an isolation by distance pattern. Additionally, the AMOVA results show highly significant population structure among seven geographical groups. High migration rates are found among continuous populations, while very low levels of migration rates are found among the relatively isolated populations, suggesting that the desert may make an effective barrier against gene flow. Finally, the control region shows four clades by the phylogenetic analyses, three of which are present in nearly all sampling populations. The observed pattern of the lineage mixing, also shown by the Cytb data, may be caused by extensive gene flow among populations, and could be explained by possible demographical expansion of the Yarkand hare during the late Pleistocene interglacial period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号