首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The impact of a cationic polyelectrolyte on the pH sensitivity of the electrical charge and aggregation stability of protein-coated lipid droplets was examined. One percent (w/w) corn oil-in-water emulsions containing lipid droplets coated by β-lactoglobulin [0.05% (w/w) β-Lg, 10 mM acetate buffer, pH 3] were prepared in the absence (“primary” emulsions) and presence (“secondary” emulsions) of chitosan (0 to 0.05 wt%). The pH (3 to 8) of these emulsions was adjusted, and the particle charge, particle size, creaming stability, and microstructure were measured. Chitosan adsorbed to the β-Lg-coated droplets from pH 4.5 to 7.5, which was attributed to electrostatic attraction between the cationic polyelectrolyte and anionic patches on the droplet surfaces. Droplets coated by β-Lg–chitosan had better stability to flocculation than those coated by β-Lg alone around the isoelectric point of the adsorbed proteins (pH 4.5 to 5.5), which was attributed to increased electrostatic and steric repulsion between the droplets. We have shown that chitosan may be used to modulate the electrical characteristics and stability of protein-coated lipid droplets, which may be useful in the design and formation of delivery systems for use in the food, pharmaceutical, and other industries.  相似文献   

2.
The objective of this study was to investigate the influence of interfacial composition and electrical charge on the in vitro digestion of emulsified fats by pancreatic lipase. An electrostatic layer-by-layer deposition technique was used to prepare corn oil-in-water emulsions (3 wt% oil) that contained droplets coated by (1) lecithin, (2) lecithin–chitosan, or (3) lecithin–chitosan–pectin. Pancreatic lipase (1.6 mg mL−1) and/or bile extract (5.0 mg mL−1) were added to each emulsion, and the particle charge, droplet aggregation, and free fatty acids released were measured. In the presence of bile extract, the amount of fatty acids released per unit amount of emulsion was much lower in the emulsions containing droplets coated by lecithin–chitosan (38 ± 16 μmol mL−1) than those containing droplets coated by lecithin (250 ± 70 μmol mL−1) or lecithin–chitosan–pectin (274 ± 80 μmol mL−1). In addition, there was much more extensive droplet aggregation in the lecithin–chitosan emulsion than in the other two emulsions. We postulated that lipase activity was reduced in the lecithin–chitosan emulsion as a result of the formation of a relatively thick cationic layer around each droplet, as well as the formation of large flocs, which restricted the access of the pancreatic lipase to the lipids within the droplets. Our results also suggest that droplets initially coated by a lecithin–chitosan–pectin layer did not inhibit lipase activity, which may have been because the chitosan–pectin desorbed from the droplet surfaces thereby allowing the enzyme to reach the lipids; however, further work is needed to establish this. This information could be used to create food emulsions with low caloric level, or to optimize diets for individuals with lipid digestion problems.  相似文献   

3.
Sodium caseinate is a commonly used emulsifier in foods, as it adsorbs on the surface of oil droplets and stabilizes them via electrostatic and steric stabilization, forming a polyelectrolyte layer at the interface. Since the protein interface is affected by varying environmental conditions such as pH, ionic strength, concentration of unadsorbed polymers, these emulsions are prone to a variety of destabilization mechanisms. The objective of the present work was to observe the destabilization of sodium caseinate stabilized oil in water emulsions using electroacoustic spectroscopy. This technique can be utilized for the characterization of concentrated colloidal systems in situ, without dilution. The electroacoustic and ultrasonic properties of soy oil in water emulsions were determined for sodium caseinate stabilized emulsions under conditions known to cause destabilization. Ultrasonic attenuation and electrophoretic mobility (ζ-potential) could clearly follow the changes occurring in the emulsion droplets, under minimal sample disruption. This is critical for these systems in a very fragile, metastable state. The emulsions were stable to the addition of high methoxyl pectin (HMP) up to 0.1% HMP. Addition of free sodium caseinate induced depletion flocculation, causing a decrease in the attenuation and electrophoretic mobility measured. The presence of HMP limited depletion interactions. Acidification of the emulsion droplets resulted in a clear sol–gel transition, as shown by a steep increase in the particle size and a decrease in attenuation. Again, destabilization was limited by HMP addition. It was concluded that ultrasonics and electroacoustics are suitable techniques to understand the details of the destabilization processes occurring to food emulsions, measured in situ.  相似文献   

