首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ginseng (Panax ginseng C.A. Meyer) is one of the most popular medicinal herbs, and the root of this plant contains pharmacologically active components, called ginsenosides. Ginsenosides, a class of tetracyclic triterpene saponins, are synthesized from dammarenediol-II after hydroxylation by cytochrome P450 (CYP) and then glycosylation by a glycosyltransferase. Protopanaxadiol synthase, which is a CYP enzyme (CYP716A47) that catalyzes the hydroxylation of dammarenediol-II at the C-12 position to yield protopanaxadiol, was recently characterized. Here, we isolated two additional CYP716A subfamily genes (CYP716A52v2 and CYP716A53v2) and determined that the gene product of CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in P. ginseng. Both CYP716A47 and CYP716A53v2 mRNAs accumulated ubiquitously in all organs of ginseng plants. In contrast, CYP716A52v2 mRNA accumulated only in the rhizome. Methyl jasmonate (MeJA) treatment resulted in the obvious accumulation of CYP716A47 mRNA in adventitious roots. However, neither CYP716A52v2 nor CYP716A53v2 mRNA was affected by MeJA treatment during the entire culture period. The ectopic expression of CYP716A53v2 in recombinant WAT21 yeast resulted in protopanaxatriol production after protopanaxadiol was added to the culture medium. In vitro enzymatic activity assays revealed that CYP716A53v2 catalyzed the oxidation of protopanaxadiol to produce protopanaxatriol. The chemical structures of the protopanaxatriol products were confirmed using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC/APCIMS). Our results indicate that the gene product of CYP716A53v2 is a protopanaxadiol 6-hydroxylase that produces protopanaxatriol from protopanaxadiol, which is an important step in the formation of dammarane-type triterpene aglycones in ginseng saponin biosynthesis.  相似文献   

3.
4.
5.
6.
Woo SS  Song JS  Lee JY  In DS  Chung HJ  Liu JR  Choi DW 《Phytochemistry》2004,65(20):2751-2761
To develop an experimental system for studying ginsenoside biosynthesis, we generated thousands of ginseng (Panax ginseng C.A. Meyer) hairy roots, genetically transformed roots induced by Agrobacterium rhizogenes, and analyzed the ginsenosides in the samples. 27 putative ginsenosides were detected in ginseng hairy roots. Quantitative and qualitative variations in the seven major ginsenosides were profiled in 993 ginseng hairy root lines using LC/MS and HPLC-UV. Cluster analysis of metabolic profiling data enabled us to select hairy root lines, which varied significantly in ginsenoside production. We selected hairy root lines producing total ginsenoside contents 4-5 times higher than that of a common hairy root population, as well as lines that varied in the ratio of the protopanaxadiol to protopanaxatriol type ginsenoside. Some of the hairy root lines produce only a single ginsenoside in relatively high amounts. These metabolites represent the end product of gene expression, thus metabolic profiling can give a broad view of the biochemical status or biochemical phenotype of a hairy root line that can be directly linked to gene function.  相似文献   

7.
8.
9.
Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolium), are thought to be representative plant of Panax species, have important commercial value and are used in worldwide. Panax species produces triterpene saponins called ginsenosides, which are classified into two groups by the skeleton of aglycones, namely dammarane-type and oleanane-type. Dammarane-type ginsenosides dominate over oleanane-type not only in amount but also in structural varieties. Researches shows that the saponins content in American ginseng is higher than that in Asian ginseng, the higher part of ginsenosides is from dammarane-type biosynthesis. It has been proposed that protopanaxadiol derived from dammarenediol-II, is a key hydroxylation by cytochrome P450 for the biosynthesis of ginsenosides, and the gene number of protopanaxadiol synthase has been published independent in Asian ginseng (PgCYP716A47). However, little is known about genes involved in hydroxylation and glycosylation in American ginseng ginsenoside biosynthesis. Here, we first cloned and identified a P450 gene named PqD12H encoding enzymes catalyzed dammarenediol-II to protopanaxadiol by RT-PCR using degenerate primers designed based on sequence homology. In vitro, the ectopic expression of PqD12H in recombinant WAT21 yeast resulted in protopanaxadiol production after dammarenediol-II was added to the culture medium. In vivo, we established both PgCYP716A47 and PqD12H RNAi transgenic. The RT-PCR and HPLC analysis of the final products of protopanaxadiol and protopanaxatriol showed a result that declined level of protopanaxadiol-type and protopanaxatriol-type ginsenosides. It suggested that the P450 synthase content or expression in American ginseng exceed than in Asian ginseng. The result elucidated the evolution relationship of P450s and the reason of different saponins content among Panax species.  相似文献   

