首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glaucoma afflicts millions of people worldwide and is a major cause of blindness. The risk to develop glaucoma is enhanced by increases in IOP, which result from deranged flow of aqueous humor. Aqueous humor is a fluid located in the front of the eye that gives the eye its buoyancy and supplies nutrients to other eye tissues. Aqueous humor is secreted by a tissue called ciliary processes and exits the eye via two tissues; the trabecular meshwork (TM) and Schlemm's canal. Because the spaces through which the fluid flows get smaller as the TM joins the area of the Schlemm's canal, there is resistance to aqueous humor outflow and this resistance creates IOP. There is a correlation between changes in TM and Schlemm's canal cell volume and rates of aqueous humor outflow; agents that decrease TM and Schlemm's canal cell volume, increase the rate of aqueous humor outflow, thus decreasing IOP. IOP is regulated by guanylate cyclase activators as shown in humans, rabbits and monkeys. There are two distinct groups of guanylate cyclases, membrane guanylate cyclase and soluble guanylate cyclase (sGC); activation of both have been shown to decrease IOP. Members of the membrane guanylate cyclase family of receptors bind to peptide ligands, while the sGC responds to gases (such as NO and CO(2)) and compounds (such as YC1, [3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole), a benzyl indazole derivative, and BAY-58-2667); activation of either results in formation of cyclic GMP (cGMP) and activation of protein kinase G (PKG) and subsequent phosphorylation of target proteins, including the high conductance calcium activated potassium channel (BKca channel). While activators of both membrane guanylate cyclase and sGC have the ability to lower IOP, the IOP lowering effects of sGC are noteworthy because sGC activators can be topically applied to the eye to achieve an effect. We have demonstrated that activators of sGC increase the rate at which aqueous humor exits the eye in a time course that correlates with the time course for sGC-induced decreases in TM and Schlemm's canal cell volume. Additionally, sGC-induced decrease in cell volume is accompanied by both K(+) and Cl(-) efflux induced by activation of K(+) and Cl(-) channels, including the BKca channel and/or K(+)Cl(-) symport. This suggests that parallel K(+)Cl(-) efflux, and resultant H(2)O efflux result in decreases in cell volume. These observations suggest a functional role for sGC activators, and suggest that the sGC/cGMP/PKG systems are potential therapeutic targets in the treatment of glaucoma.  相似文献   

2.
3.
Human blood platelets were disrupted by ultrasonication, and the guanylate cyclase activity was determined in the 105,000 g supernatant. The guanylate cyclase preparation obtained in the absence of dithiothreitol (DTT) was characterized by a nonlinear dynamics of cGMP synthesis during incubation at 37 degrees C. The use of 0.2 mM DTT during platelet ultrasonication stabilized the guanylate cyclase reaction and did not influence the enzyme activity. With a rise in DTT concentration up to 2 mM the guanylate cyclase activity diminished. Sodium nitroprusside stimulated the enzyme; this effect was enhanced in the presence of DTT. The maximum guanylate cyclase activity was revealed at 4 mM Mn2+ or Mg2+ and with 1 mM GTP. In the presence of Mn2+ the enzyme activity was higher than with Mg2+. The apparent Km values for GTP in the presence of 4 mM Mn2+ and Mg2+ was 30 and 200 microM, respectively. At GTP/cation ratio of 1:4 the Km values for Mn2+ and Mg2+ were nearly the same (249 and 208 microM, respectively). It was assumed that besides being involved in the formation of the GTP-substrate complex, Mn2+ exerts a strong influence on guanylate cyclase by oxidizing the SH-groups of the enzyme.  相似文献   

4.
Hemin and sodium nitroprusside, which strongly activate purified rat brain guanylate cyclase in vitro, were also found to stimulate glioma C6 and neuroblastoma M1 and N1E-115 cells to divide in serum-free medium. Hemin and sodium nitroprusside each stimulate C6 cell growth to a comparable extent. Sodium nitroprusside was less potent than hemin for inducing growth of neuroblastoma cells. Moreover, both agents when added together caused a synergic cell growth enhancement which is comparable to the synergism observed in their guanylate cyclase stimulation in vitro. These results suggest that activation of guanylate cyclase may play a role in the proliferative response to these compounds.  相似文献   