4.
The release kinetics of four model aroma compounds from coarse (d 32 = 1.0 μm) and fine (d 32 = 0.25 μm) eicosane and hydrogenated palm stearin (HPS) emulsions prepared with either solid or liquid lipid droplets were measured using a model mouth instrument. For both lipids, the release of aroma compounds from emulsions with solid droplets was higher than from emulsions with liquid droplets. This difference was greater for less polar aroma compounds. The release from solid eicosane droplets increased with particle size but no such effect was observed for HPS emulsions, however, the release from solid eicosane was higher than solid HPS. The initial aroma release profile of the solid droplet emulsion matches that of a similar liquid oil emulsion but requires much less added aroma. Meeting presentation: Presented at 98th AOCS Annual Meeting and Expo in Quebec City, Canada.  相似文献   

5.
We investigated the photosynthesis–light intensity (P–I) relationships of phytoplankton collected from a sublittoral sand bank in the Seto Inland Sea, Japan, under different temperature conditions. In spite of low chlorophyll a concentration (<3 mg m−3), phytoplankton had considerably high photosynthetic potential (>10 mg C (mg chl a)−1 h−1) in the study area. Based on the P–I relationships, we conducted numerical simulation of areal primary production using published data on water temperature, chlorophyll a concentration, and irradiance. The areal primary production ranged between 159 and 187 g C m−2 year−1. This production was within the range of typical values reported previously in deeper areas of the Seto Inland Sea. The productivity in the sand bank area was discussed in relation to water current, allochthonous resource input, and fisheries.  相似文献   

6.
Adipose triglyceride lipase (ATGL) is a triglyceride hydrolysis lipase and is generally related to lipid metabolism in animals. The ATGL gene was well studied in mammals, however very less was known in birds that differed significantly with mammals for lipid metabolism. In this study, cloning, mRNA real time and association analysis was performed to characterize the ATGL gene in birds. Results showed that the obtained ATGL gene cDNA of parrot, quail, duck were 1,651 bp (NCBI accession number: GQ221784), 1,557 bp (NCBI accession number: GQ221783) and 1,440 bp each, encoded 481-, 482- and 279-amino acid (AA) peptide, respectively. The parrot ATGL (pATGL) gene was found to predominantly express in breast muscle and leg muscle, and very higher ATGL mRNA level was also found in heart, abdominal fat and subcutaneous fat. The quail ATGL (qATGL) gene was also predominantly expressed in breast muscle and leg muscle, and then to a much lesser degree in heart. The duck ATGL (dATGL) gene was found to predominantly express in subcutaneous fat and abdominal fat, quite higher ATGL mRNA was also found in heart, spleen, breast muscle and leg muscle. Blast analyses indicated the high homology of ATGL and its patatin region, and moreover, and the active serine hydrolase motif (“GASAG” for “GXSXG”) and the glycine rich motif (“GCGFLG” for “GXGXXG”) were completely conservative among 14 species. Association analyses showed that c.950+24C>A, c.950+45C>G, c.950+73G>A, c.950+83C>T and c.950+128delA of chicken ATGL gene (cATGL) were all significantly or highly significantly with cingulated fat width (CFW) (P < 0.05 or P < 0.01), and c.777−26C>A, c.950+45C>G, c.950+73G>A and c.950+118C>T were all significantly or highly significantly with pH value of breast muscle (BMPH) (P < 0.05).  相似文献   

