首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we describe the synthesis, evaluation of some biological properties, such as DNA- and RNA-binding ability and in sero stability, as well as the supramolecular assembly of a novel nucleoamino acid based on L-spinacine. More particularly, a thymine-containing L-spinacine derivative was synthesized in liquid phase by a simple peptide-coupling procedure. Subsequently, nucleic acid and Cu(2+)-binding ability, as well as self-assembly properties of the novel nucleoamino acid, were investigated by spectroscopy (CD and UV) and laser light scattering which furnished interesting information on the assembly of supramolecular networks based on the peptidyl nucleoside analog. Finally, nucleoamino acid enzymatic stability was studied and a half life of about 7?days was found in the presence of fresh human serum.  相似文献   

2.
Starting with β-methoxy methacryloylisocyanate, β-methoxy methacrylisothiocyanate, and β-isocyanatopropionyl chloride, on the one hand, and Nα-Z-lysine or Nα-Z-ornithine, on the other hand, Nα-Z-amino acids with pyrimidine bases in the side chain were synthesized. These Z-protected nucleoamino acids were converted to the corresponding N-carboxyanhydrides (NCAs) via the silylester method. In the case of 2-thiothymine derivatives, the reaction intermediate of the NCA synthesis caused benzylation of the thioxo- group, so that a new class of 2-mercaptopyrimidine derivatives was isolated unexpectedly. The poly(nucleoamino acids) obtained by polymerization of the nucleoamino acid NCAs were characterized by elemental analyses, optical rotations 1H-nmr and 13C-nmr spectra. Vapor pressure osmometry revealed that the DP s were in the range of 20–30. Their spectra suggest a helical secondary structure. While all homopolypeptides are insoluble in water, copolypeptides containing L -lysine Nε-hydrobromide possess good solubility in water.  相似文献   

3.
In this Letter, we investigated the binding properties towards nucleic acids of a thymine-functionalized oligolysine, composed of nucleobase-bearing amino acid moieties and underivatized l-lysine residues alternate in the backbone. The basic nucleopeptide proved to be well soluble in water and able to interact with both DNA and RNA, as suggested by circular dichroism, UV and surface plasmon resonance studies performed on the thymine-containing oligomer with both adenine-containing DNA (dA12) and RNA (rA12 and poly rA) molecules. In both cases the thymine-functionalized oligolysine was proven to form complexes characterized by a 1:1 T/A stoichiometric ratio, as evidenced by CD titration. UV melting experiments revealed that the complex formed between the homothymine oligolysine and rA12 RNA was more stable than the complex with dA12 DNA probably due to the additional H-bonding of the 2′-OH groups in RNA, that reinforces the overall interaction with the nucleopeptide. Finally, human serum stability assays were conducted on the thymine-bearing nucleopeptide which showed a half-life of 45 min.  相似文献   

4.
This work concerns the synthesis, the supramolecular assembly and the evaluation of some biological properties, such as DNA and RNA-binding ability and human serum stability, of novel nucleopeptides. These compounds are of potential interest for the well-known properties that similar compounds, such as natural peptidyl nucleosides, possess in biology and medicine and also for the possibility to realize nucleopeptide-based supramolecular systems useful for drug and gene delivery applications. More particularly, all four nucleobase-containing peptides were synthesized by solid phase synthesis, purified by HPLC and characterized by NMR and ESI-MS. Subsequently, nucleopeptide self-assembly as well as DNA and RNA-binding ability were investigated by CD spectroscopy and further information on the formation of molecular networks, based on the peptidyl nucleoside analogues and nucleic acids, was obtained by Laser Light Scattering. Finally, nucleopeptide enzymatic stability was studied and a half life of about 2 hours was found in the presence of 50% fresh human serum.  相似文献   

5.
This work concerns a dithymine tetrapeptide, which can be seen as a new analogue of a dinucleoside monophosphate, made of both unfunctionalized and thymine-containing L-serine units alternated in the sequence. The new nucleopeptide was obtained on the solid phase by two different synthetic strategies. The first one is suitable to easily realize nucleopeptides with homonucleobase sequences, obtained by assembling an oligoserine backbone and then simultaneously coupling the free serine hydroxyl groups with the carboxymethylated nucleobase. The other strategy, which makes use of a Fmoc-protected nucleo-L-serine monomer, allows for the obtainment of nucleopeptides with mixed nucleobase sequences. CD spectroscopic studies and laser light scattering experiments, performed on solutions of the novel nucleopeptide, suggested the formation of supramolecular networks based on the self-assembly of the dithymine tetrapeptide molecules. Furthermore, CD binding studies with natural nucleic acids revealed a very weak interaction between the nucleopeptide and DNA (but not RNA). Molecular networks based on this biodegradable and water-soluble nucleopeptide, which is more resistant in plasma than standard tetrapeptides (and oligopeptides), contain a hydrophobic core which could provide the necessary environment to incorporate poorly water-soluble drugs, as evidenced by fluorescence spectroscopy. Furthermore, our studies evidenced that the structure of the tetrapeptide-based supramolecular assembly can be modified by metal ions as evidenced by UV interaction studies with Cu(2+).  相似文献   

