首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The guanylate cyclase/receptor family of proteins   总被引:5,自引:0,他引:5  
Guanylate cyclase, which catalyzes the formation of cGMP from GTP, exists in both the soluble and particulate fractions of cells. At least two different cellular compartments for the particulate enzyme exist: the plasma membrane and cytoskeleton. The enzyme form found in the soluble fraction is a heterodimer that can be regulated by free radicals and nitrovasodilators, whereas the membrane form exists as a single-chain polypeptide that can be regulated by various peptides. These peptides include resact and speract obtained from eggs and atrial natriuretic peptides (ANP). The species of guanylate cyclase present in cytoskeletal fractions resists solubilization with non-ionic detergents; its structural properties are not yet known. cDNAs encoding the membrane form of guanylate cyclase have been isolated from different tissues and species, and in all cases the DNA sequences predict a protein containing a single transmembrane domain. The carboxyl (intracellular) domain is highly conserved from sea urchins through mammals, whereas the extracellular domain (amino terminus) varies considerably. The predicted amino acid sequences demonstrate that the membrane form of guanylate cyclase is a member of a diverse and complex family of proteins that includes a low molecular weight ANP receptor, protein kinases, and the cytoplasmic form of guanylate cyclase. cDNA encoding a membrane form of the enzyme from mammalian tissues has been expressed in cultured cells, and the expressed guanylate cyclase specifically binds ANP and is activated by ANP. The membrane form of guanylate cyclase, then, serves as a cell surface receptor, representing the first recognized protein to directly catalyze formation of a low molecular weight second messenger in response to ligand binding.  相似文献   

2.
Guanylate and adenylate cyclase activities were estimated in homogenates of the insect Ceratitis capitata at various stages of development. Guanylate cyclase activity was notably higher than adenylate cyclase activity in agreement with both cyclic nucleotide ratio and cyclic nucleotide-dependent protein kinase ratio reported in arthropod tissues. Variations in both enzyme activities during development were coincident in the adult development, while in other biological stages, as the larval development and puparium formation, the most significant changes affected to the activity of guanylate cyclase.  相似文献   

3.
The plasma membrane forms of guanylyl cyclase constitute a diverse family of cell surface receptors. An mRNA for the enzyme/receptor was first cloned from sea urchin testis after cross-linking studies suggested that guanylyl cyclase was a sperm receptor for egg peptides. The enzyme/receptor was shown to contain a single putative transmembrane domain, a large extracellular region that presumably binds peptide ligands, and an intracellular region that contains a protein kinase-like and a cyclase catalytic domain. The sea urchin cDNA was then used to isolate positive-hybridizing clones from mammalian tissues. At least two forms recognize natriuretic peptides and one form recognizes the heat-stable enterotoxins. In the case of the enterotoxin receptor, it remains to be shown whether or not an endogenous ligand exists that regulates enzyme activity. The discovery of this cell surface receptor family presents a new paradigm for second messenger signalling in that a low-molecular weight second messenger (cyclic GMP) is produced by the same protein that binds the extracellular ligand.  相似文献   

4.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is subject to regulation by a variety of agents. Previous workers have found that cyclic AMP-dependent protein kinase and calcium-stimulated protein kinases activate tyrosine hydroxylase. We wanted to determine whether cyclic GMP might also be involved in the regulation of tyrosine hydroxylase activity. We found that treatment of rat PC12 cells with sodium nitroprusside (an activator of guanylate cyclase), 8-bromocyclic GMP, forskolin (an activator of adenylate cyclase), and 8-bromocyclic AMP all produced an increase in tyrosine hydroxylase activity measured in vitro or an increased conversion of [14C]tyrosine to labeled catecholamine in situ. Sodium nitroprusside also increased the relative synthesis of cyclic GMP in these cells. In the presence of MgATP, both cyclic GMP and cyclic AMP increased tyrosine hydroxylase activity in PC12 cell extracts. The heat-stable cyclic AMP-dependent protein kinase inhibitor failed to attenuate the activation produced in the presence of cyclic GMP. It eliminated the activation produced in the presence of cyclic AMP. Sodium nitroprusside also increased tyrosine hydroxylase activity in vitro in rat corpus striatal synaptosomes and bovine adrenal chromaffin cells. In all cases, the cyclic AMP-dependent activation of tyrosine hydroxylase was greater than that of the cyclic GMP-dependent second messenger system. These results indicate that both cyclic GMP and cyclic AMP and their cognate protein kinases activate tyrosine hydroxylase activity in PC12 cells.  相似文献   

