首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Competition between effective and ineffective Rhizobium galegae strains nodulating Galega orientalis was examined on the basis of plant growth, nodulation, antibiotic resistance, and PCR results. In a preliminary experiment in Leonard's jars, ineffective R. galegae strains HAMBI 1207 and HAMBI 1209 competed in similar manners with the effective strain R. galegae HAMBI 1174. In a pot experiment, soil was inoculated with 0 to 10(5) HAMBI 1207 cells per g before G. orientalis was sown. Seeds of G. orientalis were surface inoculated with 2 x 10(4) and 2 x 10(5) cells of HAMBI 1174 per seed (which represent half and fivefold the commercially recommended amount of inoculant, respectively). Plant yield and nodulation by the effective strain were significantly reduced, with as few as 10(2) ineffective rhizobia per g of soil, and the inoculation response was not improved by the 10-fold greater dose of the inoculant. Bacteria occupying the nodules were identified by antibiotic resistance and PCR with primers specific for R. galegae HAMBI 1174, R. galegae, and genes coding for bacterial 16S rRNA (bacterial 16S rDNA). Sixty-two large nodules examined were occupied by the effective strain HAMBI 1174, as proven by antibiotic resistance and amplification of the strain-specific fragment. From 20 small nodules, only the species-specific fragment could be amplified, and isolated bacteria had the same antibiotic resistance and 16S PCR restriction pattern as strain HAMBI 1207. PCR with our strain-specific and species-specific primers provides a powerful tool for strain identification of R. galegae directly from nodules without genetic modification of the bacteria.  相似文献   

2.
Patterns of intrinsic resistance and susceptibility to different levels of antibiotics were determined for strains of both fast- and slow-growing rhizobia. These patterns were stable to plant passage when they were used to identify Rhizobium strains in nodule suspensions or nodule isolates. The method of identification by intrinsic resistance and susceptibility patterns was reliable for identifying strains in field nodules when strains were first isolated from the nodules to provide a standard inoculum size and then typed on antibiotic-containing media. Other patterns of resistance were encountered during identification of field isolates; these patterns may have resulted from acquired resistance to certain antibiotics or from mixed infections of the nodules. The occurrence of resistance patterns identical to those of inoculant strains among native strains was directly related to the size of the soil population. High strain recovery was associated directly with high rates of inoculation.  相似文献   

3.
Abstract Indigenous strains of R. trifolii , originating from different geographical regions, were compared using total DNA restriction analysis, plasmid DNA profiles and intrinsic antibiotic resistance patterns. The results of strain relatedness using 2 of these techniques (DNA restriction and antibiotic resistance patterns) were similar, and indicated that these strains formed a heterogeneous group. A large variation in plasmid DNA profiles was observed among the R. trifolii isolates investigated, indicating heterogeneity of plasmid DNA pools. This variation occurred even in some strains that were shown to be related on the basis of their antibiotic resistance patterns. The application of these techniques to differentiate indigenous R. trifolii strains is discussed in this report.  相似文献   

4.
The purpose of this study was to characterize the antibiotic resistance profiles of Enterococcus species isolated from fresh produce harvested in the southwestern United States. Among the 185 Enterococcus isolates obtained, 97 (52%) were Enterococcus faecium, 38 (21%) were Enterococcus faecalis, and 50 (27%) were other Enterococcus species. Of human clinical importance, E. faecium strains had a much higher prevalence of resistance to ciprofloxacin, tetracycline, and nitrofurantoin than E. faecalis. E. faecalis strains had a low prevalence of resistance to antibiotics used to treat E. faecalis infections of both clinical and of agricultural relevance, excluding its intrinsic resistance patterns. Thirty-four percent of the isolates had multiple-drug-resistance patterns, excluding intrinsic resistance. Data on the prevalence and types of antibiotic resistance in Enterococcus species isolated from fresh produce may be used to describe baseline antibiotic susceptibility profiles associated with Enterococcus spp. isolated from the environment. The data collected may also help elucidate the role of foods in the transmission of antibiotic-resistant strains to human populations.  相似文献   