6.
In the present work we have evaluated synthesis of ethyl ferulate by the esterification reaction of ferulic acid and ethanol catalyzed by a commercial lipase (Steapsin) immobilized onto celite-545 in a short period of 6 h in DMSO. The immobilized lipase was treated with cross-linking agent glutaraldehyde (1%; v/v). The optimum synthesis of ethyl ferulate was recorded at 45 °C, pH 8.5 and 1:1 ratio of ethanol and ferulic acid. Co2+, Ba2+and Pb2+ ions enhanced the synthesis of ethyl ferulate Hg2+, Cd3+and NH4+ ions had mild inhibitory effect. The celite-bound lipase produced 68 mM of ethyl ferulate under optimized reaction conditions.  相似文献   

7.
8.
J Robles  E Pedroso    A Grandas 《Nucleic acids research》1995,23(20):4151-4161
The synthesis of a nucleopeptide with the sequence -Ser(p5'CATCAT)-Gly-Asp- has been undertaken by either convergent or stepwise solid-phase strategies, both of which use base-labile permanent protecting groups. The coupling of phosphitylated protected peptides onto oligonucleotide-resins did not afford the desired nucleopeptide, which was nevertheless obtained after oligonucleotide elongation at the hydroxyl group of the resin-bound peptide and deprotection under mild basic conditions. A preliminary study on the stability of different nucleopeptides to bases is also reported.  相似文献   

9.
The channel-forming activity of gramicidin A derivatives carrying positively charged amino acid sequences at their C-termini was studied on planar bilayer lipid membranes and liposomes. We showed previously (FEBS Lett., 2005, vol. 579, pp. 5247–5252) that, at low concentrations, these peptides form classical cation-selective pores typical of gramicidin A, whereas, at high concentrations, they form large nonselective pores. The ability of the peptides to form nonselective pores, which was determined by the efflux of carboxyfluorescein, an organic dye, from liposomes, decreased substantially as the length of the gramicidin fragment in the series of cationic analogues was truncated. CD spectra showed that large pores are formed by peptides having both β6.3 single-stranded and β5.6 double-stranded helical conformations of the gramicidin fragment, with the C-terminal cationic sequence being extended. The dimerization of the peptides by the oxidation of the terminal cysteine promoted the formation of nonselective pores. It was shown that nonselective pores are not formed in membranes of erythrocytes, which may indicate a dependence of the channel-forming ability on the membrane type. The results may be of interest for the directed synthesis of peptides with antibacterial activity.  相似文献   

10.
Ndelta-Fmoc protected nucleoamino acids of type I (Base = T, C, A) have been synthesized and employed as building blocks for the construction of novel polyamide based nucleic acid analogues. Homopyrimidine oligomer A binds to complementary RNA with significant affinity and in a sequence-specific fashion, while no binding was observed to complementary DNA.  相似文献   

11.
Dipicolinic acid synthesis inPenicillium citreoviride strain 3114 was inhibited by Ca2+ ions, but not by Ba2+, Cu2+or Fe2+. Among the metals tested, only Zn2+ inhibited the synthesis of dipicolinic acid and promoted sporulation. None of these metals reversed the inhibition by Ca2+ or Zn2+. A mutant 27133-dpa-ca selected for resistance to feedback inhibition by dipicolinic acid: Ca2+ complex showed cross-resistance to inhibition by dipicolinic acid: Zn2+. Both 3114 and271 33-dpa-ca excreted a number of aliphatic and amino acids during secondary metabolism of dipicolinic acid. In the presence of 1000 ppm of Ca2+, accumulation of citric acid and α-aminoadipic acid was completely inhibited under conditions of inhibition of dipicolinic acid in parent strain 3114 but not in the mutant. Citric acid with or without Ca2+ did not inhibit thede novo synthesis of dipicolinic acid in the strain 3114. In fact, citric acid in the presence of Ca2+ improved significantly rate of dipicolinic acid synthesis. Apart from resistance to feed back inhibition by dipicolinic acid: Ca2+ complex, mutant differed from the parent in three other aspectsviz. (i) dipicolinic acid synthesis was not subject to catabolite repression by glucose, (ii) sporulation as well as dipicolinic acid synthesis was dependent on the presence of Ca2+ ions in the medium and (iii) Mg2+ requirement for the mutant increased three fold. Higher requirement of the Mg2+ could be partially relieved by Ca2+ during secondary metabolism. The results support the inference thatde novo synthesis of dipicolinic acid is regulated through feedback inhibition by dipicolinic acid: Ca2+complex.  相似文献   