5.
Guanylate cyclase from the rat renal medulla is found in both the soluble and particulate fractions of the cell. Sucrose density gradient centrifugation and gel filtration in H2O and D2O indicate that the enzyme from the soluble cell fraction has the following properties: S20w, 6.3 S; Stokes radius, 54 A; partial specific volume, 0.75 ml/g; mass, 154,000 daltons; f/fo, 1.4; axial ratio (prolate ellipsoid), 7. The addition of 0.1% Lubrol PX to this fraction activates the enzyme and changes thartial specific volume, 0.74 ml/g; mass, 148,000 daltons; f/fo, 1.6; axial ratio (prolate ellipsoid), 11. These findings show that detergent activates the enzyme by changing its conformation and not simply by dispersing nonsedimentable membrane fragments. The dimensions of this guanylate cyclase in detergent are very similar to those of detergent-solubilized adenylate cyclase from the same tissue (Neer, E.J. (1974) J. Biol. Chem. 249, 6527-6531). Guanylate cyclase can be solubilized from the particulate cell fraction with 1% Lubrol PX but has properties quite different from those of the guanylate cyclase in the soluble cell fraction. It is a large aggregate with a value of S20,w of about 10 S, Stokes radius of 65 A, and a mass of approximately 300,000 daltons. However, the peaks of guanylate cyclase activity in column effluents and sucrose density gradients are very broad indicating a mixture of different size proteins. The conditions used to solubilize guanylate cyclase from the particulate fraction also solubilize adenylate cyclase, and the two activities can be separated on the same sucrose gradient. Studies of this sort require a rapid, accurate guanylate cyclase assay. We have developed an assay for guanylate cyclase activity which meets these criteria by adapting the competitive protein binding assay for guanosine cyclic 3':5' monophosphate originally described by Murad et al. (Murad, F., Manganiello, V., and Vaughn, M. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 736-739).  相似文献   

6.
Adenylate, guanylate cyclase and protein kinases in a fibrous sarcoma originating from rat prostate have been studied. A decrease in levels of adenosine 3', 5'-monophosphate (cyclic AMP) and adenylate cyclase activities and an increase in levels of guanosine 3',5'-monophosphate (cyclic GMP) and guanylate cyclase activities were observed in the tumor tissue when compared with the normal prostatic tissue of rats. Protein kinases from the tumor and the prostate were both responsive to exogenous cyclic AMP, with an apparent Ka of 0.08 muM in the tumor and of 0.11 muM in the prostate. It is of interest that the protein kinases from the tumor responded to cyclic AMP to the same extent as was observed in the enzyme preparation from the prostate. The protein kinase from the tumor was more sensitive to cyclic GMP than that from the prostate, showing an apparent Ka of 0.88 muM in the tumor and of 4.85 muM in the prostate. This tumor has been characterized with an increase in guanylate cyclase activities with a subsequent rise in cellular cyclic GMP and an increased sensitivity of the protein kinase to cyclic GMP.  相似文献   