7.
The purpose of this work was to develop w/o emulsions that could be safely used to promote transdermal delivery of 5-fluorouracil (5-FU). Two pseudo-ternary phase diagrams comprising oleoyl-macrogol glycerides, water, and a surfactant/co-surfactant (S/CoS) mixture of lecithin, ethanol, and either coco glucoside or decyl glucoside were investigated for their potential to develop promising 5-FU emulsions. Six systems were selected and subjected to thermodynamic stability tests; heat–cool cycles, centrifugation, and finally freeze–thaw cycles. All systems passed the challenges and were characterized for transmission electron microscopy, droplet size, rheological behavior, pH, and transdermal permeation through newly born mice skin in Franz diffusion cells. The systems had spherical droplets ranging in diameter from 1.81 to 2.97 μm, pH values ranging from 7.50 to 8.49 and possessed Newtonian flow. A significant (P < 0.05) increase in 5-FU permeability parameters as steady-state flux, permeability coefficient was achieved with formula B5 comprising water (5% w/w), S/CoS mixture of lecithin/ethanol/decyl glucoside (14.67:12.15:18.18% w/w, respectively) and oleoyl-macrogol glycerides (50% w/w). When applied to shaved rat skin, this system was well tolerated with only moderate skin irritation that was recovered within 12 h. Indeed, minor histopathologic changes were observed after 5-day treatment. Further studies should be carried out, in the future, to investigate the potentiality of this promising system to promote transdermal delivery of 5-FU through human skin.  相似文献   

8.
The Matrix metalloproteinas-9 functional promoter polymorphism 1562C>T may be considered an important genetic determinant of early-onset coronary artery disease (ECAD). In this study, association between MMP-9 1562C>T allele with plasma MMP-9 activity, homocysteine and lipid–lipoproteins level and ECAD in Iranian subjects was investigated. This case–control study consisted of 53 ECAD patients (age < 55 years) and unrelated late-onsets CAD (age > 70 years) who angiographically had at least 50% stenosis. MMP-9 1562C>T polymorphism was detected by PCRRFLP, plasma MMP-9 activity, serum lipid and homocysteine levels were determined by gelatin gel zymography, enzyme assay and by HPLC, respectively. The presence of MMP-9 1562C>T allele was found to be associated with ECAD (OR = 3.2, P = 0.001). The ECAD patients with MMP-9 1562C>T allele had higher MMP-9 activity (P = 0.001), LDL-C (P = 0.045), TC (P = 0.02) and homocysteine (P = 0.01) levels than the LCAD subjects. MMP-9 1562C>T allele is a risk factor for ECAD. The carriers of this allele have high levels of MMP-9 activity, LDL-C, TC and homocysteine (P = 0.01), thus, are more likely to develop myocardial infarction and CAD at young age (less than 55 years).  相似文献   

9.
Melanocortin-4 receptor (MC4R) is one of five G-protein-coupled receptors binding melanocortins that is implicated in the control of feeding behavior and energy homeostasis. Six cattle populations (= 594), including four Chinese indigenous breeds, Chinese Holstein, and a meat type breed (Angus), were used to detect single nucleotide polymorphisms in 5′-untranslated region of MC4R gene by means of PCR–SSCP and DNA sequencing. Four linked SNPs (g.[−293C>G; −193A>T; −192T>G; −129A>G]) were identified. The g.−293C>G and g.−129A>G could be genotyped with a PCR–RFLP using TaiI in three combined genotypes (AA, AB and BB). The two linked SNPs were associated with body weight and daily gain in Nanyang aged 6 months (< 0.05), but they had no significant effect on body weight and daily gain in Nanyang aged 24 months (> 0.05).  相似文献   

10.
The influence of lipase, bile salts, and polysaccharides (pectin and maltodextrin) on the properties and digestibility of lecithin/chitosan-stabilized tuna oil-in-water multilayer emulsions were studied when they were subjected to an in vitro digestion model. All emulsions became unstable to creaming after passing through the digestion model, as deduced from the formation of large visible brown clumps on the top of the emulsions. The release of free fatty acids and glucosamine from the emulsions suggested that lecithin/chitosan-coated droplets were degraded by lipase under simulated gastrointestinal conditions. The amount of free fatty acids released per unit amount of emulsion was higher when bile salt was included in the digestion model or anionic polysaccharide (pectin) was present in the emulsions. These results have important implications for the utilization of multilayered emulsions for the encapsulation, protection, and delivery of n-3 fatty acids and other bioactive lipids.  相似文献   

