共查询到20条相似文献,搜索用时 15 毫秒
1.
Salicylic acid (SA), a common plant phenolic compound, influences diverse physiological and biochemical processes in plants.
To gain insight into the mode of interaction between auxin, ethylene, and SA, the effect of SA on auxininduced ethylene production
in mung bean hypocotyls was investigated. Auxin markedly induced ethylene production, while SA inhibited the auxin-induced
ethylene synthesis in a dose-dependent manner. At 1 mM of SA, auxininduced ethylene production decreased more than 60% in
hypocotyls. Results showed that the accumulation of ACC was not affected by SA during the entire period of auxin treatment,
indicating that the inhibition of auxin-induced ethylene production by SA was not due to the decrease in ACC synthase activity,
the rate-limiting step for ethylene biosynthesis. By contrast, SA effectively reduced not only the basal level of ACC oxidase
activity but also the wound-and ethylene-induced ACC oxidase activity, the last step of ethylene production, in a dose-dependent
manner. Northern and immuno blot analyses indicate that SA does not exert any inhibitory effect on the ACC oxidase gene expression,
whereas it effectively inhibits both the in vivo and in vitro ACC oxidase enzyme activity, thereby abolishing auxin-induced
ethylene production in mung bean hypocotyl tissue. It appears that SA inhibits ACC oxidase enzyme activity through the reversible
interaction with Fe2+, an essential cofactor of this enzyme. These results are consistent with the notion that ethylene production is controlled
by an intimate regulatory interaction between auxin and SA in mung bean hypocotyl tissue. 相似文献
2.
3.
Purification and partial characterization of an aminopeptidase from mung bean cotyledons 总被引:1,自引:0,他引:1
An aminopeptidase (EC 3.4.11.-) was purified to homogeneity, as judged by SDS-PAGE. from mung bean ( Vigna radiata ) cotyledons. The molecular mass of this peptidase was estimated as 75 kDa by gel filtration. When an oligopeptide consisting of 5 amino acid residues was used as substrate, amino acids were released in the order of the N-terminal sequence of the oligopeptide chain. This enzyme apparently requires free sulfhydryl for its activity, as judged by the effects of various proteinase inhibitors. Among aminoacyl- p -nitroanilides examined for the availability as substrates of the enzyme, p -nitroanilides with hydrophobic amino acids were preferred substrates. According to western immunoblot profiles, the enzyme level in cotyledons was high at the early stage of imbibition and declined rapidly after germination. 相似文献
4.
The effects of heat shock on the chilling tolerance of mung bean [Vigna radiata (L.) Wilczek] seedling tissue were studied by using two measurements of chilling injury: increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity and solute leakage. ACC oxidase activity (measured as ACC-induced ethylene production) of freshly excised mung bean hypocotyl segments was highly dependent on the temperature at which the seedlings were grown. However, this highly temperature-dependent level of ACC oxidase activity was probably a wound response since it was almost entirely eliminated by incubating the excised segments at 20°C for 3 h. In contrast, heating of excised segments to 40°C for up to 4 h resulted in a time-dependent increase in ACC oxidase activity which was sensitive to cycloheximide, indicating rapid protein synthesis during the heat treatment. ACC oxidase activity fell sharply during subsequent chilling at 2. 5°C. After 3 days of chilling, all treated segments, regardless of their initial ACC oxidase activity, showed a decline to the same low activity level and ACC oxidase activity continued to fall slowly for up to 9 days at 2. 5°C. Hypocotyl segments excised from seedlings held at 15°C showed no change in solute leakage, but leakage increased rapidly when seedlings were either chilled at 2. 5°C or heated to 32°C (just below the heat shock temperature). Chill-induced leakage from non-heat-shocked segments increased steadily with chilling duration and was unaffected by cycloheximide concentration up to day 6. Within the elevated rate of leakage on day 9, however, leakage was lower from segments exposed to 10 and 50 μM cycloheximide. Solute leakage was markedly reduced for up to 9 days when segments were heat shocked at 40°C for 3 or 4 h with or without 10 M cycloheximide, but the presence of 50 μM cycloheximide caused an initial doubling of solute leakage and a 3-fold increase after 3 days of chilling. Cycloheximide prevented formation of heat shock protection against chilling from the start at 50 μM and after 9 days at 10 μM. These results indicate that the protection afforded by heat shock against chilling damage is quantitative and probably involves protein synthesis. 相似文献
5.
