首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Summary In strain CL ofPhysarum polycephalum, multinucleate, haploid plasmodia form within clones of uninucleate, haploid amoebae. Analysis of plasmodium development, using time-lapse cinematography, shows that binucleate cells arise from uninucleate cells, by mitosis without cytokinesis. Either one or both daughter cells, from an apparently normal amoebal division, can enter an extended cell cycle (28.7 hours compared to the 11.8 hours for vegetative amoebae) that ends in the formation of a binucleate cell. This long cycle is accompanied by extra growth; cells that become binucleate are twice as big as amoebae at the time of mitosis. Nuclear size also increases during the extended cell cycle: flow cytometric analysis indicates that this is not associated with an increase over the haploid DNA content. During the extended cell cycle uninucleate cells lose the ability to transform into flagellated cells and also become irreversibly committed to plasmodium development. It is shown that commitment occurs a maximum of 13.5 hours before binucleate cell formation and that loss of ability to flagellate precedes commitment by 3–5 hours. Plasmodia develop from binucleate cells by cell fusions and synchronous mitoses without cytokinesis.Abbreviations CL Colonia Leicester - DSDM Dilute semi-defined medium - FKB Formalin killed bacterial suspension - IMT Intermitotic time - LIA Liver infusion agar - SBS Standard bacterial suspension - SDM Semi-defined medium  相似文献   

7.
Two Volvox genomic clones each containing a pair of histone H3-H4 genes were sequenced. In both loci the H3 and H4 genes show outwardly divergent polarity, their coding regions being separated by short intercistronic sequences containing TATA boxes and a conserved 14-bp element. The 3' untranslated regions contain a characteristic motif with hyphenated dyad symmetry otherwise only found associated with animal histone genes. Derived amino acid sequences of histones H3 and H4 are highly conserved and identical between the two sets. The Volvox H3 genes both contain one intron whose relative position is shifted by one basepair. Sequence comparisons led to a new interpretation of intron sliding. The Volvox H3 gene structure combines the exon-intron organization of fungal H3 and vertebrate H3.3 genes with a termination signal typical for animal H3.1 genes. These features are discussed in view of histone gene evolution.  相似文献   

8.
Structure and flanking regions of soybean seed protein genes   总被引:32,自引:0,他引:32  
R L Fischer  R B Goldberg 《Cell》1982,29(2):651-660
We have characterized the structure and flanking region of genes representing two, coordinately expressed, soybean seed protein gene families. One family directs the synthesis of the major storage protean glycinin; the other encodes a 15.5 kd polypeptide of unknown function. DNA blot hybridization experiments showed approximately three, nonallelic genes in the glycinin family and two in the 15 kd protein family, and showed that these families are not selectively amplified or rearranged during embryogeny. R-loop and S1 nuclease mapping studies demonstrated no detectable introns in the 15 kd protein genes but at least one and possibly two in the glycinin genes. No interfamily clustering of these genes occurs within a 10-15 kb chromosomal domain. Nor are they contiguous to other genes expressed at moderate levels during embryogenesis. Each of them, however, is contiguous to a gene expressed at another developmental period in the leaf. These leaf genes encode rare class messages which constitute only 1 X 10(-5%) of the leaf mRNA, or about one molecule per cell. R-loop analysis of two leaf genes showed that one contains no detectable introns while the other possesses at least three. DNA gel blot studies showed that only one of the seed protein genomic clones contains an interspersed repetitive DNA element. Pairwise cross-hybridization studies did not detect any flanking sequences shared by the 15 kd protein, glycinin and leaf genes.  相似文献   

9.
The nucleotide sequence of Physarum polycephalum 5.8S rRNA gene and its flanking regions has been determined. The homologies of the 5.8S rRNA sequence with those of Saccharomyces, Chlamydomonas and Xenopus were 56%, 50% and 52%, respectively. In spite of these relatively low homologies, its possible secondary structure was very similar to those of other species.  相似文献   

10.
An important comprehension from comparative genomic analysis is that sequence conservation beyond neutral expectations is frequently found outside protein-coding regions, indicating important functional roles of noncoding DNA. Understanding the causes of constraint on noncoding sequence evolution forms an important area of research, not least in light of the importance for understanding the evolution of gene expression. We aligned all orthologous genes of chicken and zebra finch together with 5 kb of their upstream and downstream noncoding sequences, to study the evolution of gene flanking sequences in the avian genome. Using ancestral repeats as a neutral reference, we detected significant evolutionary constraint in the 3' flanking region, highest directly after termination (60%) and then gradually decreasing to about 20% 5 kb downstream. Constraint was higher in annotated 3' untranslated regions (UTRs) than in non-UTRs at the same distance from the stop codon and higher in sequences annotated as microRNA (miRNA)-binding sites than in non-miRNA-binding sites within 3' UTRs. Constraint was also higher when estimated for a smaller data set of genes from more closely related songbird species, indicating turnover of functional elements during avian evolution. On the 5' flanking side constraint was readily seen within the first 125 bp immediately upstream of the start codon (34%) and was about 10% for remaining sequence within 5 kb upstream. Analysis of chicken polymorphism data gave further support for the highest constraint directly before and after the translated region. Finally, we found that genes evolving under the highest constraint measured by d(N)/d(S) also had the highest level of constraint in the 3' flanking region. This study broadens the insights into gene flanking sequence evolution by adding new findings from a vertebrate lineage other than mammals.  相似文献   

