首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根系是植物吸收土壤水分和养分的重要器官, 驱动着多个生态系统过程, 该研究揭示了实验增温对根系生物量的影响及机制, 可为气候变暖背景下土壤碳动态和生态系统过程的变化提供理论依据。该研究从已发表的151篇国内外研究论文中收集到611组数据, 通过整合分析(meta-analysis)方法研究了实验增温对根系生物量(根系总生物量、粗根生物量、细根生物量、根冠比)的影响, 并探讨了增温幅度、增温年限、增温方式的影响, 以及根系生物量对增温的响应与本底环境条件(生态系统类型、年平均气温、年降水量、干旱指数)的关系。结果表明: (1)模拟增温使细根生物量显著增加8.87%, 而对根系总生物量、粗根生物量、根冠比没有显著影响; (2)中等强度增温(1-2 ℃)使得细根生物量和根冠比分别提高14.57%和23.63%; 中短期增温实验(<5年)对细根生物量具有促进影响, 而长期增温实验(≥5年)使细根生物量有降低的趋势; 开顶箱增温和红外辐射增温分别使细根生物量显著提高了17.50%和12.16%, 而电缆加热增温使细根生物量和粗根生物量显著降低了23.44%和43.23%; (3)不同生态系统类型对于增温响应不一致, 模拟增温使苔原生态系统细根生物量显著提高了21.03%, 细根生物量对增温的响应与本底年平均气温、年降水量、干旱指数均呈显著负相关关系。  相似文献   

2.
The degree to which climate warming will stimulate soil organic carbon (SOC) losses via heterotrophic respiration remains uncertain, in part because different or even opposite microbial physiology and temperature relationships have been proposed in SOC models. We incorporated competing microbial carbon use efficiency (CUE)–mean annual temperature (MAT) and enzyme kinetic–MAT relationships into SOC models, and compared the simulated mass‐specific soil heterotrophic respiration rates with multiple published datasets of measured respiration. The measured data included 110 dryland soils globally distributed and two continental to global‐scale cross‐biome datasets. Model–data comparisons suggested that a positive CUE–MAT relationship best predicts the measured mass‐specific soil heterotrophic respiration rates in soils distributed globally. These results are robust when considering models of increasing complexity and competing mechanisms driving soil heterotrophic respiration–MAT relationships (e.g., carbon substrate availability). Our findings suggest that a warmer climate selects for microbial communities with higher CUE, as opposed to the often hypothesized reductions in CUE by warming based on soil laboratory assays. Our results help to build the impetus for, and confidence in, including microbial mechanisms in soil biogeochemical models used to forecast changes in global soil carbon stocks in response to warming.  相似文献   

3.
采用根系生物量梯度上土壤呼吸变化趋势线外推法对锡林河流域一个羊草 (Leymuschinensis (Trin .)Tzvel.)群落中根系呼吸占土壤总呼吸的比例进行了估计 ,对生物量各组分 (地上、地下部分 )之间以及它们与土壤呼吸间的相关性进行了分析。结果表明 :在测定年度 (1998年 )整个生长季的不同月份 ,该群落中根系呼吸量占土壤呼吸总量的比例在 14 %~ 39%之间 ,平均为 2 7% ;地上总生物量及根系生物量与土壤呼吸间的相关性较差 ,但地上活生物量与土壤呼吸间存在着显著的乘幂关系。上述结果与国外同类研究结果相比 ,具有很好的一致性。  相似文献   

4.
采用根系生物量梯度上土壤呼吸变化趋势线外推法对锡林河流域一个羊草(Leymus chinensis (Trin.) Tzvel.)群落中根系呼吸占土壤总呼吸的比例进行了估计,对生物量各组分(地上、地下部分)之间以及它们与土壤呼吸间的相关性进行了分析.结果表明:在测定年度(1998年)整个生长季的不同月份,该群落中根系呼吸量占土壤呼吸总量的比例在14%~39%之间,平均为27%;地上总生物量及根系生物量与土壤呼吸间的相关性较差,但地上活生物量与土壤呼吸间存在着显著的乘幂关系.上述结果与国外同类研究结果相比,具有很好的一致性.  相似文献   