10.
11.
Aims: Dammarenediol production by an engineered yeast Saccharomyces cerevisiae was investigated. Methods and Results: A dammarenediol‐producing engineered yeast was constructed by heterologous expression of the dammarenediol synthase gene from Panax ginseng hairy roots through RT‐PCR. Fermentation was carried out in a 5‐L GRJY‐bioreactor with an inoculum size of 1% v/v at 30°C. Dammarenediol detection was performed with silica gel chromatography and HPLC. Determination of dammarenediol synthase activity subcellular distribution was carried out by surveying the enzyme activity in microsomes, lipid particles and total yeast homogenate. When cultured under aerobic conditions, the engineered yeast could produce dammarenediol up to 250 μg l?1. However, when an anaerobic shift strategy was employed, dammarenediol accumulated at a level as twice as that under aerobic condition. The dammarenediol synthase and dammarenediol were mainly localized in lipid particles. Conclusions: Dammarenediol could be heterologously produced in engineered yeast. The heterologously expressed dammarenediol synthase is mainly localized in lipid particles. Anaerobic shift strategy could enhance the dammarenediol level in the engineered yeast. Significance and Impact of the Study: This study showed that the high‐value plant product dammarenediol could be produced by heterologous expression of the according gene in yeast. Furthermore, the anaerobic shift strategy could be potentially applied in oxidosqualene‐derived compounds production in yeast. Here, the information about subcellular distribution of heterologously expressed dammarenediol synthase in the engineered yeast was also provided.  相似文献   

12.
The chloroplast, an essential organelle for plants, performs a wide variety of metabolic processes for host cells, which include photosynthesis as well as amino acid and fatty acid biosynthesis. The organelle conserves many bacterial systems in its functions, implicating its origin from symbiosis of a photosynthetic bacterium. In bacterial cells, the stringent response acts as a global regulatory system for gene expression mediated by a small nucleotide, guanosine 5'-diphosphate 3'-diphosphate (ppGpp), that is necessary for cell adaptation to diverse environmental stimuli such as amino acid starvation. Recent studies indicated that proteins similar to the bacterial ppGpp synthase/hydrolyase are conserved in plants, although their precise roles are not known. Here we show that the stringent response in chloroplasts is crucial for normal plant fertilization. Specifically, one of the Arabidopsis ppGpp synthase homologs, CRSH (Ca(2+)-activated RelA/SpoT homolog), exhibits calcium-dependent ppGpp synthesis activity in vitro, and is localized in chloroplasts in vivo. A knockdown mutation of CRSH in Arabidopsis results in a significant reduction in silique size and seed production, indicating that plant reproduction is under the control of chloroplast function through a ppGpp-mediated stringent response.  相似文献   

13.
Inhibition of root elongation by toxic aluminum (Al(3+)) occurs rapidly and is one of the most distinct and earliest symptoms of Al toxicity. To elucidate mechanism underlying Al(3+)-induced inhibition of root elongation, we investigated the involvement of ethylene in Al(3+)-induced inhibition of root elongation using the legume model plants Lotus japonicus and Medicago truncatula. Root elongation of L. japonicus and M. truncatula was rapidly inhibited by exposure to AlCl(3). A similar rapid inhibition of root elongation by the ethylene-releasing substance, ethephon, and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), was also observed. The Al(3+)-induced inhibition of root elongation was substantially ameliorated in the presence of antagonists of ethylene biosynthesis [Co(2+) and aminoethoxyvinylglycine (AVG)]. Al(3+) increased the activity of ACC oxidase (ACO), and induced a rapid evolution of ethylene from root apices and expression of genes of ACC synthase (ACS) and ACO. These findings suggest that induction of ethylene evolution resulting from up-regulation of ACS and ACO plays a critical role in Al(3+)-induced inhibition of root elongation.  相似文献   

14.
Ginseng (Panax ginseng) is one of the most medically important plants in the world. Dammarane-type ginsenosides, which mainly include protopanaxatriol-type (PPT-type) and protopanaxadiol-type (PPD-type) ginsenosides, are the major pharmacologically relevant compounds that are produced by ginseng. Dammarenediol-II synthase (DDS) is the first committed enzyme in the ginsenoside biosynthetic pathway for dammarane-type ginsenosides, and PPD-type and PPT-type ginsenosides are catalyzed by protopanaxadiol synthase (PPDS) and protopanaxatriol synthase (PPTS), respectively. Ginseng cells are often used in stress studies. During their growth and development, ginseng plants are often exposed to cold stress. This study evaluated the effects of different chilling stresses on the accumulation of ginsenosides and the expressions of the DDS, PPDS and PPTS genes in ginseng cells. The results showed that continuous chilling (5 °C for 12 h) induced the PPT-type ginsenosides; whereas intermittent chilling (25 °C for 12 h and 5 °C for 12 h) stimulated the accumulation of PPD-type ginsenosides. The expression levels of DDS, PPDS and PPTS were clearly consistent with the accumulation pattern for PPT-type ginsenosides under continuous chilling stress or PPD-type ginsenosides under intermittent chilling stress, as was their order of involvement in the PPT-type or PPD-type biosynthetic pathway. These results indicate that different chilling treatments stimulated the accumulation of different types of ginsenosides, suggesting that cold stress may be one of the reasons for ginsenoside accumulation in ginseng cells.  相似文献   