7.
Following consumption of the food supply, cells of the cellular slime mould Dictyostelium discoideum aggregate and form a multicellular organism. The mechanism for cell aggregation is chemotaxis. The chemotactic signal in D. discoideum is released periodically from aggregation centers and propagated from cell to cell. cAMP mediates cell aggregation by acting as chemotactic attractant and as propagator of the signal. cAMP signals are measured by cell-surface receptors. Recent evidence indicates a role for cGMP during cAMP-mediated cell aggregation in D. discoideum .
During cell differentiation to aggregation competence, cAMP binding sites appear at the cell surface, and the activity of the enzymes adenylate cyclase and phosphodiesterase increases several-fold. In the present work we investigate the synthesis of cGMP in D. discoideum . Conditions for the assay of guanylate cyclase in cell homogenates are described. Guanylate cyclase activity was followed during cell differentiation to aggregation competence and found to increase fourfold. These results indicate that cGMP is involved in cell differentiation of D. discoideum . In contrast to adenylate cyclase, which is activated by cAMP, guanylate cyclase was under our conditions activated neither by cAMP, nor by folic acid.  相似文献   

8.
Human neutrophils were incubated with granulocyte-macrophage (GM)-CSF and examined for changes in second messenger systems. Twofold increases in cGMP but not cAMP were measured after 5 to 20 min with 100 U/ml GM-CSF. Guanylate cyclase activities in membrane and cytosol fractions were increased to the same extent whether measured in the presence of Mg2+ or Mn2+, or in the cytosol with Mg2+ + N-methyl-N'-nitro-N-nitroso-guanidine. Kinetic studies of the cytosol enzyme showed no changes in the Km values for Mg2+ and Mn2+dependent guanylate cyclase activities (0.91 and 0.022 mM, respectively), whereas Vm values were increased after treating intact cells with GM-CSF. Two peaks of guanylate cyclase activity were observed, one at 10 and another at 60 min after adding 100 U/ml GM-CSF, whereas only one peak at 5 min occurred with 1 U/ml. Adenylate cyclase activity was reduced by nearly 50% after adding 100 U/ml GM-CSF for 10 to 30 min. These effects were also seen in the presence of several hormonal and nonhormonal adenylate cyclase stimulators. In contrast, small increases in adenylate cyclase activity occurred after adding 1 U/ml GM-CSF. In experiments to examine the pathway of guanylate cyclase activation by GM-CSF, we observed no changes in inositol phosphates, intracellular calcium ion, or cytosolic protein kinase C. The augmentation of chemotactic peptide-induced superoxide production by GM-CSF concentrations, may be related to the effects of the higher levels of GM-CSF to stimulate late increases in guanylate cyclase or decreases in adenylate cyclase.  相似文献   

9.
Guanylate cyclase has been purified 60-fold from cell extracts of the bacterium Caulobacter crescentus. It has a molecular weight of approximately 140,000 and is dependent upon Mn2+ for activity. Enzymic activity is unaffected by cyclic AMP, cyclic GMP or N6,O2′-dibutyryl cyclic AMP but is stimulated by N2,O2′-dibutyryl cyclic GMP. The partially purified preparation of guanylate cyclase does not contain detectable adenylate cyclase activity.  相似文献   

10.
This review details the biochemical events that follow IgE dimerization by antigen and cross-linking of receptors and are linked with the early rise in cyclic AMP. That the monophasic rise in cyclic AMP at 15 s is essential to the degranulation process is evident by pharmacological manipulation of adenylate cyclase, using specific activators and inhibitors to achieve potentiation and inhibition of immunologic release, respectively. Although only a small percentage of membrane adenylate cyclase is transmembrane linked to IgE-Fc perturbation, its product, cyclic AMP, is elevated during activation and is responsible for the activation of two protein kinase isoenzymes at 30-60 s. This sequence appears to be essential for secretion to occur, as evidenced by dose-related inhibition of both beta-hexosaminidase release and protein kinase activation by adenylate cyclase inhibitors. Competitive activation of cyclic AMP-dependent protein kinase activity by a phosphodiesterase inhibitor leads to inhibition of mediator release by diverting an essential enzyme or recruiting an inhibitory sequence. The precise functional role of the mast cell cyclic AMP-dependent protein kinases has not yet been identified, but there is much evidence in other cell types that protein phosphorylation is an essential accompaniment to cellular regulation. Although other apparently essential biochemical steps are noted, such as uncovering a serine esterase, methylation of membrane phospholipid, and increased Ca2+ influx, only a portion of the activation-secretion response is presented here as a sequence, namely, the IgE-Fc receptor-initiated, transmembrane-coupled activation of adenylate cyclase and the subsequent cytoplasmic cyclic AMP-dependent activation of types I and II protein kinases.  相似文献   

