首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The importance of glycoprotein sialic acid levels is well known, as increased levels have been shown to increase in vivo serum half‐life profiles. Here we demonstrate for the first time that dexamethasone (DEX) was capable of improving the sialylation of a CTLA4‐Ig fusion protein produced by Chinese hamster ovary (CHO) cells. DEX was shown to enhance the intracellular addition of sialic acid by sialyltransferases as well as reduce extracellular removal of sialic acid by sialidase cleavage. We illustrated that DEX addition resulted in increased expression of the glycosyltransferases α2,3‐sialyltransferase (α2,3‐ST) and β1,4‐galactosyltransferase (β1,4‐GT) in CHO cells. Based upon our previous results showing DEX addition increased culture cell viability, we confirmed here that cultures treated with DEX also resulted in decreased sialidase activity. Addition of the glucocorticoid receptor (GR) antagonist mifepristone (RU‐486) was capable of blocking the increase in sialylation by DEX which further supports that DEX affected sialylation as well as provides evidence that the sialylation enhancement effects of DEX on recombinant CHO cells occurred through the GR. Finally, the effects of DEX on increasing sialylation were then confirmed in 5‐L controlled bioreactors. Addition of 1 µM DEX to the bioreactors on day 2 resulted in harvests with average increases of 16.2% for total sialic acid content and 15.8% in the protein fraction with N‐linked sialylation. DEX was found to be a simple and effective method for increasing sialylation of this CTLA4‐Ig fusion protein expressed in CHO cells. Biotechnol. Bioeng. 2010;107: 488–496. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Covalently-linked glycans on proteins have many functional roles, some of which are still not completely understood. Antibodies have a very specific glycan modification in the Fc region that is required for mediating immune effector functions. These Fc glycans are typically highly heterogeneous in structure, and this heterogeneity is influenced by many factors, such as type of cellular host and rate of Ab secretion. Glycan heterogeneity can affect the Fc-dependent activities of antibodies. It has been shown recently that increased Fc sialylation can result in decreased binding to immobilized antigens and some Fcγ receptors, as well as decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activity. In contrast, increased Fc sialylation enhances the anti-inflammatory activity of antibodies. To produce antibodies with increased effector functions, we developed host cell lines that would limit the degree of sialylation of recombinantly-expressed antibodies. Towards this end, the catalytic domain of the Arthrobacter ureafaciens sialidase (sialidase A) was engineered for secreted expression in mammalian cell lines. Expression of this sialidase A gene in mammalian cells resulted in secreted expression of soluble enzyme that was capable of removing sialic acid from antibodies secreted into the medium. Purified antibodies secreted from these cells were found to possess very low levels of sialylation compared with the same antibodies purified from unmodified host cells. The low sialylated antibodies exhibited similar binding affinity to soluble antigens, improved ADCC activity, and they possessed pharmacokinetic properties comparable to their more sialylated counterparts. Further, it was observed that the amount of sialidase A expressed was sufficient to thoroughly remove sialic acid from Abs made in high-producing cell lines. Thus, engineering host cells to express sialidase A enzyme can be used to produce recombinant antibodies with very low levels of sialylation.Key words: antibodies, IgGs, glycans, oligosaccharides, sialic acid, sialidase, ADCC, CDC, effector functions, cells, Fc receptors, proteases  相似文献   

3.
Rat kidney sialidase levels have been reported to be markedly altered in pathological states such as diabetes. This was associated with a modification of sialic acid levels. Therefore, it was interesting to study the variations of kidney sialidase and sialyltransferase activities and sialic acid content according to sex and age. This was carried out from birth to 210 days of age. The substrates used were sialyl alpha(2-3)[3H]-lactitol for sialidase activity, asialofetuin and [14C]-CMPNeu5Ac for sialyltransferase activity. In males sialidase activity increased until 32 days then slightly declined. In females, the activity increased and leveled off at 135 days of age. Higher sialidase activity was observed in females than in males from 56 days of age. Gonadectomy had no effect on this activity. In both sexes, sialyltransferase activity decreased markedly with age. This activity was higher in females than in males, whereas sialic acid levels varied only moderately with age and were slightly higher in females.  相似文献   