5.
Fine root production and turnover play important roles in regulating carbon (C) cycling in terrestrial ecosystems. In order to examine effects of climate change on root production and turnover, a field experiment with increased temperature and precipitation had been conducted in a semiarid temperate steppe in northern China since April 2005. Experimental warming decreased annual root production, mortality, and mean standing crop by 10.3%, 12.1%, 7.0%, respectively, while root turnover was not affected in 2006 and 2007 by the warming. Annual root production and turnover was 5.9% and 10.3% greater in the elevated than ambient precipitation plots. Changes in root production and mortality in response to increased temperature and precipitation could be largely attributed to the changes in gross ecosystem productivity (GEP) and belowground/aboveground C allocation. There were significant interactive effects of warming and increased precipitation on root productivity, mortality, and standing crop. Experimental warming had positive and negative effects on the three root variables (root production, mortality, standing crop) under ambient and increased precipitation, respectively. Increased precipitation stimulated and suppressed the three root variables in the unwarmed and warmed subplots, respectively. The positive dependence of soil respiration and ecosystem respiration upon root productivity and mortality highlights the important role of root dynamics in ecosystem C cycling. The nonadditive effects of increased temperature and precipitation on root productivity, mortality, and standing crop observed in this study are critical for model projections of climate–ecosystem feedbacks. These findings indicate that carbon allocation is a focal point for future research and that results from single factor experiments should be treated with caution because of factor interactions.  相似文献   

6.
7.
Global warming is projected to be greatest in northern regions, where forest fires are also increasing in frequency. Thus, interactions between fire and temperature on soil respiration at high latitudes should be considered in determining feedbacks to climate. We tested the hypothesis that experimental warming will augment soil CO2 flux in a recently burned boreal forest by promoting microbial and root growth, but that this increase will be less apparent in more severely burned areas. We used open‐top chambers to raise temperatures 0.4–0.9°C across two levels of burn severity in a fire scar in Alaskan black spruce forest. After 3 consecutive years of warming, soil respiration was measured through a portable gas exchange system. Abundance of active microbes was determined by using Biolog EcoPlates? for bacteria and ergosterol analysis for fungi. Elevated temperatures increased soil CO2 flux by 20% and reduced root biomass, but had no effect on bacterial or fungal abundance or soil organic matter (SOM) content. Soil respiration, fungal abundance, SOM, and root biomass decreased with increasing burn severity. There were no significant interactions between temperature and burn severity with respect to any measurement. Higher soil respiration rates in the warmed plots may be because of higher metabolic activity of microbes or roots. All together, we found that postfire soils are a greater source of CO2 to the atmosphere under elevated temperatures even in severely burned areas, suggesting that global warming may produce a positive feedback to atmospheric CO2, even in young boreal ecosystems.  相似文献   

8.
通过在华西雨屏区苦竹(Pleioblastus amarus)人工林内建立固定样地、定期监测等方法,研究该人工林生态系统土壤呼吸各组分特征及其温度敏感性.结果表明:2010年2月-2011年1月,苦竹林平均土壤呼吸速率为1.13 μmol·m-2·s-1,仲夏最高,深冬最低;凋落物层、无根土壤和植物根系对苦竹林土壤呼吸的贡献率分别为30.9%、20.8%和48.3%,各呼吸组分的季节动态均与土壤总呼吸类似,并与温度和凋落量等因素相关;苦竹林土壤总呼吸(RST)、凋落物层CO2排放(RSL)、无根土壤CO2排放(RSS)和植物根系呼吸(RSR)的年碳排放量分别为4.27、1.32、0.87和2.08 MgC· hm-2 ·a-1;土壤总呼吸及其各组分与凋落量呈显著正线性相关,与土壤10 cm温度和气温均呈显著正指数相关;基于土壤温度计算的RST、RSL、RSS和RSR的Q10值分别为2.90、2.28、3.09和3.19,凋落物层CO2排放的温度敏感性显著低于总呼吸和其他各组分.  相似文献   

9.
东北地区落叶松人工林的根系呼吸   总被引:18,自引:0,他引:18  
落叶松根系呼吸速率在6~9月期间逐渐升高,8月达到高峰,之后明显下降.幼林根系呼吸速率和根系呼吸占土壤总呼吸的比例均高于成熟林.根系呼吸速率与根生物量呈线性相关,与土温呈指数相关,与土壤含水量无明显相关关系,但温度较高时,土壤湿度的增加能促进根系呼吸.成熟林和幼林根系呼吸的Q10值分别为5.56和4.17.  相似文献   