11.
Guanylate cyclase, which catalyzes the synthesis of guanosine 3',5'-monophosphate, has been assayed in several strains of Escherichia coli. They include wild-type cells and mutants defective in adenylate cyclase, which is responsible for the synthesis of adenosine 3',5'-phosphate. Our results demonstrate that adenylate cyclase and guanylate cyclase are two different enzymes in E. coli and suggest that the gene that encodes adenylate cyclase also plays a regulatory role in the synthesis of guanylate cyclase.  相似文献   

12.
A prolonged effect of ACTH on the state of adenylate and guanylate cyclase systems in the adrenal glands of experimental animals was investigated. It was found that in guinea pigs injected with ACTH (4 units daily for 1-50 days) the weight of adrenal glands and the DNA content in these organs increased 2.0-2.5-fold by the end of experiment; the increase in both values was stepwise. The corticosteroid level in the blood varied throughout the experiment: the changes in the DNA content in adrenals and in the corticosteroid content in the blood were oppositely directed. This was accompanied by cyclic changes in the basal and stimulated activities of adenylate and guanylate cyclases and proteinases in the adrenal glands occurring with a periodicity of 6-15 days. The activity peaks for cyclases and protein kinases preceded the rise in the DNA content in the adrenals. A clearcut correlation between the changes in the enzyme activity and the hormone dose was observed. The changes in the basal and stimulated activities of guanylate cyclase seem to be due to the control of cAMP level in the cell (stimulation of cGMP-dependent cAMP phosphodiesterase). Apparently, the periodic changes in the activity of cAMP-dependent protein kinases in the cytoplasmic and nuclear fractions and a relatively high activation of nuclear protein kinases (by 30-60%) in comparison of cytoplasmic ones (8-10%) are related to stimulation of DNA synthesis. It is concluded that the changes in the activity of cyclases and protein kinases play a role in the mechanism of proliferative effect of ACTH.  相似文献   

13.
Guanylate kinase catalyzes the phosphorylation of either GMP to GDP or dGMP to dGDP and is an important enzyme in nucleotide metabolic pathways. Because of its essential intracellular role, guanylate kinase is a target for a number of cancer chemotherapeutic agents such as 6-thioguanine and 8-azaguanine and is involved in antiviral drug activation. Guanylate kinase shares a similarity in function and structure to other nucleoside monophosphate kinases especially with that of the well-studied adenylate kinase. Amino acid substitutions were made within the GMP binding site of mouse guanylate kinase to alter the polarity of the side chains that interact with GMP as a means of evaluating the role that these residues play on substrate interaction. One of these mutants, E72Q/D103N, was shown by functional complementation and enzyme assays to embody both guanylate kinase activity and a novel adenylate kinase activity.  相似文献   