4.
《MABS-AUSTIN》2013,5(5):519-527
Covalently-linked glycans on proteins have many functional roles, some of which are still not completely understood. Antibodies have a very specific glycan modification in the Fc region that is required for mediating immune effector functions. These Fc glycans are typically highly heterogeneous in structure, and this heterogeneity is influenced by many factors, such as type of cellular host and rate of Ab secretion. Glycan heterogeneity can affect the Fc-dependent activities of antibodies. It has been shown recently that increased Fc sialylation can result in decreased binding to immobilized antigens and some Fcγ receptors, as well as decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activity. In contrast, increased Fc sialylation enhances the anti-inflammatory activity of antibodies. To produce antibodies with increased effector functions, we developed host cell lines that would limit the degree of sialylation of recombinantly-expressed antibodies. Towards this end, the catalytic domain of the Arthrobacter ureafaciens sialidase (sialidase A) was engineered for secreted expression in mammalian cell lines. Expression of this sialidase A gene in mammalian cells resulted in secreted expression of soluble enzyme that was capable of removing sialic acid from antibodies secreted into the medium. Purified antibodies secreted from these cells were found to possess very low levels of sialylation compared with the same antibodies purified from unmodified host cells. The low sialylated antibodies exhibited similar binding affinity to soluble antigens, improved ADCC activity, and they possessed pharmacokinetic properties comparable to their more sialylated counterparts. Further, it was observed that the amount of sialidase A expressed was sufficient to thoroughly remove sialic acid from Abs made in high-producing cell lines. Thus, engineering host cells to express sialidase A enzyme can be used to produce recombinant antibodies with very low levels of sialylation.  相似文献   

5.
The role of sialidase in the depletion of glomerular sialic acid induced by diabetes has been investigated in uninephrectomized rats. Four months after streptozotocin administration, diabetic rats showed an enhanced urinary excretion of albumin and transferrin, which was associated with a decrease of sialic acid concentration in isolated glomeruli. Despite the sialic acid depletion, the glomerular sialidase activity was unchanged. These results indicate that the decreased glomerular sialic acid concentration observed in diabetic nephropathy might be caused by a disturbance of the sialylation of glomerular structures.  相似文献   

6.
Sialyltransferases transfer sialic acid from cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuAc) to an acceptor molecule. Trans-sialidases of parasites transfer alpha2,3-linked sialic acid from one molecule to another without the involvement of CMP-NeuAc. Here we report another type of sialylation, termed reverse sialylation, catalyzed by mammalian sialyltransferase ST3Gal-II. This enzyme synthesizes CMP-NeuAc by transferring NeuAc from the NeuAcalpha2,3Galbeta1,3GalNAcalpha unit of O-glycans, 3-sialyl globo unit of glycolipids, and sialylated macromolecules to 5'-CMP. CMP-NeuAc produced in situ is utilized by the same enzyme to sialylate other O-glycans and by other sialyltransferases such as ST6Gal-I and ST6GalNAc-I, forming alpha2,6-sialylated compounds. ST3Gal-II also catalyzed the conversion of 5'-uridine monophosphate (UMP) to UMP-NeuAc, which was found to be an inactive sialyl donor. Reverse sialylation proceeded without the need for free sialic acid, divalent metal ions, or energy. Direct sialylation with CMP-NeuAc as well as the formation of CMP-NeuAc from 5'-CMP had a wide optimum range (pH 5.2-7.2 and 4.8-6.4, respectively), whereas the entire reaction comprising in situ production of CMP-NeuAc and sialylation of acceptor had a sharp optimum at pH 5.6 (activity level 50% at pH 5.2 and 6.8, 25% at pH 4.8 and 7.2). Several properties distinguish forward/conventional versus reverse sialylation: (i) sodium citrate inhibited forward sialylation but not reverse sialylation; (ii) 5'-CDP, a potent forward sialyltransferase inhibitor, did not inhibit the conversion of 5'-CMP to CMP-NeuAc; and (iii) the mucin core 2 compound 3-O-sulfoGalbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-benzyl, an efficient acceptor for ST3Gal-II, inhibited the conversion of 5'-CMP to CMP-NeuAc. A significant level of reverse sialylation activity is noted in human prostate cancer cell lines LNCaP and PC3. Overall, the study demonstrates that the sialyltransferase reaction is readily reversible in the case of ST3Gal-II and can be exploited for the enzymatic synthesis of diverse sialyl products.  相似文献   