10.
施肥对落叶松和水曲柳人工林土壤呼吸的影响   总被引:13,自引:0,他引:13       下载免费PDF全文
 以落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)人工林为研究对象,采用动态气室法(LI-6400-09叶室连接到LI-6400便携式CO2/H2O分析系统)对两种林分的土壤呼吸速率进行了观测,探讨了细根生物量、根中氮含量与土壤呼吸速率的关系,以及施肥对细根生物量、根中氮含量和土壤呼吸速率的影响。结果表明:1)施肥导致落叶松和水曲柳林分的活细根生物量降低18.4%和27.4%, 死细根生物量分别降低了34.8%和127.4 %;2)施肥使落叶松和水曲柳林地土壤呼吸速率与对照相比分别减少了34.9%和25.8%;3 )施肥对根中氮含量没有显著影响;4)落叶松和水曲柳林地的土壤呼吸与土壤温度表现出相同的季节变化,两种林分的土壤呼吸速率与地下5和10 cm处的温度表现出明显的指数关系 ,其相关性R2=0.93~0.98。土壤呼吸温度系数Q10的范围在2.45~3.29。 施肥处理对Q10没有产生影响,施肥处理导致细根生物量减少可能是引起林地土壤呼吸速率下降的主要原因。  相似文献   

11.
林木根呼吸及测定方法进展   总被引:33,自引:1,他引:32       下载免费PDF全文
 森林土壤呼吸的近2/3是由林木根呼吸产生的,林木根呼吸对估计森林C吸存及构建森林生态系统碳动态模型有重要意义,是全球碳循环研究的一个重要组成部分。林木根呼吸包括生长呼吸和维持呼吸,不同森林生态系统林木根呼吸对土壤呼吸的贡献大多在40%~60%范围内,林木根呼吸在生长季节较高而休眠季节较低。测定林木根呼吸的主要方法有排除根法、离体根法、同位素法和原位PVC管气室法,前两者相对简单、成本低,常用于森林生态系统中;同位素法可原位测定根呼吸,对土壤干扰较小,但不易操作,且成本高。根呼吸受土壤温度、根直径大小、根组织N浓度、环境CO2浓度、土壤湿度、养分有效性等因素的影响。今后的研究应集中在以下方面:1)探讨和比较不同条件下测定根呼吸组成(生长呼吸、维持呼吸)的最合适方法;2)加大在野外条件下使用有效方法分离根呼吸和根际微生物呼吸的力度;3)对森林生态系统根呼吸动态进行长期的定位研究;4)进一步加强研究不同气候带,不同森林类型林木根呼吸,并将研究尺度从气室扩大到区域或全球水平;5)加强林木根呼吸对全球变化的响应及机制的研究;6)对林木根呼吸进行多学科合作研究将为全球C循环做出新的贡献。  相似文献   

12.
In order to investigate the annual variation of soil respiration and its components in relation to seasonal changes in soil temperature and soil moisture in a Mediterranean mixed oak forest ecosystem, we set up a series of experimental treatments in May 1999 where litter (no litter), roots (no roots, by trenching) or both were excluded from plots of 4 m2. Subsequently, we measured soil respiration, soil temperature and soil moisture in each plot over a year after the forest was coppiced. The treatments did not significantly affect soil temperature or soil moisture measured over 0–10 cm depth. Soil respiration varied markedly during the year with high rates in spring and autumn and low rates in summer, coinciding with summer drought, and in winter, with the lowest temperatures. Very high respiration rates, however, were observed during the summer immediately after rainfall events. The mean annual rate of soil respiration was 2.9 µ mol m?2 s?1, ranging from 1.35 to 7.03 µmol m?2 s?1. Soil respiration was highly correlated with temperature during winter and during spring and autumn whenever volumetric soil water content was above 20%. Below this threshold value, there was no correlation between soil respiration and soil temperature, but soil moisture was a good predictor of soil respiration. A simple empirical model that predicted soil respiration during the year, using both soil temperature and soil moisture accounted for more than 91% of the observed annual variation in soil respiration. All the components of soil respiration followed a similar seasonal trend and were affected by summer drought. The Q10 value for soil respiration was 2.32, which is in agreement with other studies in forest ecosystems. However, we found a Q10 value for root respiration of 2.20, which is lower than recent values reported for forest sites. The fact that the seasonal variation in root growth with temperature in Mediterranean ecosystems differs from that in temperate regions may explain this difference. In temperate regions, increases in size of root populations during the growing season, coinciding with high temperatures, may yield higher apparent Q10 values than in Mediterranean regions where root growth is suppressed by summer drought. The decomposition of organic matter and belowground litter were the major components of soil respiration, accounting for almost 55% of the total soil respiration flux. This proportion is higher than has been reported for mature boreal and temperate forest and is probably the result of a short‐term C loss following recent logging at the site. The relationship proposed for soil respiration with soil temperature and soil moisture is useful for understanding and predicting potential changes in Mediterranean forest ecosystems in response to forest management and climate change.  相似文献   