1-Aminocyclopropane-1-carboxylate (ACC) N-malonyltransferase converts ACC, an immediate precursor of ethylene, to the presumably inactive product malonyl-ACC (MACC). This enzyme plays a role in ethylene production by reducing the level of free ACC in plant tissue. In this study, ACC N-malonyltransferase was purified 3660-fold from etiolated mung bean (Vigna radiata) hypocotyls, with a 6% overall recovery. The final specific activity was about 83,000 nmol of MACC formed mg−1 protein h−1. The five-step purification protocol consisted of polyethylene glycol fractionation, Cibacron blue 3GA-agarose chromatography using salt gradient elution, Sephadex G-100 gel filtration, MonoQ anion-exchange chromatography, and Cibacron blue 3GA-agarose chromatography using malonyl-CoA plus ACC for elution. The molecular mass of the native enzyme determined by Sephadex G-100 chromatography was 50 ± 3 kD. Protein from the final purification step showed one major band at 55 kD after sodium dodecyl sulfate polyacrylamide gel electrophoresis, indicating that ACC N-malonyltransferase is a monomer. The mung bean ACC N-malonyltransferase has a pH optimum of 8.0, an apparent Km of 0.5 mm for ACC and 0.2 mm for malonyl-coenzyme A, and an Arrhenius activation energy of 70.29 kJ mol−1 degree−1. 相似文献
6.
Jose R. Botella Carl D. Schlagnhaufer Richard N. Arteca Allen T. Phillips 《Plant molecular biology》1992,18(4):793-797
The polymerase chain reaction (PCR) was used to produce 3 putative clones for ACC synthase from etiolated mung bean (Vigna radiata Rwilcz cv. Berken) hypocotyls. This was accomplished by utilizing genomic DNA from mung bean and degenerate primers made from information derived from highly conserved regions of ACC synthase from different plant tissues. The total length of pMAC-1, pMAC-2 and pMAC-3 are 308, 321, and 326 bp, respectively, all of which code for 68 amino acids. The introns for pMAC-1, pMAC-2 and pMAC-3 are 92, 105, and 110 bp, respectively. The degrees of homology at the DNA level for each of these clones is ca. 80% in their coding region and ca. 50% in their respective introns. This is the first report providing evidence that there are at least 3 genes for ACC synthase in etiolated mung bean. 相似文献
7.
The activity of cysteine endopeptidase (EP) in the cotyledons of mung bean seeds increased with time after germination. When cotyledons were excised from the embryonic axis in the course of seedling growth, the activity of EP in the excised cotyledon markedly dropped during the following incubation of 1 d. However, the level of EP protein in excised cotyledons, as examined by immunoblotting, was similar to that in axis-attached cotyledons at the corresponding stage. Thus, it seems that the low activity of EP in excised cotyledons is not due to a decrease in the content of EP protein, but due to a loss of the activity of existing EP. Treatment of attached cotyledons with polyamines (PAs; putrescine and spermidine [Spd]) resulted in a decrease in EP activity, while the same PA-treatment brought about little alteration in the level of EP protein. This indicates that PAs somehow produce an inhibitory effect on the activity of EP. Axis-removal resulted in an accumulation of Spd in the cotyledon. The possibility is suggested that PA, especially Spd, is involved in the inhibition of EP activity in excised mung bean cotyledons. 相似文献
8.