5.
Bradyrhizobium japonicum USDA 125-Sp, USDA 138, and USDA 138-Sm had been used as inoculants for soybean (Glycine max (L.) Merr.) in soils previously free of B. japonicum. At 8 to 13 years after their release, these strains were reisolated from soil samples. A total of 115 isolates were obtained through nodules, and seven colonies were obtained directly by a serological method. The stability of the inoculants was confirmed by comparing the reisolated cultures with their respective parental strains which had been preserved by being lyophilized or stored on a yeast extract-mannitol agar slant at 4°C. Comparisons were made on morphological and serological characters, carbon compound utilization (8 tested), intrinsic antibiotic resistance (9 tested), and enzymatic activity (19 tested). Mucous and nonmucous isolates of serogroup 125 were analyzed for symbiotic effectiveness and restriction fragment hybridization with a DNA probe. Our data suggest that the B. japonicum inoculants have survived for up to 13 years in the soils without significant mutation except for two reisolates with a slightly increased kanamycin resistance level.  相似文献   

6.
20 local isolates of enterics belonging to the genera Salmonella, Enterobacter, Proteus, Citrobacter from human, chicken and/or egg were characterised for their antibiotic resistance patterns, plasmid profiles, phage types, outer membrane proteins, and lipopolysaccharide patterns. Relatedness of these characteristics for epidemiological analysis was assessed. 18 (90%) strains were resistant to at least one antibiotic and those (multi-drug resistant ones) resisting to two or more antibiotics constituted 50% of all isolates. A common 54 kb plasmid was harboured by 55% of the isolates. 14 isolates showed smooth type lipopolysaccharide. 60% of the 20 isolates contained outer membrane proteins in a molecular weight range of 34.6 to 30.6 kDa. The data reveal the lack of correlation between the characteristics investigated.  相似文献   

7.
One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis was a more discriminating method than serotyping for identifying strains of Bradyrhizobium japonicum. Analysis of 543 nodule isolates from southeastern Wisconsin soybean farms revealed that none of the isolates were formed by any of the inoculant strains supplied by either of two inoculant companies. Twenty-nine indigenous strains and six inoculant strains were identified. Strain 61A76, the most competitive indigenous strain, formed 21% of the nodules. Indigenous strains 3030, 3058, 0336, and 3052 formed 15, 11, 9, and 9% of the nodules, respectively. These predominant strains were not associated with a particular soybean cultivar, soil type, or farm location.  相似文献   

8.
Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16–23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.  相似文献   

9.
One hundred isolates were trapped by soybean (Glycine max) plants inoculated with a soil from the Cerrados, the main producing area in Brazil. The soil was originally void of rhizobia able to nodulate soybean, and 15 years before received inoculant containing Bradyrhizobium elkanii strains SEMIA 587 and SEMIA 5019; the area has been annually cropped with soybean since then, but with no further inoculation for the past 7 years. Enormous diversity was observed among the isolates, with thirteen serologically distinct groups, twelve protein and seven lipopolysaccharide profiles; no more than five isolates shared similar characteristics. An unexpected feature was that 48% of the isolates showed multiple reactions with the antisera to the serogroups established in the soils. Also 40% of the isolates reacted with the antiserum to B. japonicum strain SEMIA 566, that has never been introduced into the soil, probably due to dispersion from other cropping areas, associated with its high saprophytic competence; 13% of the isolates did not react with any of the antisera. Nodulation and N2 fixation capacity also varied considerably among the isolates. Although one third of the isolates were fast growers with an acid reaction in vitro, and many formed pseudo-nodules on common bean (Phaseolus vulgaris), they shared several properties with the Bradyrhizobium inoculant strains. A high level of genetic diversity was confirmed when the DNAs were amplified with BOX and RPO1 primers, and several isolates were positioned in far different clusters in the analysis of interspersed repetitive or nif-directed sequences. Moreover, serological properties showed higher correlation with BOX than with RPO1 products. The high diversity could be attributed both to lateral transfer of genetic material between inoculant and indigenous strains and to genomic rearrangements during the adaptation to the Cerrados, and may play an important role as a biological buffer, avoiding the dominance of a particular strain.  相似文献   