5.
Guanylate cyclase, which catalyzes the synthesis of guanosine 3',5'-monophosphate, has been assayed in several strains of Escherichia coli. They include wild-type cells and mutants defective in adenylate cyclase, which is responsible for the synthesis of adenosine 3',5'-phosphate. Our results demonstrate that adenylate cyclase and guanylate cyclase are two different enzymes in E. coli and suggest that the gene that encodes adenylate cyclase also plays a regulatory role in the synthesis of guanylate cyclase.  相似文献   

6.
7.
Dictyostelium discoideum cells respond to chemoattractants by transient activation of guanylate cyclase. Cyclic GMP is a second messenger that transduces the chemotactic signal. We used an electropermeabilized cell system to investigate the regulation of guanylate cyclase. Enzyme activity in permeabilized cells was dependent on the presence of a nonhydrolysable GTP analogue (e.g., GTPγS), which could not be replaced by GTP, GDP, or GMP. After the initiation of the guanylate cyclase reaction in permeabilized cells only a short burst of activity is observed, because the enzyme is inactivated with a t1.2 of about 15 s. We show that inactivation is not due to lack of substrate, resealing of the pores in the cell membrane, product inhibition by cGMP, or intrinsic instability of the enzyme. Physiological concentrations of Ca2+ ions inhibited the enzyme (half-maximal effect at 0.3 μM), whereas InsP3 had no effect. Once inactivated, the enzyme could only be reactivated after homogenization of the permeabilized cells and removal of the soluble cell fraction. This suggests that a soluble factor is involved in an autonomous process that inactivates guanylate cyclase and is triggered only after the enzyme is activated. The initial rate of guanylate cyclase activity in permeabilized cells is similar to that in intact, chemotactically activated cells. Moreover, the rate of inactivation of the enzyme in permeabilized cells and that due to adaptation in vivo are about equal. This suggests that the activation and inactivation of guanylate cyclase observed in this permeabilized cell system is related to that of chemotactic activation and adaptation in intact cells. © 1996 Wiley-Liss, Inc.  相似文献   

8.
9.
D Fleischman  M Denisevich 《Biochemistry》1979,18(23):5060-5066
The guanylate cyclase activity of axoneme--basal apparatus complexes isolated from bovine retinal rods has been investigated. The Mg2+ and Mn2+ complexes of GTP4- serve as substrates. Binding of an additional mole of Mg2+ or Mn2+ per mole of enzyme is required. Among cations which are ineffective are Ca2+, Ni2+, Fe2+, Fe3+, Zn2+, and Co2+. The kinetics are consistent with a mechanism in which binding of Mg2+ or Mn2+ to the enzyme must precede binding of MgGTP or MnGTP. The apparent dissociation constants of the Mg--enzyme complex and the Mn--enzyme complex are 9.5 x 10(-4) and 1.1 x 10(-4) M, respectively. The apparent dissociation constants for binding of MgGTP and MnGTP to the complex of the enzyme with the same metal are 7.9 x 10(-4) and 1.4 x 10(-4) M, respectively. The cyclase activity is maximal and independent of pH between pH 7 and 9. KCl and NaCl are stimulatory, especially at suboptimal concentrations of Mg2+ or Mn2+. Ca2+ and high concentrations of Mg2+ and Mn2+ are inhibitory. Ca2+ inhibition appears to require the binding of 2 mol of Ca2+ per mol of enzyme. The dissociation constant of the Ca2--enzyme complex is estimated to be 1.4 x 10(-6) M2. The axoneme--basal apparatus preparations contain adenylate cyclase activity whose magnitude is 1--10% that of the guanylate cyclase activity.  相似文献   