12.
Pathological aggregates of tau protein are found in several neurodegenerative diseases termed ‘tauopathies’. Increasing evidence indicates that tau oligomer species rather than the large amyloid cytoplasmic inclusions relevant for histopathological diagnosis might be crucial for cellular damage and neurodegeneration. Trivalent metal ions and polyanionic structures like heparin or arachidonic acid have been shown to induce tau aggregation. However, little is known about early processes of tau aggregation. In this study, we applied fluorescence correlation spectroscopy (FCS) and scanning for intensely fluorescent targets (SIFT) to investigate oligomer formation of tau protein at nanomolar protein concentrations at the single-particle level. Our results indicate that the formation of distinct tau oligomers is induced by the trivalent metal ions Fe3+ and Al3+ and by organic solvents like DMSO, respectively. In contrast, bivalent metal ions (Cu2+, Zn2+, Mn2+, Ca2+, Mg2+) had no effect. While DMSO-induced small tau oligomers are relatively stable in solution, dynamic remodeling can be initiated by non-ionic detergents. Moreover Al3+ induces rapid formation of a different oligomer species of larger size. Our results provide further insights into early tau oligomerization and aggregation dynamics.  相似文献   

13.
Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology.  相似文献   

14.
The industrial application of lipases for the synthesis of sucrose esters is usually limited by its low productivity, as we need a medium where a polar reagent (the sugar) and a non-polar fatty acid donor are soluble and able to react in the presence of the biocatalyst. In this work, we have studied the problems encountered when trying to increase the volumetric productivity of sucrose esters. The synthesis of sucrose palmitate was performed in 2-methyl-2-butanol:dimethylsulfoxide mixtures by transesterification of different palmitic acid donors with sucrose, catalysed by the immobilized lipase from Candida antarctica B (Novozym 435). A protocol for substrate preparation different from that previously reported was found to improve the reaction rate. Several parameters, such as sucrose and acyl donor loadings, the percentage of DMSO in the mixture and the nature of acyl donor, were investigated. Under the best experimental conditions (15% DMSO, 0.1 mol l?1 sucrose, 0.3 mol l?1 vinyl palmitate), a maximum of 45 g l?1 sucrose palmitate was obtained in 120 h. Using methyl or ethyl palmitate, the highest productivity was 7.3 g l?1 in 120 h using 20% DMSO with 0.2 mol l?1 sucrose and 0.6 mol l?1 acyl donor. The formation of free fatty acid, and the effect of the percentage of DMSO on the monoester/diester selectivity were also studied. To our knowledge, this is the first report on enzymatic synthesis of sucrose esters of long fatty acids using alkyl esters as acyl donors.  相似文献   

15.
Heat shock protein synthesis was examined in mouse thymocytes at three stages of development: early embryonic thymocytes, which are CD4?CD8?, adult thymocytes, which are primarily CD4+CD8+, and mature spleen T cells, which are CD4+CD8? or CD4?CD8+. After either a 41°C or 42°C heat shock, the synthesis of the maior heat-inducible protein (hsp68) was elevated during the first hour of recovery but then decreased abruptly in thymocytes from adult mice. In contrast, the synthesis of hsp68 continued for up to 4 h after heating embryonic mouse thymocytes or mature spleen T cells. The more rapid termination ofthe heat shock response in the adult thymocytes was not the result of eitherless heat damage or more rapid repair since the recovery of general protein synthesis was more severely delayed in these cells. As well, the double positive CD4+CD8+ cells were more sensitive to hyperthermia than either the double negative CD4?CD8? or single positive CD4+CD8? or CD4?CD8+ cells. Exposure of fetal thymus organ cultures to elevated temperature revealed that the double negative thymocytes were able to survive and differentiate normally following a heat shock treatment that was lethal for the double positive thymocytes. Exposure of thymocytes from adult mice to elevated temperatures induced apoptotic cell death. This was evident by the cleavage of DNA into oligonucleosome-sized fragments. Quantitation of the extent of DNA fragmentation and the number of apoptotic cells by flow cytometry demonstrated that the extent of apoptotic cell death was related to the severity of the heat stress. Double positive (CD4+CD8+) thymocytes are selected on the basis of their T-cell antigen receptor (TCR). Most of these cells are negatively selected and die within the thymus by an active process of cell deletion known as apoptosis. Restricting hsp synthesis in response to stress might be essential during developmental processes in which cell maturation is likely to result in death rather than functional differentiation. © 1993Wiley-Liss, Inc.  相似文献   