10.
This investigation aimed to determine the relatedness of dominant occurring soil Streptomyces spp. in Northern Jordan based on their RAPD-PCR fingerprints, and to compare RAPD technique with the conventional phenotypic characterization of Streptomyces isolates. Fifty-eight white and gray color-bearing aerial mycelia antibiotic active-producing Streptomyces soil isolates along with three reference strains were genetically analyzed by RAPD-PCR. Polymorphisms between the isolates showed 1 to 10 bands per isolate and ranged from 200 to 3200 bp in size. Results revealed one common band of ~600 bp shared by ~85% of the isolates, and the observation of bands specific to some reference strains and some soil isolates. When RAPD patterns were analyzed with the UPGMA, results revealed clustering the tested isolates into two equal main super clusters (50% each). Super cluster I appeared to be homogenous and include the three reference strains. However, super cluster II was heterogeneous and but not including any of the reference strains. The association of the antibiotic activity of the dominant white and gray aerial mycelium-bearing Streptomyces isolates to RAPD clustering is reported for the first time, and the RAPD-PCR fingerprints generated here deserve to be cloned, characterized and sequenced in future as Streptomyces species-specific DNA markers. The more random primers used in the analysis may add to RAPD technique a cost-effective, fast, precise result, and less labor work solution for analyzing the similarities and differences among the Streptomyces isolates.  相似文献   

11.
Rhizobium strains used in inoculants for Trifolium spp., Medicago spp., Glycine max, and Lotus pedunculatus were isolated from nodules of these legumes grown in soils into which the rhizobia had been introduced 4 to 8 years before. Isolations were made from a total of 420 nodules. Nodule occupancy by the inoculant strains varied from 17.7% for a soybean strain to 100% in the case of L. pedunculatus whose specific rhizobia did not occur in the soils studied. In general, inoculant strains isolated from nodules did not differ in effectiveness from cultures of the same strains concurrently maintained in lyophilized form. The average effectiveness of all of the isolates (identified and unidentified) from a legume was 7.1 to 73.3% higher than that of the unidentified isolates alone, demonstrating the prolonged effect that a single-seed inoculation has on the rhizobial population in a soil which had not been planted with legumes before. Relatively weak recovery of a Rhizobium japonicum strain introduced into soil 4 years after soybean seed inoculated with a different strain had been planted in the same soil confirmed the advantage of a resident population over an introduced inoculant strain.  相似文献   

12.
Several naturally occurring antibiotic resistance plasmids were isolated from Pasteurella multocida type D strains. One plasmid, pPM1, was used to study transfer of DNA among P. multocida strains, and could be transferred into Escherichia coli and some P. multocida isolates. However, pPM1 could only be transferred into the toxigenic P. multocida LFB3 at very low frequency. Plasmid recovered from the electrotransformants could be transferred to LFB3 at high frequency. These plasmid DNAs were resistant to PstI, and sensitive to DpnI digestion. Sensitivity to DpnI was common to all the P. multocida DNAs, but resistance to PstI was confined to LFB3. Plasmid pPM1 treated with PstI methylase was able to transform LFB3 at an increased frequency compared to unmethylated DNA, suggesting that LFB3 has a restriction system which cleaves at or near PstI sites.  相似文献   

13.
A method based on intrinsic antibiotic resistance (IAR) for identifying large numbers of Rhizobium strains was assessed and found to be unsatisfactory for R. phaseoli and isolates from Cicer arietinum (Rhizobium spp.). Our data showed that the number of different IAR patterns always exceeded the number of strains tested. With 90 nodule isolates from plants inoculated with a mixture of three strains of R. Phaseoli, the technique gave 18 different resistance patterns. When 24 strains of Rhizobium spp., each replicated three times, were examined 68 different resistance patterns were obtained. Single colony isolates from one strain also gave several different IAR patterns. All strains tested with fluorescent“ antibody were readily identified. Attempts to obtain correct strain identification with IAR by simplifying the scoring systems or allowing up to two differences in the resistance patterns were unsuccessful. We were unable to define the source of this variation although incubation time and inoculum concentration were shown to affect the IAR patterns  相似文献   