10.
A guanylate cyclase was identified in cilia from rat and pig olfactory epithelia. Enzyme activities were 200-250 and 90-100 pmol/min.mg-1, respectively. Activity required the presence of non-ionic detergents, e.g., 0.1% Lubrol PX. MnGTP, not MgGTP was used as a substrate. Furthermore, 0.9 mM free Mn2+ was necessary for optimal activity indicating a regulatory site for a divalent cation. The guanylate cyclase displayed sigmoidal Michaelis-Menten kinetics suggesting cooperativity between MnGTP and enzyme. S0.5 was 160 microM MnGTP. The Hill coefficient of 1.7 indicates that more than one class of substrate-binding sites interact in a positive cooperative manner. ATP inhibited the enzyme and linearized plots of substrate kinetics with MnGTP. SH-Blocking agents reversibly inhibited enzyme activity. Sodium azide and nitroprusside were without effect as were several odorants. A guanylate cyclase activity in cilia from tracheal tissue had properties similar to the olfactory enzyme.  相似文献   

11.
Guanylate cyclase has been purified from extracts of Escherichia coli. After a 1000-fold purification, the enzyme contains only minor contaminants as judged by disc gel electrophoresis. The Km for GTP is approximately 7 times 10(-5) M and the optimal pH is 8.0. More activity is observed with Mn2+ than with Mg2+, and maximal activity is observed at 0.14 mM Mn2+ and 1.4 mM Mg2+. Based on its behavior on Sephadex G-100, the molecular weight of E. coli guanylate cyclase is about 30,000. Disc gel electrophoretic analysis indicates that the enzyme consists of a single polypeptide chain. Guanylate cyclase does not form 3':5'-AMP from ATP, and therefore, is distinct from adenylate cyclase.  相似文献   

12.
Guanylate cyclase (E.C. 4.6.1.2.) was investigated in the accessory reproductive gland of the male house cricket, Acheta domesticus, which is known to accumulate exceptionally high levels of guanosine 3′,5′-cyclic monophosphate (cyclic GMP). Accessory gland guanylate cyclase activity was linear with time for at least one hour, and with enzyme concentration to about 5 mg soluble protein per ml. Activity was dependent on Mn2+ and was maximal at pH 7.3 to 8.0. Sodium fluoride had no effect on activity, but sodium azide was slightly stimulatory. About 80% of the activity was sedimentable at 16,000 g, and both soluble and particulate activities were increased slightly in the presence of Triton X-100. Kinetic analysis indicated half-maximal velocity at 85 μM GTP in the presence of excess Mn2+, and reciprocal plots were concave upward. Changes in activity during maturation of the gland were small, and did not provide evidence for a regulatory role of guanylate cyclase in the accumulation of accessory gland cyclic GMP. The regulation and rôle of cyclic GMP in the accessory gland are discussed.  相似文献   

13.
14.
Guanylate cyclase from the rat renal medulla is found in both the soluble and particulate fractions of the cell. Sucrose density gradient centrifugation and gel filtration in H2O and D2O indicate that the enzyme from the soluble cell fraction has the following properties: S20w, 6.3 S; Stokes radius, 54 A; partial specific volume, 0.75 ml/g; mass, 154,000 daltons; f/fo, 1.4; axial ratio (prolate ellipsoid), 7. The addition of 0.1% Lubrol PX to this fraction activates the enzyme and changes thartial specific volume, 0.74 ml/g; mass, 148,000 daltons; f/fo, 1.6; axial ratio (prolate ellipsoid), 11. These findings show that detergent activates the enzyme by changing its conformation and not simply by dispersing nonsedimentable membrane fragments. The dimensions of this guanylate cyclase in detergent are very similar to those of detergent-solubilized adenylate cyclase from the same tissue (Neer, E.J. (1974) J. Biol. Chem. 249, 6527-6531). Guanylate cyclase can be solubilized from the particulate cell fraction with 1% Lubrol PX but has properties quite different from those of the guanylate cyclase in the soluble cell fraction. It is a large aggregate with a value of S20,w of about 10 S, Stokes radius of 65 A, and a mass of approximately 300,000 daltons. However, the peaks of guanylate cyclase activity in column effluents and sucrose density gradients are very broad indicating a mixture of different size proteins. The conditions used to solubilize guanylate cyclase from the particulate fraction also solubilize adenylate cyclase, and the two activities can be separated on the same sucrose gradient. Studies of this sort require a rapid, accurate guanylate cyclase assay. We have developed an assay for guanylate cyclase activity which meets these criteria by adapting the competitive protein binding assay for guanosine cyclic 3':5' monophosphate originally described by Murad et al. (Murad, F., Manganiello, V., and Vaughn, M. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 736-739).  相似文献   