13.
温度系数(Q10,温度每变化10 ℃,呼吸速率的相对变化)不仅可以用来描述不同森林非同化器官(根系和树干)和土壤对温度升高的敏感性,并由此断定它们在全球变暖进程中的不同表现,而且是其呼吸总量定量估计中必不可少的参数。虽然目前已经进行了大量的研究,但不同研究者结论并不一致,影响我们对问题的整体把握。因此,有必要综合以往文献进行统计分析。该文综合大量文献,评述了林木非同化器官和土壤的Q10值频率分布、不同研究方法对Q10值的可能影响并探讨了它们对温度升高的敏感性。结果表明,不同非同化器官和土壤的Q10值差异较大,但具有相对稳定的分布中心范围。其中,土壤呼吸Q10值中,频率分布最集中的区域是2.0~2.5,占23%,其中超过80%的测定结果在1.0~4.0之间,中位数为2.74。 根系呼吸的Q10值,频率分布最集中的区域2.5~3.0,占33%,而大部分(>80%)的研究结果在1.5~3.0之间,中位数为2.40。树干呼吸的Q10值中,频率分布最集中的区域是1.5~2.0,占42%,而90%以上的测定结果在1.0~3.0之间,中位数为1.91。通过对比,发现不同非同化器官Q10值不同(树干<根系<根系与土壤共同体<去除根系土壤)。其中树干和根系的Q10值显著低于去除根系土壤的Q10值(p<0.05),表明土壤微生物活动对于未来全球变暖的反应要比木质化器官更敏感。此外,常绿植物的根系和树干呼吸的Q10值与落叶树木对应值差异不显著,说明同化器官叶片的着生时间长短对非同化器官Q10的影响不大。不同的CO2分析方法(碱吸收法,红外线测定技术和气相色谱方法)对土壤呼吸Q10值测定结果的影响不显著(p>0.10),根系分离方法(断根测定和壕沟隔断测定)也对根系呼吸的Q10值影响也不显著(p>0.10)。但是,与活体测定相比,离体测定树干呼吸显著提高了其Q10值。总体来看,不同林分相同非同化器官以及不同非同化器官呼吸的Q10值相对稳定但仍具有较大的差异性,研究方法也对结果产生一定影响,在进行呼吸总量的定量估计中应该注意这一点。今后研究的重点是进一步把影响森林非同化器官呼吸的外在因素和内在因素综合考虑于Q10值相关模型中,以便准确定量估计其呼吸总量,而研究难点是深入研究Q10值具有较大变异性的原因(如温度适应性)和内在机理以便更好的表征不同器官和生态系统组分对全球变暖的敏感性。  相似文献   

14.
The effect of stand age on soil respiration and its components was studied in a first rotation Sitka spruce chronosequence composed of 10‐, 15‐, 31‐, and 47‐year‐old stands established on wet mineral gley in central Ireland. For each stand age, three forest stands with similar characteristics of soil type and site preparation were used. There were no significant differences in total soil respiration among sites of the same age, except for the case of a 15‐year‐old stand that had lower soil respiration rates due to its higher productivity. Soil respiration initially decreased with stand age, but levelled out in the older stands. The youngest stands had significantly higher respiration rates than more mature sites. Annual soil respiration rates were modelled by means of temperature‐derived functions. The average Q 10 value obtained treating all the stands together was 3.8. Annual soil respiration rates were 991, 686, 556, and 564 g C m?2 for the 10‐, 15‐, 31‐, and 47‐year‐old stands, respectively. We used the trenching approach to separate soil respiration components. Heterotrophic respiration paralleled soil organic carbon dynamics over the chronosequence, decreasing with stand age to slightly increase in the oldest stand as a result of accumulated aboveground litter and root inputs. Root respiration showed a decreasing trend with stand age, which was explained by a decrease in fine root biomass over the chronosequence, but not by nitrogen concentration of fine roots. The decrease in the relative contribution of autotrophic respiration to total soil CO2 efflux from 59.3% in the youngest stand to 49.7% in the oldest stand was explained by the higher activity of the root system in younger stands. Our results show that stand age should be considered if simple temperature‐based models to predict annual soil respiration in afforestation sites are to be used.  相似文献   