14.
Three strains of Bradyrhizobium japonicum, I17, 110, and 61A76, were evaluated for their ability to form nodules on field-grown soybeans in soil with a highly competitive indigenous B. japonicum population. The predominant indigenous strain, 0336, in the field site used was unlike the more common isolates from Midwestern soils which belong to the 123 or 138 serogroups. This strain persisted in the soil for at least 30 years without any soybean crops. The three inoculant strains differed in their ability to compete with indigenous strains for nodule formation. Four different inoculation treatments were tested in three adjacent fields. When the amount of inoculum was increased, a higher proportion of nodules contained the inoculant strain. The most competitive inoculant strain was I17, a recent field isolate. Strain 61A76 was better than 110. There was no difference in recovery of the inoculant strains on the Hodgson or Corsoy soybean cultivars, nor was there a difference in recovery of the inoculant strains during the growing season. The vertical distribution of nodules containing the inoculant strains was affected by the method of adding the inoculant to the soil. Inoculant added to the seed furrow produced nodules mainly in the top region of the soybean root. Inoculant tilled into the soil produced nodules primarily in the bottom part of the root. The nodules that were produced in the bottom part of the root are younger and may contribute significant amounts of fixed nitrogen to the soybean during seed formation.  相似文献   

15.

Background

Acinetobacter baumannii is an important nosocomial pathogen that poses a serious health threat to immune-compromised patients. Due to its rapid ability to develop multidrug resistance (MDR), A. baumannii has increasingly become a focus of attention worldwide. To better understand the genetic variation and antibiotic resistance mechanisms of this bacterium at the genomic level, we reported high-quality draft genome sequences of 8 clinical isolates with various sequence types and drug susceptibility profiles.

Results

We sequenced 7 MDR and 1 drug-sensitive clinical A. baumannii isolates and performed comparative genomic analysis of these draft genomes with 16 A. baumannii complete genomes from GenBank. We found a high degree of variation in A. baumannii, including single nucleotide polymorphisms (SNPs) and large DNA fragment variations in the AbaR-like resistance island (RI) regions, the prophage and the type VI secretion system (T6SS). In addition, we found several new AbaR-like RI regions with highly variable structures in our MDR strains. Interestingly, we found a novel genomic island (designated as GIBJ4) in the drug-sensitive strain BJ4 carrying metal resistance genes instead of antibiotic resistance genes inserted into the position where AbaR-like RIs commonly reside in other A. baumannii strains. Furthermore, we showed that diverse antibiotic resistance determinants are present outside the RIs in A. baumannii, including antibiotic resistance-gene bearing integrons, the blaOXA-23-containing transposon Tn2009, and chromosomal intrinsic antibiotic resistance genes.

Conclusions

Our comparative genomic analysis revealed that extensive genomic variation exists in the A. baumannii genome. Transposons, genomic islands and point mutations are the main contributors to the plasticity of the A. baumannii genome and play critical roles in facilitating the development of antibiotic resistance in the clinical isolates.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1163) contains supplementary material, which is available to authorized users.  相似文献   

16.
Digestion patterns of chromosomal DNAs of Bacillus cereus and Bacillus weihenstephanensis strains suggest that Sau3AI-type restriction modification systems are widely present among the isolates tested. In vitro methylation of plasmid DNA was used to enhance poor plasmid transfer upon electroporation to recalcitrant strains that carry Sau3AI restriction barriers.  相似文献   

17.
The aim of this study was to analyse genotypes, antimicrobial susceptibility patterns and serotypes in Pseudomonas aeruginosa clinical strains, including the clonal dissemination of particular strains throughout various intensive care units in one medical centre. Using random amplified polymorphic DNA (RAPD–PCR) and P. aeruginosa antisera, 22 different genotypes and 8 serotypes were defined among 103 isolates from 48 patients. No direct association between P. aeruginosa strain genotypes and serotypes was observed. RAPD typing in strains with the same serotype revealed different genotypes and, on the contrary, most strains with a different serotype displayed the same amplification pattern. The resulting banding patterns showed a high degree of genetic heterogeneity among all isolates from the patients examined, suggesting a non-clonal relationship between isolates from these patients. A higher degree of antibiotic resistance and stronger biofilm production in common genotypes compared to rare ones and genetic homogeneity of the most resistant strains indicated the role of antibiotic pressure in acquiring resistant and more virulent strains in our hospital. In conclusion, genetic characterisation of P. aeruginosa strains using RAPD method was shown to be more accurate in epidemiological analyses than phenotyping.  相似文献   