7.
Because the presence of sialic acid can extend circulatory lifetime, a high degree of sialylation is often a desirable feature of therapeutic glycoproteins. In this study, the incomplete intracellular sialylation of interferon-gamma (IFN-gamma), produced by Chinese hamster ovary cell culture, was minimized by supplementing the culture medium with N-acetylmannosamine (ManNAc), a direct intracellular precursor for sialic acid synthesis. By introducing 20 mM ManNAc into the culture medium, incompletely sialylated biantennary glycan structures were reduced from 35% to 20% at the Asn97 glycosylation site. This effect was achieved without affecting cell growth or product yield. The intracellular pool of CMP-sialic acid, the nucleotide sugar substrate for sialyltransferase, was also extracted and quantified by HPLC. Feeding of 20 mM ManNAc increased this intracellular pool of CMP-sialic acid by nearly thirtyfold compared with unsupplemented medium. When radiolabeled ManNAc was used to trace the incorporation of the precursor, it was found that supplemental ManNAc was exclusively incorporated into IFN-gamma as sialic acid and that, at 20 mM ManNAc feeding, nearly 100% of product sialylation originated from the supplemental precursor.  相似文献   

8.
Since sialic acid content is known to be a critical determinant of the biological properties of glycoproteins, it is essential to characterize and monitor sialylation patterns of recombinant glycoproteins intended for therapeutic use. This study reports site- and branch-specific differences in sialylation of human interferon-gamma (IFN-gamma) derived from Chinese hamster ovary (CHO) cell culture. Sialylation profiles were quantitated by reversed-phase HPLC separations of the site-specific pools of tryptic glycopeptides representing IFN-gamma's two potential N-linked glycosylation sites (i.e., Asn(25) and Asn(97)). Although sialylation at each glycosylation site was found to be incomplete, glycans of Asn(25) were more heavily sialylated than those of Asn(97). Furthermore, Man(alpha1-3) arms of the predominant complex biantennary structures were more favorably sialylated than Man(alpha1-6) branches at each glycosylation site. When the sialylation profile was analyzed throughout a suspension batch culture, sialic acid content at each site and branch was found to be relatively constant until a steady decrease in sialylation was observed coincident with loss of cell viability. The introduction of a competitive inhibitor of sialidase into the culture supernatant prevented the loss of sialic acid after the onset of cell death but did not affect sialylation prior to cell death. This finding indicated that incomplete sialylation prior to loss of cell viability could be attributed to incomplete intracellular sialylation while the reduction in sialylation following loss of cell viability was due to extracellular sialidase activity resulting from cell lysis. Thus, both intracellular and extracellular processes defined the sialic acid content of the final product. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 390-398, 1977.  相似文献   