15.
16.
Panax ginseng and Panax quinquefolius of Panax genus are valuable as health foods as well as pharmaceuticals for the treatment of cancer, diabetes and ageing as these plants possess saponins. In the current study, Cell and adventitious root cultures of P. ginseng and P. quinquefolius were investigated for the biomass, cell division, saponin content and ginsenosides profile from four lines namely P. quinquefolius (AM), P. ginseng mountain (Mt.) Baekdu line, P. ginseng Cheong-sol line (CS) and P. ginseng CBN line (CBN) with the objective of comparing cell and adventitious root systems to check their efficacy for the production of ginseng saponins. Additionally, genes related to ginsenoside biosynthesis were also analyzed concerning to cell and adventitious root lines. The results indicated that various cell lines were better in multiplication and growth compared to adventitious root lines. However, adventitious root lines showed higher accumulation of dry biomass (1.5–2 fold) than that of cell lines. CS adventitious root line showed higher saponin content and ginsenoside productivity (10.48 mg·g?1 DW, 12.88 mg·L?1, respectively) than that of CS cell line (9.50 mg·g?1 DW, 2.39 mg·L?1, respectively). Especially, Rd ginsenoside productivity of CS adventitious root line recorded fourfold higher than CS cell line. Genes which are related to ginsenoside biosynthesis such as P. ginseng squalene synthase (PgSS2), P. ginseng squalene epoxidase (PgSE2), P. ginseng protopanaxadial synthase (PgPPDS) and P. ginseng protopanaxatriol synthase (PgPPTS) were analyzed by real time quantitative polymerase chain reaction to support ginsenoside production. The adventitious root culture system described in this study is useful system for biomass and ginsenoside production.  相似文献   

17.
Endogenously occurring nitric oxide (NO) is involved in theregulation of shikonin formation in Onosma paniculatum cells.NO generated after cells were inoculated into shikonin productionmedium reached the highest level after 2 d of culture, whichwas 16 times that at the beginning of the experiment, and maintaineda high level for 6 d. A nitric oxide synthase (NOS) inhibitor,N-nitro-L-arginine (L-NNA), and a nitrate reductase (NR) inhibitor,sodium azide (SoA), consistent with their inhibition of NO biosynthesis,decreased shikonin formation significantly. This reduction couldbe alleviated or even abolished by exogenous NO supplied bysodium nitroprusside (SNP), suggesting that the inhibition ofNO biosynthesis resulted in decreased shikonin formation. However,when endogenous NO biosynthesis was up-regulated by the elicitorfrom Rhizoctonia cerealis, shikonin production was enhancedfurther, showing a dependence on the elicitor-induced NO burst.Real-time PCR analysis showed that NO could significantly up-regulatethe expression of PAL, PGT and HMGR, which encode key enzymesinvolved in shikonin biosynthesis. These results demonstratedthat NO plays a critical role in shikonin formation in O. paniculatumcells.  相似文献   

18.
19.
Hairy root cultures of a model legume, Lotus japonicus, were established to characterize two heterologous cDNAs encoding enzymes involved in isoflavone biosynthesis, i.e. licorice 2-hydroxyisoflavanone synthase (IFS) and soybean 2-hydroxyisoflavanone dehydratase (HID) catalyzing sequential reactions to yield isoflavones. While the control and the IFS overexpressor did not accumulate detectable isoflavones, the HID overexpressors did accumulate daidzein and genistein, showing that HID is a critical determinant of isoflavone productivity. Production of coumestrol in all the genotypes and isoliquiritigenin/liquiritigenin in IFS + HID-overexpressing lines was also noted. These results provide insight into the regulatory mechanism that controls isoflavonoid biosynthesis.  相似文献   

20.
Benzylisoquinoline alkaloids are one of the most important secondary metabolite groups, and include the economically important analgesic morphine and the antimicrobial agent berberine. To improve the production of these alkaloids, we investigated the effect of the overexpression of putative rate-limiting step enzymes in benzylisoquinoline alkaloid biosynthesis. We introduced two O-methyltransferase [Coptis japonica norcoclaurine 6-O-methyltransferase (6OMT) and 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT)] expression vectors into cultured California poppy cells to avoid the gene silencing effect of endogenous genes. We established 20 independent lines for 6OMT transformants and 15 independent lines for 4'OMT transformants. HPLC/liquid chromatography-mass spectrometry (LC-MS) analysis revealed that the overexpression of C. japonica 6OMT was associated with an average alkaloid content 7.5 times greater than that in the wild type, whereas the overexpression of C. japonica 4'OMT had only a marginal effect. Further characterization of 6OMT in California poppy cells indicated that a 6OMT-specific gene is missing and 4OMT catalyzes the 6OMT reaction with low activity in California poppy, which supports the notion that the 6OMT reaction is important for alkaloid biosynthesis in this plant species. We discuss the importance of 6OMT in benzylisoquinoline alkaloid biosynthesis and the potential for using a rate-limiting step gene to improve alkaloid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号