18.
Characterization of cross-reacting serotypes of Campylobacter jejuni   总被引:5,自引:0,他引:5  
Some strains of Campylobacter jejuni react with more than one reference antiserum from the serotyping scheme based on heat-stable lipopolysaccharide antigens. To investigate the molecular basis of these cross-reactions, lipopolysaccharides from the reference strains for serotypes 4, 13, 16, 43, and 50 and isolates recovered during two different outbreaks of C. jejuni enteritis were analyzed by passive haemagglutination and sodium dodecyl sulphate-polyacrylamide gel electrophoresis coupled with silver staining or immunoblotting. The results showed that lipopolysaccharides from the reference strains and the isolates reacted with antisera prepared against heterologous strains in various combinations and that both silver-stainable, low Mr and non-silver-stainable, high Mr lipopolysaccharide components provided the antigenic determinants associated with the cross-reactions. There were strain-to-strain differences in the structural and antigenic properties of these macromolecules and shared antigenic determinants were not always provided by a common structure. Analysis of the silver-stained lipopolysaccharide profiles, outer membrane protein patterns, and chromosomal DNA restriction patterns indicated that strains with the same lipopolysaccharide profile could have the same outer membrane protein pattern and the same DNA restriction pattern. These results provided evidence for the presence of clones within this antigenic complex and implicated antigenic variation in some strains as the phenomenon responsible for the multiplicity of cross-reactions.  相似文献   

19.
Arcanobacterium haemolyticum is a Gram-positive, β-hemolytic emerging human pathogen that is classified into smooth or rough biotypes. This bacterial species is also a rare pathogen of animals. Smooth biotypes possess smooth colony edges, are moderate to strong in β-hemolysis, and predominately cause wound infections. In contrast, rough biotypes possess rough and irregular colony edges, have weak to no β-hemolytic activity, and predominately cause pharyngitis. Using horse erythrocytes we confirmed that smooth isolates are generally more hemolytic than rough isolates. A hemolysin from A. haemolyticum, arcanolysin (aln/ALN), was recently discovered and is a member of the cholesterol-dependent cytolysin (CDC) family. PCR amplification of aln from all 36 smooth A. haemolyticum isolates yielded the expected 2.0 kb product. While 21 rough isolates yielded the 2.0 kb product, 16 isolates had a 3.2 kb product. The extra 1.2 kb segment was 99% identical to IS911 (insertion sequence) from Corynebacterium diphtheriae. PCR amplification and sequence analysis of the upstream region of aln revealed ~40 nucleotide polymorphisms among 73 clinical isolates from Finland, Denmark, Germany and United States (Nebraska). Remarkably, multi-sequence alignments of the aln upstream region demonstrated that ~90% of the isolates phylogenetically clustered as either smooths or roughs. Differential restriction enzyme analysis of the aln upstream region also demonstrated that the aln upstream region of most (~75%) smooth isolates was cleaved with ClaI while this region in most (~86%) rough isolates was cleaved with XcmI. We conclude that the aln upstream region can be used to genetically distinguish between smooth and rough biotypes of this important emerging pathogen.  相似文献   

20.
AIMS: The objective of this study was to determine whether Cu-amendment of field plots affects the frequency of Cu resistance, and antibiotic resistance patterns in indigenous soil bacteria. METHODS AND RESULTS: Soil bacteria were isolated from untreated and Cu-amended field plots. Cu-amendment significantly increased the frequency of Cu-resistant isolates. A panel of isolates were characterized by Gram-reaction, amplified ribosomal DNA restriction analysis and resistance profiling against seven antibiotics. More than 95% of the Cu-resistant isolates were Gram-negative. Cu-resistant Gram-negative isolates had significantly higher incidence of resistance to ampicillin, sulphanilamide and multiple (> or =3) antibiotics than Cu-sensitive Gram-negative isolates. Furthermore, Cu-resistant Gram-negative isolates from Cu-contaminated plots had significantly higher incidence of resistance to chloramphenicol and multiple (> or =2) antibiotics than corresponding isolates from control plots. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this field experiment show that introduction of Cu to agricultural soil selects for Cu resistance, but also indirectly selects for antibiotic resistance in the Cu-resistant bacteria. Hence, the widespread accumulation of Cu in agricultural soils worldwide could have a significant effect on the environmental selection of antibiotic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号