14.
Cyclic AMP and cyclic GMP content and activities of cyclic nucleotide metabolic enzymes were determined in intima and media of atherosclerotic and unaffected human aorta obtained shortly after death due to myocardial infarction. Cyclic AMP content in fatty streaks and atherosclerotic plaques was lower by three- and five-fold, respectively, as compared with uninvolved intima. Cyclic GMP level in atherosclerotic lesions was estimated to be three-fold higher than in grossly normal area. Basal activity of adenylate cyclase in fatty streaks and plaques was two- to six-fold lower than in unaffected intima. Besides, the ability of adenylate cyclase to be stimulated by the stable analogue of prostacyclin, carbacyclin, was suppressed in plaques. Guanylate cyclase activity in fatty streaks was 1.5- to three-fold higher than in normal tissue. The thiol-reducing agent, dithiothreitol, decreased the enzyme activity to normal level, suggesting the oxidative nature of guanylate cyclase activation in the lesion zone. There were no significant changes in cyclic AMP phosphodiestease activity in the regions of the atherosclerotic lesion. Cyclic GMP phosphodiesterase activity in atherosclerotic plaques was two-fold lower than in the intima of unaffected areas. We did not find differences in the content of cyclic nucleotides or related enzyme activities in the media of uninvolved areas of human aorta nor in the media underlying atherosclerotic lesions. Our findings suggest that development of human atherosclerotic lesions is accompanied by dramatic changes in the cyclic nucleotide metabolism featuring gradual hormonal receptor uncoupling from adenylate cyclase, activation of guanylate cyclase in fatty streaks and inhibition of cyclic GMP phosphodiesterase in plaques.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) was purified 2250-fold from the synaptosomal soluble fraction of rat brain. The specific activity of the purified enzyme reached 41 nmol cyclic GMP formed per min per mg protein at 37 degrees C. In the purified preparation, GTPase activity was not detected and cyclic GMP phosphodiesterase activity was less than 4% of guanylate cyclase activity. The molecular weight was approx. 480 000. Lubrol PX, hydroxylamine, or NaN3 activated the guanylate cyclase in crude preparations, but had no effect on the purified enzyme. In contrast, NaN3 plus catalase, N-methyl-N'-nitro-N-nitrosoguanidine or sodium nitroprusside activated the purified enzyme. The purified enzyme required Mn2+ for its activity; the maximum activity was observed at 3-5 mM. Cyclic GMP activated guanylate cyclase activity 1.4-fold at 2 mM, whereas inorganic pyrophosphate inhibited it by about 50% at 0.2 mM. Guanylyl-(beta,gamma-methylene)-diphosphonate and guanylyl-imidodiphosphate, analogues of GTP, served as substrates of guanylate cyclase in the purified enzyme preparation. NaN3 plus catalase or N-methyl-N'-nitro-N-nitrosoguanidine also remarkably activated guanylate cyclase activity when the analogues of GTP were used as substrates.  相似文献   

16.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single chain transmembrane-spanning protein, containing both ANF binding and catalytic activities. ANF binding to the extracellular receptor domain activates the cytosolic catalytic domain, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening transduction step, which is regulated by the binding of ATP to the cyclase. The partial structural motif of the ATP binding domain of the cyclase has been elucidated and has been termed ATP Regulatory Module (ARM). The crystal structures of the tyrosine kinase domains of the human insulin receptor and haematopoietic cell kinase were used to derive a homology-based model of the ARM domain of ANF-RGC. The model identifies the precise configuration of the ATP-binding pocket in the ARM domain, accurately represents its ATP-dependent features, and shows that the ATP-dependent transduction phenomenon is a two-step mechanism. In the first step, ATP binds to its pocket and changes its configuration; in the second step, via an unknown protein kinase, it phosphorylates the cyclase for its full activation.  相似文献   

17.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single chain transmembrane-spanning protein, containing both ANF binding and catalytic activities. ANF binding to the extracellular receptor domain activates the cytosolic catalytic domain, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening transduction step, which is regulated by the binding of ATP to the cyclase. The partial structural motif of the ATP binding domain of the cyclase has been elucidated and has been termed ATP Regulatory Module (ARM). The crystal structures of the tyrosine kinase domains of the human insulin receptor and haematopoietic cell kinase were used to derive a homology-based model of the ARM domain of ANF-RGC. The model identifies the precise configuration of the ATP-binding pocket in the ARM domain, accurately represents its ATP-dependent features, and shows that the ATP-dependent transduction phenomenon is a two-step mechanism. In the first step, ATP binds to its pocket and changes its configuration; in the second step, via an unknown protein kinase, it phosphorylates the cyclase for its full activation.  相似文献   