JAE‐GYUN GWAG JONG‐WOOK CHUNG HUN‐KI CHUNG JEONG‐HEUI LEE KYUNG‐HO MA ANUPAM DIXIT YONG‐JIN PARK EUN‐GI CHO TAE‐SAN KIM SUK‐HA LEE 《Molecular ecology resources》2006,6(4):1132-1134
The present work reports the isolation and characterization of new polymorphic microsatellites in mung bean (Vigna radiata L.). Of 93 designed primer pairs, seven were found to amplify polymorphic microsatellite loci, which were then characterized using 34 mung bean accessions. The number of alleles ranged from two to five alleles per locus with an average of three alleles. Observed and expected heterozygosity values ranged from 0 to 0.088 and from 0.275 to 0.683, respectively. All seven loci showed significant deviations from Hardy–Weinberg equilibrium, whereas only one pairwise combination (GBssr‐MB77 and GBssr‐MB91) exhibited significant departure from linkage disequilibrium. These newly developed markers are currently being utilized for diversity assessment within the mung bean germplasm collection of the Korean Gene Bank. 相似文献
9.
10.
The extracellular invertase (β-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls
of mung bean (Phaseolus radiatus L.). The enzyme was purified to apparent homogeneity by ammonium sulfate fractionation and sequential chromatography over
diethylaminoethyl (DEAE)-cellulose anion exchange, Concanavalin (Con) A-Sepharose 4B affinity and Sephadex G-200. The overall
purification was about 77-fold with a recovery of about 11%. The finally purified enzyme exhibited a specific activity of
about 113 μmol of glucose produced mg-1 protein min-1 at pH 5.0 and appeared to be a single protein by nondenaturing polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl
sulfate (SDS)-PAGE. The enzyme had the native molecular mass of 134 kD and subunit molecular weight of 67 kD as estimated
by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme was composed of homodimeric proteins.
On the other hand, the enzyme appeared to be a glycoprotein containing mannosyl residues on the basis of its ability to interact
specifically with the immobilized Con A and the separability of invertase-Con A complex by methyl-α-D-mannopyranoside. The
enzyme had a Km for sucrose of 3.4 mM and its pH optimum of 4.0. The enzyme showed highest enzyme activity with sucrose as substrate. Raffinose
and cellobiose were hydrolyzed at a low rate, maltose and lactose were not cleaved by the enzyme. These results indicate the
extracellular invertase is a β-fructofuranosidase. 相似文献
11.
12.
To clarify the roles of auxin-binding proteins (ABPs) in the action of auxin, soluble auxin-binding proteins were isolated from an extract of etiolated mung bean hypocotyls by affinity chromatography on 2,4-dichlorophenoxyacetic acid (2,4-D)-linked Sepharose 4B. A 39-kDa polypeptide was retained on the affinity column and eluted with a solution containing IAA or 2,4-D, but not with a solution containing benzoic acid. The protein was then purified by several column-chromatographic steps. The apparent molecular mass of the protein was estimated to be 77 kDa by gel filtration and 39 kDa by SDS-PAGE. We designated this protein ABP39. The partial amino acid sequences of ABP39, obtained after chemical cleavage by CNBr, revealed high homology with alcohol dehydrogenase (ADH; EC 1.2.1.1). While the ABP39 was not capable of oxidizing ethanol, it did catalyze the reduction of indole-3-acetaldehyde (IAAld) to indole-3-ethanol (IEt) with an apparent Km of 22 μ M. The IAAld reductase (EC 1.2.3.1) is specific for NADPH as a cofactor. The ABP39 also catalyzed the reduction of other aldehydes, such as acetaldehyde, benzaldehyde, phenylacetaldehyde and propionealdehyde. Indole-3-aldehyde was a poor substrate. The enzyme activity was inhibited by both indole-3-acetic acid and 2,4-D in a competitive manner. Therefore, the enzyme is considered to be retained on the affinity column by recognition of auxin structure. 相似文献
13.