15.
16.
Guanylate cyclase and the .NO/cGMP signaling pathway.   总被引:17,自引:0,他引:17  
Signal transduction with the diatomic radical nitric oxide (NO) is involved in a number of important physiological processes, including smooth muscle relaxation and neurotransmission. Soluble guanylate cyclase (sGC), a heterodimeric enzyme that converts guanosine triphosphate to cyclic guanosine monophosphate, is a critical component of this signaling pathway. sGC is a hemoprotein; it is through the specific interaction of NO with the sGC heme that sGC is activated. Over the last decade, much has been learned about the unique heme environment of sGC and its interaction with ligands like NO and carbon monoxide. This review will focus on the role of sGC in signaling, its relationship to the other nucleotide cyclases, and on what is known about sGC genetics, heme environment and catalysis. The latest understanding in regard to sGC will be incorporated to build a model of sGC structure, activation, catalytic mechanism and deactivation.  相似文献   

17.
18.
1. Guanylate cyclase of every fraction studied showed an absolute requirement for Mn2+ ions for optimal activity; with Mg2+ or Ca2+ reaction was barely detectable. Triton X-100 stimulated the particulate enzyme much more than the supernatant enzyme and solubilized the particulate-enzyme activity. 2. Substantial amounts of guanylate cyclase were recovered with the washed particulate fractions of cardiac muscle (63-98%), skeletal muscle (77-93%), cerebral cortex (62-88%) and liver (60-75%) of various species. The supernatants of these tissues contained 7-38% of total activities. In frog heart, the bulk of guanylate cyclase was present in the supernatant fluid. 3. Plasma-membrane fractions contained 26, 21, 22 and 40% respectively of the total homogenate guanylate cyclase activities present in skeletal muscle (rabbit), cardiac muscle (guinea pig), liver (rat) and cerebral cortex (rat). In each case, the specific activity of this enzyme in plasma membranes showed a five- to ten-fold enrichment when compared with homogenate specific activity. 4. These results suggest that guanylate cyclase, like adenylate cyclase, and ouabain-sensitive Na+ + K+-dependent ATPase (adenosine triphosphatase), is associated with the surface membranes of cardiac muscle, skeletal muscle, liver and cerebral cortex; however, considerable activities are also present in the supernatant fractions of these tissues which contain very little adenylate cyclase or ouabain-sensitive Na+ + K+-dependent ATPase activities.  相似文献   

19.
A 50-kDa protein was purified as a potential receptor, using an affinity matrix containing biotinylated F14.6 or H9.3 anti-DNA mAbs derived from autoimmune (New Zealand Black x New Zealand White)F(1) mouse and membrane extracts from cells. This protein was identified as calreticulin (CRT) by microsequencing. Confocal microscopy and FACS analysis showed that CRT was present on the surface of various cells. CRT protein was recognized by a panel of anti-DNA mAbs in ELISA. The binding of F14.6 to lymphocytes and Chinese hamster ovary cells was inhibited by soluble CRT or SPA-600. Thus, the anti-DNA mAbs used in this study bound to CRT, suggesting that CRT may mediate their penetration into the cells and play an important role in lupus pathogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号