18.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single chain transmembrane-spanning protein, containing both ANF binding and catalytic activities. ANF binding to the extracellular receptor domain activates the cytosolic catalytic domain, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening transduction step, which is regulated by the binding of ATP to the cyclase. The partial structural motif of the ATP binding domain of the cyclase has been elucidated and has been termed ATP Regulatory Module (ARM). The crystal structures of the tyrosine kinase domains of the human insulin receptor and haematopoietic cell kinase were used to derive a homology-based model of the ARM domain of ANF-RGC. The model identifies the precise configuration of the ATP-binding pocket in the ARM domain, accurately represents its ATP-dependent features, and shows that the ATP-dependent transduction phenomenon is a two-step mechanism. In the first step, ATP binds to its pocket and changes its configuration; in the second step, via an unknown protein kinase, it phosphorylates the cyclase for its full activation.  相似文献   

19.
Guanylate cyclase has been purified from extracts of Escherichia coli. After a 1000-fold purification, the enzyme contains only minor contaminants as judged by disc gel electrophoresis. The Km for GTP is approximately 7 times 10(-5) M and the optimal pH is 8.0. More activity is observed with Mn2+ than with Mg2+, and maximal activity is observed at 0.14 mM Mn2+ and 1.4 mM Mg2+. Based on its behavior on Sephadex G-100, the molecular weight of E. coli guanylate cyclase is about 30,000. Disc gel electrophoretic analysis indicates that the enzyme consists of a single polypeptide chain. Guanylate cyclase does not form 3':5'-AMP from ATP, and therefore, is distinct from adenylate cyclase.  相似文献   

20.
Purification and properties of the phosphorylated form of guanylate cyclase   总被引:4,自引:0,他引:4  
Guanylate cyclase is dephosphorylated in response to the interaction of egg peptides with a spermatozoan surface receptor (Suzuki, N., Shimomura, H., Radany, E. W., Ramarao, C. S., Ward, G. E., Bentley, J. K., and Garbers, D. L. (1984) J. Biol. Chem. 259, 14874-14879). Here, the phosphorylated form of guanylate cyclase was purified to apparent homogeneity from detergent-solubilized spermatozoan membranes by the use of GTP-agarose, DEAE-Sephacel, and concanavalin A-Sepharose chromatography. To prevent dephosphorylation of the enzyme during purification, glycerol (35%) was required in all buffers. Following purification, a single protein-staining band of Mr 160,000 was obtained on sodium dodecyl sulfate-polyacrylamide gels. The final specific activity of the purified enzyme was 83 mumol of cyclic GMP formed/min/mg of protein at 30 degrees C, an activity 5-fold higher than that observed with the purified, dephosphorylated form of guanylate cyclase. A preparation containing protein phosphatase from spermatozoa, or highly purified alkaline phosphatase (from Escherichia coli), catalyzed the dephosphorylation of the enzyme; this resulted in a subsequent decrease in guanylate cyclase activity and a shift in the Mr from 160,000 to 150,000. The phosphate content of the high Mr form of the enzyme was 14.6 mol/mol protein whereas the phosphate content of the low Mr form was 1.6 mol/mol protein. All phosphate was localized on serine residues. The Mr 160,000 form of guanylate cyclase demonstrated positive cooperative kinetics with respect to MnGTP while the Mr 150,000 form displayed linear, Michaelis-Menten type kinetics. The phosphorylation state of the membrane form of guanylate cyclase, therefore, appears to dictate not only the absolute activity of the enzyme but also the degree of cooperative interaction between catalytic or GTP-binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号