9.
Retinoic acid (RA) treatment of murine S91-C2 melanoma cells has been found to augment the activity of glycoprotein: sialyltransferase in a dose-dependent and time-dependent process. The enzymatic activity in cells treated with 10 microM RA reached a maximal level, 3-fold higher than in untreated cells, 72 h after initiation of treatment. In contrast, the addition of RA directly into the reaction mixture had no stimulatory effect on sialyltransferase. The endogenous glycoproteins to which sialic acid is transferred from cytidine monophosphate (CMP)-[14C] sialic acid by the action of sialyltransferase have been identified by fluorography after polyacrylamide gel electrophoresis. One of these acceptors, a glycoprotein of Mr 160 000, comigrated in gel electrophoresis with a cell surface sialoglycoprotein that can be labeled by the periodate-tritiated borohydrate procedure more intensely on intact RA-treated than on untreated cells. Removal of sialic acid residues exposed on the surface of either control or RA-treated cells enhanced 2- to 3-fold the transfer of sialic acid to endogenous acceptors. These results suggest that the increased sialyltransferase activity in RA-treated melanoma cells may be responsible for the enhanced sialylation of certain cell surface glycoproteins. RA treatment of several other tumor cell lines also resulted in stimulation of sialyltransferase activity indicating that this effect of RA is not limited to the S91-C2 melanoma cells.  相似文献   

10.
The Ia+ B cell lymphoma, AKTB-1b, fails to stimulate thymic lymphocytes in a one-way mixed lymphocyte reaction unless pretreated with sialidase or inhibitors of N-linked oligosaccharide processing. A comparison of different sialidases and sialyltransferases suggests that the removal of only a subset of total surface sialic acid, rather than net desialylation of the cell surface, is required. Three sialidases were compared, including Vibrio cholerae (VC) and Clostridium perfringens (CP), which will cleave alpha 2-3, alpha 2-6, and alpha 2-8, sialic acid linkages, and Newcastle Disease virus (NDV), which will remove only alpha 2-3 and alpha 2-8 linked sialic acid. When treated with equivalent units of sialidase, CP-, VC-, and NDV-treated cells were 24-fold, sixfold, and threefold better stimulators than untreated cells. In contrast, VC released 1.3-fold and 2.5-fold more sialic acid per cell than did CP or NDV, respectively. Furthermore, VC was superior in reducing the levels of binding of the sialic acid-specific lectin, Limulus polyphemus agglutinin, in exposing Gal beta 1-3GalNAc and Gal beta 1-4GlcNAc residues, and in desialylating gangliosides. Two-dimensional gel analysis indicated that VC and CP were both equal and superior to NDV in the desialylation of iodinatable cell-surface proteins, including H-2Kk, I-A beta k, and a highly sialylated 65,000 dalton protein of unknown identity. Maximal resialylation of CP-treated cells with exogenously added CMP-NANA and either the alpha 2-3(Gal beta 1-3GalNAc) or alpha 2-6(Gal beta 1-4GlcNAc) sialyltransferase did not reduce the stimulatory capacity of these cells. However, resialylation of VC-treated cells with just CMP-NANA alone resulted in 49% reversal of their stimulatory capacity, and no additional reversal could be achieved with either of the sialyltransferases. Although the alpha 2-6(Gal beta 1-4GlcNAc) sialyltransferase was capable of adding back approximately 10% of the sialic acid removed, the endogenous activity added back approximately 0.1% of the total sialic acid removed. SDS-PAGE gels of the sialylated cells indicated that the exogenously added sialyltransferase labeled many different proteins, whereas the endogenous activity labeled far fewer proteins, predominantly in 46,000 and 25,000 m.w. range. Both the desialylation and resialylation data suggest that the sialidase-dependent stimulation is due to the desialylation of specific membrane structures. Together with previous studies, these data suggest that the sialic acids involved are probably alpha 2-6 linked to N-linked glycosyl moieties.  相似文献   