16.
In order to use the enantioseparation capability of cationic cyclodextrin and to combine the advantages of capillary electrochromatography (CEC) with open‐tubular (OT) column, in this study, a new OT‐CEC, coated with cationic cyclodextrin (1‐allylimidazolium‐β‐cyclodextrin [AI‐β‐CD]) as chiral stationary phase (CSP), was prepared and applied for enantioseparation. Synthesized AI‐β‐CD was characterized by infrared (IR) spectrometry and mass spectrometry (MS). The preparation conditions for the AI‐β‐CD‐coated column were optimized with the orthogonal experiment design L9(34). The column prepared was characterized by scanning electron microscopy (SEM) and elemental analysis (EA). The results showed that the thickness of stationary phase in the inner surface of the AI‐β‐CD‐coated columns was about 0.2 to 0.5 μm. The AI‐β‐CD content in stationary phase based on the EA was approximately 2.77 mmol·m?2. The AI‐β‐CD‐coated columns could separate all 14 chiral compounds (histidine, lysine, arginine, glutamate, aspartic acid, cysteine, serine, valine, isoleucine, phenylalanine, salbutamol, atenolol, ibuprofen, and napropamide) successfully in the study and exhibit excellent reproducibility and stability. We propose that the column, coated with AI‐β‐CD, has a great potential for enantioseparation in OT‐CEC.  相似文献   

17.
Abstract

In the final stages of automated oligonucleotide synthesis the oligomer has to be cleaved from the solid support. This is usually carried out using ammonolysis since the 3′-end of the oligomer is most commonly attached to the support via a succinate ester linkage. The t-butyldimethylsilyl (TBDMS) group is currently the most widely used 2′-hydroxyl in RNA-synthesis and is used together with phosphoroamidites1 as well as with H-phosphonates2. The nucleoside directly attached to the support, often carries the same TBDMS-protection on the secondary hydroxyl next to the succinate linker. The use of more labile acyl groups for N-protection in RNA-synthesis was suggested in reports where partial loss of the TBDMS groups during ammonolysis was detected3,4. This has since been introduced5,6 and is now general practice. However, one can question if all oligomer will be released from the support under the milder ammonolytic conditions used to remove these more labile N-protecting groups.  相似文献   

18.
Differential scanning calorimetry (DSC), temperature-dependent uv-absorption spectroscopy, and temperature-dependent CD were used to monitor and characterize the salt-dependent, thermally induced structural transitions in the deoxydodecanucleotide d(CGCGAATTCGCG). At the high oligomer concentrations required for DSC, the calorimetric scans revealed a single, monophasic transition curve at all salt concentrations. Based on previous nmr melting studies under similar conditions, we conclude that these monophasic transitions correspond to the cooperative duplex-to-single-strand conversion of the dodecamer. By contrast, at the lower oligomer concentrations used for the spectroscopic studies, the shapes of the uv and CD melting curves were found to depend on the concentration of the added salt. At high salt (≥0.1M Na+), a single, monophasic transition curve was observed. At lower salt (?0.01M Na+), the CD and uv melting curves exhibit biphasic behavior. Based on the concentration dependence, the enthalpy, and the cooperativity of each transition in the biphasic curve, we conclude that at low salt and low oligomer concentrations, the dodecamer melts in a sequential manner involving initial disruption of a duplex structure and subsequent disruption of a hairpin structure.  相似文献   

19.
Peptide nucleic acids (PNA) were synthesized by a modified Merrifield method using several improvements. Activation by O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate in combination with in situ neutralization of the resin allowed efficient coupling of all four Boc-protected PNA monomers within 30 min. HPLC analysis of the crude product obtained from a fully automated synthesis of the model PNA oligomer H-CGGACTAAGTCCATTGC-Gly-NH2, indicated an average yield per synthetic cycle of 97.1%. N1-benzyloxycarbonyl-N63-methylimidazole triflate substantially outperformed acetic anhydride as a capping reagent. The resin-bound PNAs were successfully cleaved by the ‘low–high’ trifluoromethanesulphonic acid procedure.  相似文献   

20.
In this work, we report the synthesis of Y2O3:Er3+, Y2O3:Yb3+ and Y2O3:Er3+,Yb3+ nanophosphors by the combustion synthesis method using urea as fuel. The doping agents were incorporated in the form of erbium nitrate and ytterbium nitrate. X‐Ray diffraction (XRD) patterns revealed that the synthesized particles have a body‐centered cubic structure with space group Ia‐3. The photoluminescence (PL) properties were investigated after UV and infrared irradiation at room temperature. A strong characteristic emission of Er3+ and Yb3+ ions was identified, and the influence of doping concentration on the PL properties was systematically studied. Energy transfer from Yb3+ to Er3+ ions was observed in Y2O3 nanophosphors. The obtained result may be useful in potential applications such as bioimaging. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号