14.
Abstract. Water stress created by withholding irrigation in mung bean resulted in decreased leaf water potential and nodule moisture content. Decreased leaf water potential was associated with decreased activity of nitrogenase, glutamine synthetase (GS), asparagine synthetase (AS), aspartate amino transferase (AAT), xanthine dehydrogenase (XDH) and uricase. However, the activity of glutamate dehydrogenase increased three-fold under severe stress. The activity of allantoinase and allantoicase was not affected by moderate stress but decreased under severe stress. The in vitro production of allantoic acid from allantoin and uric acid in the cytosol fraction decreased more than its production from xanthine and hypoxanthine. The production of NADH also decreased under stress.
During recovery from severe stress, the activity of XDH and uricase further decreased, whilst that of allantoinase and allantoicase increased compared to the control. This corresponded with the higher content of ureides during recovery. The recovery in other enzymes was not complete although leaf water potential and nodule moisture content recovered fully within 24 h. 相似文献
During recovery from severe stress, the activity of XDH and uricase further decreased, whilst that of allantoinase and allantoicase increased compared to the control. This corresponded with the higher content of ureides during recovery. The recovery in other enzymes was not complete although leaf water potential and nodule moisture content recovered fully within 24 h. 相似文献
15.
Megan E. Reardon 《Journal of Plant Interactions》2017,12(1):295-303
We studied the effects of temperature, carbon dioxide and abscisic acid on mung bean (Vigna radiata). Plants were grown under 26/22°C or 32/28°C (16?h?light/8?h?dark) at 400 or 700?μmol?mol?1 CO2 and received ABA application of 0 or 100?μl (10?μg) every other day for three weeks, after eight days of initial growth, in growth chambers. We measured 24 parameters. As individual factors, in 16 cases temperature; in 8 cases CO2; in 9 cases ABA; and as interactive factors, in 4 cases, each of temperature?×?CO2, and CO2?×?ABA; and in 2 cases, temperature?×?ABA were significant. Higher temperatures increased growth, aboveground biomass, growth indices, photochemical quenching (qP) and nitrogen balance index (NBI). Elevated CO2 increased growth and aboveground biomass. ABA decreased growth, belowground biomass, qP and flavonoids; increased shoot/root mass ratio, chlorophyll and NBI; and had little role in regulating temperature–CO2 effects.
Abbreviations: AN: net CO2 assimilation; E: transpiration; Fv/Fm: maximum quantum yield of PSII; gs: stomatal conductance; LAR: leaf area ratio; LMA: leaf mass per area; LMR: leaf mass ratio;φPSII: effective quantum yield of PSII; qNP: non-photochemical quenching; qP: photochemical quenching; SRMR: shoot to root mass ratio; WUE: water use efficiency 相似文献
16.
This paper discusses the application of a particular two-phase partitioning system to the isolation of plasma membranes from heterogeneous starting material, differing in physiological age. Plasma membranes were isolated from hypocotyl segments of mung beans ( Vigna radiata L. Wilczek) on four successive days in order to examine the variation caused by ageing of the seedling. Additionally, the segments were cut at different positions of the hypocotyl to measure variation caused by position-related ageing. To assess purity and degree of contamination of the plasma membrane-enriched preparations, a series of membrane enzyme markers were screened for all isolated fractions. Glucan synthetase II activities were enriched in the plasma membrane fractions, but enrichment and recovery became less pronounced with increasing age. Plasma membrane ATPase activity affected by VO4 3- , Ca2+ and K+ was similar in all segments throughout the time-course of the experiment (4 days). However, control ATPase activity varied with segment origin: the physiologically oldest segments showed only 75% activity compared to the youngest ones. Km and Vmax values indicated a smaller proportion of active enzyme but higher substrate affinity as the age of the segments increased. Contamination by intracellular membranes was minimal and unrelated to tissue age. 相似文献
17.