11.
Currently, much effort is being invested in novel formulations of bioactive molecules, such as emulsions, for pharmaceutical, food, and cosmetic applications. Therefore, methods to produce emulsions with controlled-size droplets of uniform size distribution have been developed. On this concern, a microfluidic device called the microchannel (MC) was used in this work for emulsification. This is a novel method for producing monodispersed emulsion droplets with very narrow droplet size distribution and low energy input, due to the spontaneous droplet generation basically driven by the interfacial tension, unlike other conventional emulsification processes. This technology provides the formulation of oil-in-water (O/W) emulsions containing lipophilic active molecules with increased bioavailability, which may be readily absorbed by the human body. MC emulsification enables the preparation of highly monodispersed O/W emulsions, which may be applied as enhancer on active molecules delivery systems, as well as in foodstuff. In this study, formulations of O/W emulsions loaded with bioactive molecules, such as β-carotene and γ-oryzanol, were prepared by the MC emulsification process. Refined soybean oil containing the dissolved lipophilic molecule and either sugar ester or gelatin solution (1 wt.%) were used as the dispersed and continuous phases, respectively. The emulsification process conducted using the asymmetric straight-through MC plate enabled the production of monodispersed O/W emulsions, resulting in β-carotene-loaded O/W emulsions with average droplet size (d av) of 27.6 μm and coefficient of variation (CV) of 2.3% and γ-oryzanol-loaded droplets with d av of 28.8 μm and CV of 3.8%. The highly monodisperse β-carotene-loaded droplets were physically stable throughout the storage period observed, resulting in droplets with d av 28.2 μm and CV of 2.9% after 4 months storage in darkness at 5 °C. Single micrometer-sized monodisperse emulsions loaded with β-carotene were successfully formulated using the grooved MC emulsification, resulting in droplets with d av of 9.1 μm and CV of 6.2%. This work was funded by The Ministry of Agriculture, Forestry and Fisheries of Japan, through the Food Nanotechnology Project, and the Japan Society for the Promotion of Science.  相似文献   

12.
This study investigates the spatial distribution of organic carbon (C) in free stable microaggregates (20–250 μm; not encapsulated within macroaggregates) from one Inceptisol and two Oxisols in relation to current theories of the mechanisms of their formation. Two-dimensional micro- and nano-scale observations using synchrotron-based Fourier-transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded maps of the distribution of C amounts and chemical forms. Carbon deposits were unevenly distributed within microaggregates and did not show any discernable gradients between interior and exterior of aggregates. Rather, C deposits appeared to be patchy within the microaggregates. In contrast to the random location of C, there were micron-scale patterns in the spatial distribution of aliphatic C–H (2922 cm−1), aromatic C=C and N–H (1589 cm−1) and polysaccharide C–O (1035 cm−1). Aliphatic C forms and the ratio of aliphatic C/aromatic C were positively correlated (r 2 of 0.66–0.75 and 0.27–0.59, respectively) to the amount of O–H on kaolinite surfaces (3695 cm−1), pointing at a strong role for organo-mineral interactions in C stabilization within microaggregates and at a possible role for molecules containing aliphatic C-H groups in such interactions. This empirical relationship was supported by nanometer-scale observations using NEXAFS which showed that the organic matter in coatings on mineral surfaces had more aliphatic and carboxylic C with spectral characteristics resembling microbial metabolites than the organic matter of the entire microaggregate. Our observations thus support models of C stabilization in which the initially dominant process is adsorption of organics on mineral surfaces rather than occlusion of organic debris by adhering clay particles.  相似文献   