15.
Arctic ecosystems are important in the context of climate change because they are expected to undergo the most rapid temperature increases, and could provide a globally significant release of CO2 to the atmosphere from their extensive bulk soil organic carbon reserves. Understanding the relative contributions of bulk soil organic matter and plant‐associated carbon pools to ecosystem respiration is critical to predicting the response of arctic ecosystem net carbon balance to climate change. In this study, we determined the variation in ecosystem respiration rates from birch forest understory and heath tundra vegetation types in northern Sweden through a full annual cycle. We used a plant biomass removal treatment to differentiate bulk soil organic matter respiration from total ecosystem respiration in each vegetation type. Plant‐associated and bulk soil organic matter carbon pools each contributed significantly to ecosystem respiration during most phases of winter and summer in the two vegetation types. Ecosystem respiration rates through the year did not differ significantly between vegetation types despite substantial differences in biomass pools, soil depth and temperature regime. Most (76–92%) of the intra‐annual variation in ecosystem respiration rates from these two common mesic subarctic ecosystems was explained using a first‐order exponential equation relating respiration to substrate chemical quality and soil temperature. Removal of plants and their current year's litter significantly reduced the sensitivity of ecosystem respiration to intra‐annual variations in soil temperature for both vegetation types, indicating that respiration derived from recent plant carbon fixation was more temperature sensitive than respiration from bulk soil organic matter carbon stores. Accurate assessment of the potential for positive feedbacks from high‐latitude ecosystems to CO2‐induced climate change will require the development of ecosystem‐level physiological models of net carbon exchange that differentiate the responses of major C pools, that account for effects of vegetation type, and that integrate over summer and winter seasons.  相似文献   

16.
Specific root respiration rates typically increase with increasing tissue N concentration. As a result, it is often assumed that external factors inducing greater root N concentration, such as chronic N deposition, will lead to increased respiration rates. However, enhanced N availability also alters root biomass, making the ecosystem‐level consequences on whole‐root‐system respiration uncertain. The objective of this study was to determine the effects of chronic experimental N deposition on root N concentrations, specific respiration rates, and biomass for four northern hardwood forests in Michigan. Three of the six measurement plots at each location have received experimental N deposition (3 g ‐N m?2 yr?1) since 1994. We measured specific root respiration rates and N concentrations of roots from four size classes (<0.5, 0.5–1, 1–2, and 2–10 mm) at three soil depths (0–10, 10–30, and 30–50 cm). Root biomass data for the same size classes and soil depths was used in combination with specific respiration rates to assess the response of whole‐root‐system respiration. Root N and respiration rate were greater for smaller diameter roots and roots at shallow depths. In addition, root N concentrations were significantly greater under chronic N deposition, particularly for larger diameter roots. Specific respiration rates and root biomass were unchanged for all depths and size classes, thus whole‐root‐system respiration was not altered by chronic N deposition. Higher root N concentrations in combination with equivalent specific respiration rates under experimental N deposition resulted in a lower ratio of respiration to tissue N. These results indicate that relationships between root respiration rate and N concentration do not hold if N availability is altered significantly. For these forests, use of the ambient respiration to N relationship would over‐predict actual root system respiration for the chronic N deposition treatment by 50%.  相似文献   

17.
We investigated the occurrence of and mechanisms responsible for acclimation of fine‐root respiration of mature sugar maple (Acer saccharum) after 3+ years of experimental soil warming (+4 to 5 °C) in a factorial combination with soil moisture addition. Potential mechanisms for thermal respiratory acclimation included changes in enzymatic capacity, as indicated by root N concentration; substrate limitation, assessed by examining nonstructural carbohydrates and effects of exogenous sugar additions; and adenylate control, examined as responses of root respiration to a respiratory uncoupling agent. Partial acclimation of fine‐root respiration occurred in response to soil warming, causing specific root respiration to increase to a much lesser degree (14% to 26%) than would be expected for a 4 to 5 °C temperature increase (approximately 55%). Acclimation was greatest when ambient soil temperature was warmer or soil moisture availability was low. We found no evidence that enzyme or substrate limitation caused acclimation but did find evidence supporting adenylate control. The uncoupling agent caused a 1.4 times greater stimulation of respiration in roots from warmed soil. Sugar maple fine‐root respiration in warmed soil was at least partially constrained by adenylate use, helping constrain respiration to that needed to support work being performed by the roots.  相似文献   