The development of mitochondrial NAD+ -malate dehydrogenase (EC 1.1.1.37) in mung bean and cucumber cotyledons was followed. using the antibody raised against it, during and following germination. The developmental patterns were quite different between the two. In cucumber, the content of mitochondrial malate dehydrogenase continued to increase through 3–4 days after the beginning of imbibition. This was, at least in part, due to active synthesis of the enzyme protein, and the synthesis seemed to be regulated by the availability of the translatable mRNA for the enzyme. In mung bean, on the other hand, the enzyme was present in dry cotyledons at a rather high concentration, and remained at a constant level between day 1 and day 3 after the reduction of the content to one-half its initial level during the first day. De novo synthesis of the enzyme could not be detected in mung bean cotyledons by pulse-labeling experiment. 相似文献
18.
When cotyledons of mung bean [ Vigna radiata (L.) Wilczek] were treated with spermidine (3 m M ) during the first 6 h of imbibition, the development of α-amylase activity in cotyledons during the following 3 days was severely inhibited (75%) This inhibition was due to a slower accumulation of α-amylase protein, which in turn resulted from an inhibition of α-amylase synthesis. The rise in the level of α-amylase mRNA in cotyledons was also inhibited by spermidine treatment. However, the degree of inhibition of mRNA accumulation (40%) was not so marked as that of the activity of α-amylase synthesis (80%). These results are discussed in relation to the mode of action of spermidine on α-amylase expression. 相似文献
19.
Kozaburo Morinaga Eiichi Honda Yukio Morohashi Hisashi Matsushima 《Physiologia plantarum》1997,101(3):519-525
Starch debranching enzyme was purified from mung bean ( Vigna radiata ) cotyledons to investigate its properties and developmental pattern during and following germination. A debranching enzyme was purified up to the step where only a doublet of polypeptides with molecular masses of 99 and 101 kDa, respectively, was detected by SDS-PAGE. The enzyme is thought to be a single chain monomer, as the molecular mass of the enzyme determined by gel filtration was 72 kDa. Monoclonal antibodies raised against the purified preparation recognized the doublet, indicating that the two polypeptides have immunological homology to each other. The enzyme preparation showed a high activity with pullulan as a substrate, low activity with soluble starch and amylopectin, and no activity with glycogen. These substrate specificities indicate that the debranching enzyme from mung bean cotyledons is of the pullulanase type. Immunoblotting profiles revealed that the enzyme is present in dry seeds and decreases gradually after imbibition, suggesting the possibility that the pullulanase plays a role in developing mung bean cotyledons. 相似文献
20.
Comparison of movement and metabolism of indole-3-acetic acid and indole-3-butyric acid in mung bean cuttings 总被引:2,自引:0,他引:2
Indole-3-butyric acid (IBA) was much more effective than indole-3-acetic acid (IAA) in inducing adventitious root formation in mung bean ( Vigna radiata L.) cuttings. Prolonging the duration of treatment with both auxins from 24 to 96 h significantly increased the number of roots formed. Labelled IAA and IBA applied to the basal cut surface of the cuttings were transported acropetally. With both auxins, most radioactivity was detected in the hypocotyl, where roots were formed, but relatively more IBA was found in the upper sections of the cuttings. The rate of metabolism of IAA and IBA in these cuttings was similar. Both auxins were metabolized very rapidly and 24 h after application only a small fraction of the radioactivity corresponded to the free auxins. Hydrolysis with 7 M NaOH indicates that conjugation is the major pathway of IAA and IBA metabolism in mung bean tissues. The major conjugate of IAA was identified tentatively as indole-3-acetylaspartic acid, whereas IBA formed at least two major conjugates. The data indicate that the higher root-promoting activity of IBA was not due to a different transport pattern and/or a different rate of conjugation. It is suggested that the IBA conjugates may be a better source of free auxin than those of IAA and this may explain the higher activity of IBA. 相似文献