13.
An efficient expression system for the previously only weakly expressed thermophilic lipase BTL2 (Bacillus thermocatenulatus lipase 2) was developed for the production of large amounts of lipase in Escherichia coli. Therefore, the gene was subcloned in the pCYTEXP1 (pT1) expression vector downstream of the temperature-inducible λ promoter PL. Three different expression vectors were constructed: (i) pT1-BTL2 containing the mature lipase gene, (ii) pT1-preBTL2 containing the prelipase gene and (iii) pT1-OmpABTL2 containing the mature lipase gene fused to the signal peptide of the OmpA protein, the major outer membrane protein of E. coli. With pT1-BTL2 and pT1-preBTL2, comparable expression levels of 7000–9000 U/g cells were obtained independently of the E. coli host. In contrast, with E. coli JM105 harbouring pT1-OmpABTL2, 660 000 soluble lipase U/g cells was produced, whereas, with E. coli DH5α and BL321, production levels of 30 000 U/g cells were achieved. However, most of the lipase remained insoluble but active after cell breakage because of the unprocessed OmpA signal peptide. A simple cholate extraction followed by proteinase K cleavage and ultrafiltration allowed the isolation of 1.15 × 106 units of 90% pure mature lipase/wet cells. Received: 29 August 1997 / Received revision: 17 November 1997 / Accepted: 18 November 1997  相似文献   

14.
Enzyme access, kinetic behavior, and protein–protein interactions are critical for explaining reaction of the metabolites contained within the myriad compartments of biological systems. To explore these relationships, the reaction kinetics of oil bodies versus oil emulsions as substrates for lipolytic reactions were measured. The initial rate of hydrolysis for the oil body system was comparatively very low due to a brief latency period. However, the complete activation of the lipase at the interface resulted in an enzyme–membrane complex that was catalytically enhanced 3–15-fold over the emulsion system for substrate concentrations in the measured range of approximately 1–5.5 mM. This disparity is explained by the availability of substrate to the enzyme active site (defined as the availability parameter “A”) which varies between the two substrates by 40-fold. A simple hyperbolic kinetic mechanism is proposed with K m replaced by the parameter, A, to account for this phenomenon, leading to a maximum rate of approximately 1450 IU/mg protein. The interaction is verified through separation of the enzyme–membrane complex which shows nearly double the activity towards an emulsified soybean oil substrate (activity ratio of 5:3) when compared to the native enzyme.  相似文献   

15.
Biospecific properties of thromboresistant bilayer and multilayer coatings based on polyelectrolyte complexes of modified copolymer of N-vinylpyrrolidone and maleic acid (VPMA) with chitosan, amphiphilic chitosan or albumin were investigated. VPMA contained an affinity ligand towards plasminogen, α-amino coupled lysine residues. Polyethylene and polystyrene surfaces were investigated before and after their covering by protective polyelectrolyte coatings. The specific adsorption of plasminogen (precursor of the fibrinolytic enzyme plasmin) from its solutions and from human plasma was investigated using these model systems. It was found that all coatings with the outer contact layer of the lysine-containing affinity polymer exhibited affinity towards plasminogen. However, multilayer polyelectrolyte coatings were more efficient than the bilayer coatings with a single layer application and the affinity polymer coatings without interlayer. The decrease in the degree of thrombogenicity of the materials modified by polyelectrolyte coatings has been demonstrated in vitro and ex vivo. Employment of the proposed modification of surfaces will improve hemocompatibility of medical devices.  相似文献   

16.
Wild-type cmFDH contains no cystines, hence it is a good candidate to test the hypothesis that thermostability can be achieved by introducing new disulphide bridges. Three cysteine double mutants of cmFDH were designed, using a homology model reported previously, to introduce cystine bridges in the C-domain (T169C–T226C) in the N-domain (V88C–V112C) and between the two monomers (M156C–L159C) to form two cystine bridges across the dimer interface. These mutants were constructed and the proteins were over-expressed in E. coli. The mutants V88C–V112C and M156C–L159C lost FDH activity. The mutant T169C–T226C was both less active and less thermostable than wild-type FDH.  相似文献   

17.
Stability of oil-in-water emulsions during freezing and thawing is regulated by the phase transitions occurring in the continuous and dispersed phases upon thermal treatments and by the composition of the interfacial membrane. In the present study, the impact of the water phase formulation (0–2.5–5–10–20–30–40% w/w sucrose), the interfacial composition [whey protein isolates (WPI) or sodium caseinate (NaCas) used at different concentrations], and the particle size on the stability of hydrogenated palm kernel oil (30% w/w)-in-water systems was investigated. Phase/state behaviour of the continuous and dispersed phases and emulsion destabilisation were studied by differential scanning calorimetry. System morphology was observed by particle size analysis and optical microscopy. The presence of sucrose in the aqueous phase and reduced particle size distribution significantly improved emulsion stability. WPI showed better stabilising properties than NaCas at lipid to protein ratios of 10:1, 7.5:1, 5:1 and 4:1. Increased WPI concentration significantly improved emulsion resistance to breakdown during freeze–thaw cycling. NaCas showed poor stabilising properties and was ineffective in reducing emulsion destabilisation at 0% sucrose at all the lipid to protein ratios.  相似文献   