11.
12.
13.
14.
Summary We investigated the manner of mitochondrial DNA (mtDNA) replication and distribution during the culture ofPhysarum polycephalum amoebae cells by microphotometry, anti-BrdU immunofluorescence microscopy, and quantitative hybridization analysis. In amoebae cells ofP. polycephalum, the number of mitochondria per cell and the shape of both mitochondria and mitochondrial nuclei (mt-nuclei) noticeably changed over the culture period. At the time of transfer, about 27 short ellipsoidal shaped mitochondria, which each contained a small amount of DNA, were observed in each cell. The number of mitochondria per cell decreased gradually, while the amount of mtDNA in an mt-nucleus and the length of mt-nuclei increased gradually. Midway through the middle logarithmic growth phase, the number of mitochondria per cell reached a minimum (about 10 mitochondria per cell), but most mtnuclei assumed an elongated shape and contained a large amount of mtDNA. During the late log- and stationary-growth phase, the number of mitochondria per cell increased gradually, while the amount of DNA in an mt-nucleus and mt-nuclei length decreased gradually. Upon completion of the stationary phase, the number and condition of mitochondria within cells returned to that first observed at the time of transfer. The total amount of mtDNA in a cell increased about 1.6-fold the first day, decreased immediately, then maintained a constant level ranging from 130 to 160 T. Except for the fact that mtDNA synthesis began earlier than synthesis of cell nuclei, the rate of increase in mtDNA paralleled that of cell-nuclear DNA throughout the culture. These results indicate that mtDNA is continuously replicated in pace with cell proliferation and the rate of mitochondrial division varies during culture; this mitochondrial division does not synchronize with either mtDNA replication or cell division. Furthermore, we observed the spatial distribution of DNA replication sites along mt-nuclei. Replication began at several sites scattered along an mt-nucleus, and the number of replication sites increased as the length of mt-nuclei increased. These results indicate that mtDNA replication progresses in adjacent replicons, which are collectively termed a mitochondrial replicon cluster.Abbreviations DAPI 4,6-diamidino-2-phenylindole - VIMPCS video-intensified microscope photon counting system - BrdU 5-bromodeoxyuridine - FITC fluorescein isothiocyanate  相似文献   

15.
16.
17.
Histone H4 and H2B genes in rainbow trout (Salmo gairdnerii)   总被引:5,自引:0,他引:5  
Summary The complete nucleotide sequence of the 3.0-kb BamH I-Sst I restriction fragment contained within the rainbow trout genomic clone TH2 has been determined. This region contains the rainbow trout H4 and H2B histone genes and 5 and 3 flanking and spacer sequences, and represents the 5 half of the histone-gene cluster; the remaining half has been characterized previously. The genes are uninterrupted, and are transcribed from the same strand. The protein sequence of H4, as determined from the nucleic acid sequence, is the same as that derived for other vertebrate H4 proteins, although comparison of nucleotide sequences shows a great deal of sequence divergence, especially in the third base position. The amino acid sequence of H2B, though largely homologous to those of other vertebrate H2B proteins, displays some characteristic differences in primary structure. Consensus sequences noted in many other eukaryotic genes, as well as histone-specific consensus sequences, have been identified. An unusual feature of the spacer region between the H4 and H2B genes is the presence of a duplicated sequence 87 bp in length. The 5 and 3 ends of each repeat are complementary, and each repeat contains smaller repeated sequences internally, as well as a possible cruciform structure.  相似文献   

18.
19.
Several polymerase chain reaction (PCR)-based methods are available for isolation of unknown genomic fragments. In the present study, a comparative evaluation of a few methods of ligation-mediated PCR methods and a ligation-independent one were made by isolating promoter fragment for N-methyltransferase gene involved in the caffeine biosynthetic pathway of Coffea canephora. The benefits of tertiary PCR and the effects of a 4-base cutting restriction endonuclease on the size of the PCR products obtained were demonstrated in one of the ligation-mediated PCR methods. The methods adopted in this study differed in the sizes of the 5'-flanking regions obtained. The efficiencies of various methods used reflect the inherent limitations of the PCR-based methods for isolation of unknown flanking regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号