11.
Sialidases cleave off sialic acid residues from the oligosaccharide chain of gangliosides in their catabolic pathway while sialyltransferases transfer sialic acid to the growing oligosaccharide moiety in ganglioside biosynthesis. Ganglioside GM3 is a common substrate for both types of enzymes, for sialidase acting on ganglioside GM3 as well as for ganglioside GD3 synthase. Therefore, it is possible that both enzymes recognize similar structural features of the sialic acid moiety of their common substrate, ganglioside GM3. Based on this idea we used a variety of GM3 derivatives as glycolipid substrates for a bacterial sialidase (Clostridium perfringens) and for GD3 synthase (of rat liver Golgi vesicles). This study revealed that those GM3 derivatives that were poorly degraded by sialidase also were hardly recognized by sialyltransferase (GD3 synthase). This may indicate similarities in the substrate binding sites of these enzymes.  相似文献   

12.
Rat liver beta-galactoside alpha-2,6-sialyltransferase and Vibrio cholerae sialidase were used, in conjunction with CMP-N-acetyl-[3H]neuraminic acid, to probe the glycoconjugate distribution, sialylation state, and level of penultimate Gal beta 1-4GlcNAc residues on the surfaces of murine thymic lymphocytes. We report a detailed characterization of this sialyltransferase-mediated labeling system. Exogenous sialylation of intact cells is dependent on transferase, sugar nucleotide donor, cell number, and incubation time. Additionally, we have demonstrated that the system labeling the cell surface is noncytotoxic and nonmetabolic and is interacting with the entire cell population. Analysis of the exosialylated structures indicates that the sialyltransferase specifically produces an alpha 2-6 linkage on N-linked oligosaccharides. Using this labeling system, we have probed the cell surface saccharide structures of murine thymocytes and demonstrated that most Gal beta 1-4GlcNAc residues are sialylated in the native state. However, one antigen, T200 (Ly-5), is strikingly undersialylated when compared to other cell surface glycoproteins (e.g., Thy 1.2). Upon analysis of exogenously sialylated oligosaccharides, labeled sialic acid was found almost exclusively on monosialylated structures with the remainder on bisialylated oligosaccharides. This suggests that the purified sialyltransferase is very precise in its recognition of oligosaccharides present on the surface of living thymic lymphocytes. This paper illustrates the combined uses of specific glycosidases and glycosyltransferases and how they can be employed in the detailed study of selected cell surface saccharide structures on living nucleated cells.  相似文献   

13.
The sialyltransferase (= glycoprotein-sialic acid transferase) was studied in the sponge Geodia cydonium, a mesozoan organism. The experiments were performed both in intact cellular and in isolated enzyme systems. It is shown, that desialylated cells show a lower aggregation potency than the controls. During aggregation enzymic sialylation of desialylated sponge cells occurs in the presence of an aggregation factor, which is associated with a high molecular weight particle. The sialylation process is temperature-dependent and can be inhibited by N-ethylmaleimide. Sialylation occurs predominantly at a distinct cell surface component, the aggregation receptor. The sialyltransferase was isolated and purified by the following steps: Sepharose 4B, CM-cellulose, Nonidet treatment, and Sephadex G-100. By this procedure the enzyme was purified 680-fold with a 31% yield. The sialyltransferase is originally associated with the high molecular weight particle also carrying the aggregation factor. In the last step the aggregation factor was separated from the sialyltransferase. The enzyme catalyzes the transfer of sialic acid from CMP-sialic acid to the desialylated aggregation receptor. The molecular weight of the sialyltransferase has been determined to be 52,000. Kinetic studies revealed no lag phase and a dependence on enzyme concentration. The purified transferase has a pH optimum of 7.75 and requires 200 mM NaCl for activity. No requirement for Mg2+ or Ca2+ could be observed. The reaction is inhibited by 10 micronM N-ethylmaleimide.  相似文献   