18.
We report a new type of non-deletional hereditary persistence of fetal hemoglobin that is due to a C→T transition at position –158, relative to the Cap site of the human Aγ-globin gene. This mutation was identified in three unrelated adult cases presenting slightly elevated levels of fetal hemoglobin (Hb F), i.e. 2.9–5.1%, and normal hematological indices. Our sequencing results, from both polymerase chain reaction-amplified and subcloned DNA fragments, indicate that the Aγ–158C→T mutation occurred by two independent gene conversion events in the three cases studied. In addition, hematological and molecular data, including restriction fragment length polymorphism haplotyping in the β-globin gene cluster, extended haplotype analysis inside the γ-globin gene region and routine analysis of three tandem repeat loci (D1S80, 3′-HVR/apoB and F8vWf), led us to conclude that the Aγ–158C→T mutation in one of the three cases occurred recently in the parental germ line (P=99.47%), representing the first example of a de novo gene conversion event identified in humans. Received: 10 November 1997 / Accepted: 10 February 1998  相似文献   

19.
The effects of six different polyglycerol esters of fatty acids (PGEs) and two different particle sizes produced using various processing parameters on the physicochemical properties and stability of the β-carotene emulsions during digestion in simulated gastric fluid (SGF) were investigated. β-Carotene emulsions were prepared by high-pressure homogenization using β-carotene (0.1% w/w) in soybean oil as the oil phase and 1% (w/w) PGE in Milli-Q water as the water phase. The particle size of β-carotene emulsions was measured by a laser diffraction technique, and the stability of emulsions was interpreted in terms of the increase in particle size and span value of emulsion droplets and the retention of β-carotene during digestion in SGF. The average particle size ranges of emulsions were 0.17 to 0.27 μm for fine emulsions and 1.16 to 1.59 μm for coarse emulsions. In the prepared β-carotene emulsions, the particle size decreased with increasing polymerization of the glycerol in PGEs, and the higher polymerization of the glycerol also increased the stability of emulsions during digestion in SGF. Although the β-carotene content in the emulsions significantly decreased with increasing digestion period, loss of β-carotene was more severe in unstable emulsions than in stable emulsions, suggesting that the particles incorporated into droplets could provide some protective barrier for decreasing the β-carotene degradation. Therefore, β-carotene emulsions stabilized by PGEs with high polymerization of the glycerol may be useful for further applications in food and drug formulations. Decaglycerol monooleate (MO750) was demonstrated to be the most effective emulsifier in stabilizing β-carotene emulsions in this study.  相似文献   

20.
Fibrous poly(styrene-b-glycidylmethacrylate) brushes were grafted on poly(styrene–divinylbenzene) (P(S–DVB)) beads using surface-initiated atom transfer radical polymerization. Tetraethyldiethylenetriamine (TEDETA) ligand was incorporated on P(GMA) block. The ligand attached beads were used for reversible immobilization of lipase. The influences of pH, ionic strength, and initial lipase concentration on the immobilization capacities of the beads have been investigated. Lipase adsorption capacity of the beads was about 78.1 mg/g beads at pH 6.0. The K m value for immobilized lipase was about 2.1-fold higher than that of free enzyme. The thermal, and storage stability of the immobilized lipase also was increased compared to the native lipase. It was observed that the same support enzyme could be repeatedly used for immobilization of lipase after regeneration without significant loss in adsorption capacity or enzyme activity. A lipase from Mucor miehei immobilized on styrene–divinylbenzene copolymer was used to catalyze the direct esterification of butyl alcohol and butyric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号