18.
Root respiration has been shown to increase with temperature, but less is known about how this relationship is affected by the fungal partner in mycorrhizal root systems. In order to test respiratory temperature dependence, in particular Q (10) of mycorrhizal and non-mycorrhizal root systems, seedlings of PICEA ABIES (L.) Karst. (Norway spruce) were inoculated with the ectomycorrhizal fungus PILODERMA CROCEUM (Eriksson and Hjortstam, SR430; synonym: PILODERMA FALLAX: [Libert] Stalpers) and planted in soil respiration cuvettes (mycocosms). Temperature dependence of hyphal respiration in sterile cultures was determined and compared with respiration of mycorrhizal roots. Respiration rates of mycorrhizal and non-mycorrhizal root systems as well as sterile cultures were sensitive to temperature. Q (10) of mycorrhizal root systems of 3.0 +/- 0.1 was significantly higher than that of non-mycorrhizal systems (2.5 +/- 0.2). Q (10) of P. CROCEUM in sterile cultures (older than 2 months) was similar to that of mycorrhizal root systems, suggesting that mycorrhizae may have a large influence on the temperature sensitivity of roots in spite of their small biomass. Our results stress the importance of considering mycorrhization when modeling the temperature sensitivity of spruce roots.  相似文献   

19.
Stoyan  Helmut  De-Polli  Helvecio  Böhm  Sven  Robertson  G. Philip  Paul  Eldor A. 《Plant and Soil》2000,222(1-2):203-214
Geostatistical techniques were used to quantify the scale and degree of soil heterogeneity in 2 m2 plots around 9-year-old poplar trees and within a wheat field. Samples were taken during two years, on an unaligned grid, for analysis of soil respiration, C and N content, available P, gravimetric moisture, pH, nitrification potential, and root biomass. Kriged maps of soil respiration, moisture, and C content showed strong spatial structure associated with poplar trees but not with wheat rows. All soil properties showed higher autocorrelation in June than in April. Isopleth patchiness for all variates was less in June. This was associated with lower respiration rates due to lower litter decomposition. From the degree and scale of heterogeneity seen in this study, we conclude that the main causes of soil heterogeneity at this scale (2 m2) are likely to be found at micro scales controlled in part by plant root and plant residue patterns. These must be understood in the evaluation of ecosystem processes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on the carbon requirement for root respiration of plants to predict effects of elevated [CO2] on the carbon budget of natural and managed systems.There is insufficient information to support the contentention that an increase in the concentration of CO2 in the atmosphere will enhance the CO2 concentration in the soil to an extent that is likely to affect root respiration. Moreover, there is no convincing evidence for a direct effect of elevated atmospheric [CO2] on the rate of root respiration per unit root mass or the fraction of carbon required for root respiration. However, there are likely to be indirect effects of elevated [CO2] on the carbon requirement of plants in natural systems.Firstly, it is very likely that the carbon requirement of root respiration relative to that fixed in photosynthesis will increase when elevated [CO2] induces a decrease in nutrient status of the plants. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, these are in fact indirect effects. The increase in root weight ratio is due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. This will decrease the specific rate of root respiration, but increase the carbon requirement as a fraction of the carbon fixed in photosynthesis. It is likely that these effects will be minor in systems where the nutrient supply is very high, e.g. in many managed arable systems, and increase with decreasing soil fertility, i.e. in many natural systems.Secondly, a decrease in rainfall in some parts of the world may cause a shortage in water supply which favours the carbon partitioning to roots. Water stress is likely to reduce rates of root respiration per unit root mass, but enhance the fraction of total assimilates required for root respiration, due to greater allocation of biomass to roots.Increased temperatures are unlikely to affect the specific rate of root respiration in all species. Broadly generalized, the effect of temperature on biomass allocation is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. The root respiration of some species acclimates to growth temperature, so that the effect of global temperature rise is entirely accounted for by the effect of temperature on biomass allocation. The specific rate of root respiration of other species will increase with global warming. In response to global warming the carbon requirement of roots is likely to decrease in temperate regions, when temperatures are suboptimal for the roots' capacity to acquire water. Here global warming will induce a smaller biomass allocation to the roots. Conversely, the carbon requirements are more likely to increase in mediterranean environments, where temperatures are often supraoptimal and a rise in temperature will induce greater allocation of biomass to the roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号