14.
Recombinant protein glycosylation profiles have been shown to affect the in-vivo half-life, and therefore the efficacy and economics, for many therapeutics. While much research has been conducted correlating the effects of various stimuli on recombinant protein glycosylation characteristics, relatively little work has examined glycosylation-related gene-expression profiles. In this study, the effects of galactose feeding on the gene-expression profiles for five key glycosylation-related genes were determined for Chinese hamster ovary cells producing a recombinant IL-4/13 cytokine trap fusion. The genes investigated were sialidase, a putative alpha2,3-sialyltransferase, CMP-sialic acid transporter, beta1,4-galactosyltransferase, and UDP-galactosyltransferase. Additionally, the sialic acid content (sialylation) of the recombinant protein was examined. The peak sialic acid content of the IL-4/13 cytokine trap fusion protein was observed to be similar for the control and galactose-fed cultures. The gene-expression profiles for four of the glycosylation genes were observed to be sensitive to the glucose concentration and not significantly different for the control and galactose-fed cultures prior to glucose depletion. However, the sialidase gene-expression profiles were different for the control and galactose-fed cultures. The sialidase gene-expression profile increased significantly for the galactose-fed cultures prior to glucose depletion, whereas for the control cultures, the sialidase gene-expression profiles did not increase until the late stationary phase. The intracellular sialidase enzyme activity decreased exponentially with time for the control cultures; however, for the galactose-fed cultures, the intracellular sialidase enzyme activity decreased initially and then remained relatively high compared to the control cultures. These results indicate that the galactose feeding may increase the potential for desialylation, which offsets any improvements in the sialylation rate due to increased substrate levels. Thus, galactose feeding is an unnecessary expense for the production of the IL-4/13 cytokine trap fusion protein in a batch process.  相似文献   

15.
Cell surface sialylation is known to be tightly connected with tumorigenicity, invasiveness, metastatic potential, clearance of aged cells, while the sialylation of IgG molecules determines their anti-inflammatory properties. Four sialidases - hydrolytic enzymes responsible for cleavage of sialic residues - were described in different cellular compartments. However, sialidases activity in body fluids, and specifically in blood serum, remains poorly studied. Here, we characterize first known IgG antibodies possessing sialidase-like activity in blood serum of multiple myeloma (MM) patients. Ig fractions were precipitated with ammonium sulfate (50% of saturation) from blood serum of 12 healthy donors and 14 MM patients, and screened for the presence of sialidase activity by using 4-MUNA (2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid) as substrate. High level of sialidase activity was detected in the MM patients, but not in healthy donors. Subsequent antibody purification by protein-G affinity chromatography and HPLC size exclusion chromatography at acidic conditions demonstrated that sialidase activity was attributable to IgG molecules. Sialidase activity was also specific for (Fab)(2) fragment of IgG and blocked by sialidase inhibitor DANA. Sialidase activity of IgG molecule was also confirmed by in gel assay for cleavage of sialidase substrate. Kinetic parameters of the catalysis reaction were described by Michaelis-Menten equation with K(m) = 44.4-108 μM and k(cat) = 2.7-23.1 min(-1). The action of IgG possessing sialidase-like activity towards human red blood cells resulted in a subsequent increase in their agglutination by the peanut agglutinin, that confirms their desialylation by the studied IgG. This is the first demonstration of the intrinsic sialidase activity of IgG isolated from blood serum of MM patients.  相似文献   

16.
Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2–44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.  相似文献   

17.
Numerous investigations suggest that cell surface glycoconjugates, and in particular sialic acids, are directly involved in determining the metastatic phenotype. To further evaluate this hypothesis, we have used a variety of techniques to probe the cell surfaces of several metastatic variants of the murine B16 melanoma that were selected for experimental lung-colonizing ability (Fidler, I. (1973) Nature 242, 148-149) or for their ability to spontaneously metastasize from the site of a subcutaneous injection (Stackpole, C. W., Alterman, A. L., and Fornabaio, D. M. (1985) Invasion & Metastasis 5, 125-142). Using a highly sensitive high performance liquid chromatography sialic acid assay in conjunction with Vibrio cholerae sialidase, we find that none of these metastatic variants differ significantly in their overall levels of cell surface sialic acid. Using highly purified, linkage-specific sialyltransferases, in conjunction with specific glycosidases, to probe the cell surface saccharide topography of specific penultimate oligosaccharides, we also find no significant differences between the efficient lung-colonizing variant, B16-F10 and the poorly-colonizing B16-F1 or B16-Flr variants. In contrast, the spontaneously metastatic variants examined contain substantially different levels of specific penultimate sialylation sites. The tumorigenic but nonmetastatic B16-LM3/G3.26 variant contains 4-fold more penultimate Gal beta 1-3GalNAc sialylation sites than the tumorigenic and highly metastatic B16-LM3/G3.12 variant when CMP[3H]NeuAc and the alpha 2-3Gal beta 1-3GalNAc sialyltransferase are used to probe the melanoma cell surfaces. Several prominent glycoconjugates of apparent Mr 43,000, 40,000, and 30,000 are especially evident upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the nonmetastatic cells. The nonmetastatic variant also contains 2-fold more Gal beta 1-4GlcNAc sialylation sites than the metastatic variant when the alpha 2-6Gal beta 1-4GlcNAc sialyltransferase is used as a cell surface probe. In this case, glycoconjugates of apparent Mr 74,000, 45,000, and 43,000 are more prominently observed on the cell surfaces of the nonmetastatic variant. These data indicate that the differences in lung-colonizing abilities of B16 melanoma metastatic variants do not correlate with the numbers or sialylation states of specific penultimate oligosaccharide structures on their surfaces. However, the relative levels of specific penultimate saccharide structures do correlate with the ability of the cells to undergo spontaneous metastasis from a subcutaneous tumor.  相似文献   

18.
1. The rainbow trout (Oncorhynchus mykiss) CMPNeuAc:lactosylceramide alpha 2----3sialytransferase enzyme from RTH-149 cells has been characterized. 2. Transfer of sialic acid to lactosylceramide was optimal at a pH of 5.9, temperature of 25 degrees C, and in the pressure of 0.3% CF-54, 10 mM Mn2+, 0.1 M sodium cacodylate, and 2 mM ATP. 3. Golgi-rich membrane fractions of RTH-149 cells were found to be enriched in sialidase activity and as such the addition of 40 microM 2,3-dehydro-2-deoxy-N-acetylneuraminic acid was necessary to assay alpha 2----3sialyltransferase activity optimally. 4. Apparent Km for donor (CMPNeuAc) and acceptor (lactosylceramide) were found to be 243 microM and 34 microM, respectively. 5. The alpha 2----3sialyltransferase characterized was found to be primarily specific for lactosylceramide though minor activity with other glycolipid acceptors was observed. 6. The presence of another sialyltransferase with differing substrate specificity was noted. 7. Properties of this enzyme, compared to analogous mammalian enzymes, are discussed.  相似文献   

19.
20.
Norepinephrine increased the in vitro uptake of 3H-estradiol by the uterus of spayed rats. This effect was observed at 15 and 30 min but not at 90 min. Norepinephrine also increased the binding of 3H-estradiol by the nuclear (p less than 0.02) and the cytosol fractions (p less than 0.01) when incubated with uterine homogenates, suggesting that norepinephrine does not require the presence of the intact tissue to exert its effects. The in vivo uptake of 3H-estradiol and the determination of the number of binding sites were performed in the uterus of rats treated with estradiol and estradiol plus norepinephrine. Norepinephrine alone increased the uptake of 3H-estradiol and the number of binding sites. The highest increment in both parameters was observed in the uterus of rats treated with estradiol plus norepinephrine. The estradiol Ka of the rat uterus cytosol treated with estradiol alone or plus norepinephrine was higher than that observed in the group without estradiol, suggesting the presence of different proteins that bind estradiol. These results indicate that norepinephrine increases the entrance of estradiol into the rat uterus both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号