首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The monophyletic origin of the Brachiopoda   总被引:1,自引:0,他引:1  
Although it is commonly acepted that the brachiopods descended from phoronid-like ancestors there is dispute over their origin. Traditionally they have been regarded as a monophyletic group, a clade. More recently it has been claimed that brachiopods are polyphyletic and that several of the orders arose independently from separate phoronid-like stocks. The latter point of view implies that brachiopods are not a taxon but merely a grade of organization. Traditional stratophenetic approaches do little to resolve the problem, which may be outside their domain. It is possible, even probable, that the initial radiation involved organisms that lacked mineralized shells. Cladistic analysis of both living forms and Lower Paleozoic taxa strongly supports the contention that brachiopods are monophytetic and closely related to the phoronids. It suggests, however, that the 'inarticulate' Paterinida and Kutorginida are genealogically more closely related to the Articulata than they are to the remaining Inarticulata. □ Brachiopoda, Lophophorata, cladistics, Cambrian.  相似文献   

3.
4.
A new hypothesis for the evolution of Bilateria is presented. It is based on a reinterpretation of the morphological characters shared by protostomes and deuterostomes, which, when taken together with developmental processes shared by the two lineages, lead to the inescapable conclusion that the last common ancestor of Bilateria was complex. It possessed a head, a segmented trunk, and a tail. The segmented trunk was further divided into two sections. A dorsal brain innervated one or more sensory cells, which included photoreceptors. "Appendages" or outgrowths were present. The bilaterian ancestor also possessed serially repeated "segments" that were expressed ontogenetically as blocks of mesoderm or somites with adjoining fields of ectoderm or neuroectoderm. It displayed serially repeated gonads (gonocoels), each with a gonoduct and gonopore to the exterior, and serially repeated "coeloms" with connections to both the gut and the exterior (gill slits and pores). Podocytes, some of which were serially repeated in the trunk, formed sites of ultrafiltration. In addition, the bilaterian ancestor had unsegmented coeloms and a contractile blood vessel or "heart" formed by coelomic myoepithelial cells. These cells and their underlying basement membrane confine the hemocoelic fluid, or blood, in the connective tissue compartment. A possible scenario to account for this particular suite of characters is one in which a colony of organisms with a cnidarian grade of organization became individuated into a new entity with a bilaterian grade of organization. The transformation postulated encompassed three major transitions in the evolution of animals. These transitions included the origins of Metazoa, Eumetazoa, and Bilateria and involved the successive development of poriferan, cnidarian, and bilaterian grades of organization. Two models are presented for the sponge-to-cnidarian transition. In both models the loss of a flow-through pattern of water circulation in poriferans and the establishment of a single opening and epithelia sensu stricto in cnidarians are considered crucial events. In the model offered for the cnidarian-to-bilaterian transition, the last common ancestor of Eumetazoa is considered to have had a colonial, cnidarian-grade of organization. The ancestral cnidarian body plan would have been similar to that exhibited by pennatulacean anthozoans. It is postulated that a colonial organization could have provided a preadaptive framework for the evolution of the complex and modularized body plan of the triploblastic ancestor of Bilateria. Thus, one can explore the possibility that problematica such as ctenophores, the Ediacaran biota, archaeocyaths, and Yunnanozoon reflect the fact that complexity originated early and involved the evolution of a macroscopic compartmented ancestor. Bilaterian complexity can be understood in terms of Beklemishev "cycles" of duplication and colony individuation. Two such cycles appear to have transpired in the early evolution of Metazoa. The first gave rise to a multicellular organism with a sponge grade of organization and the second to the modularized ancestor of Bilateria. The latter episode may have been favored by the ecological conditions in the late Proterozoic. Whatever its cause, the individuation of a cnidarian-grade colony furnishes a possible explanation for the rapid diversification of bilaterians in the late Vendian and Cambrian. The creation of a complex yet versatile prototype, which could be rapidly modified by selection into a profusion of body plans, is postulated to have affected the timing, mode, and extent of the "Cambrian explosion." During the radiations, selective loss or simplification may have been as creative a force as innovation. Finally, colony individuation may have been a unique historical event that imprinted the development of bilaterians as the zootype and phylotypic stage. (ABSTRACT TRUNCATED)  相似文献   

5.
Short interspersed repetitive elements (SINEs) are a kind of retroposons dispersed among the eukaryotic genomes. Previously, we isolated and characterized a new SINE family, named CHR-2, members of which are distributed in the genomes of cetaceans, hippopotamuses, and ruminants. We analyzed systematically more than a hundred members of the CHR-2 SINEs, which were isolated from the genomes of cetaceans and cow, together with the additional data available in the DNA databases, and showed that these SINEs are divided into at least five distinct subfamilies that share diagnostic nucleotides and/or deletions. A hybridization analysis clearly demonstrated that, among these five subfamilies, two subfamilies, named CD and CDO, are specific to cetaceans and toothed whales, respectively. We reconstruct the evolutionary history of the CHR-2 SINEs during evolution of cetartiodactyl genomes. Received: 13 June 2001 / Accepted: 12 July 2001  相似文献   

6.
Asexual reproduction in vertebrates is rare and generally considered an evolutionary dead end. Asexuality is often associated with polyploidy, and several hypotheses have been put forward to explain this relationship. So far, it remains unclear whether polyploidization in asexual organisms is a frequent or a rare event. Here we present a field study on the gynogenetic Amazon molly, Poecilia formosa. We used multilocus fingerprints and microsatellites to investigate the genetic diversity in 339 diploid and 55 triploid individuals and in 25 P. mexicana, its sexual host. Although multilocus DNA fingerprints found high clonal diversity in triploids, microsatellites revealed only two very similar clones in the triploids. Phylogenetic analysis of microsatellite data provided evidence for a monophyletic origin of the triploid clones of P. formosa. In addition, shared alleles within the triploid clones between the triploid and diploid genotypes and between asexual and sexual lineages indicate a recent origin of triploid clones in Poecilia formosa.  相似文献   

7.
The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the ‘Cambrian explosion’, is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so‐called ‘Ediacaran’ taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total‐group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran–Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat‐dominated substrates that the enigmatic Ediacaran taxa were associated with, the so‐called ‘Cambrian substrate revolution’, leading to the loss of almost all Ediacara‐aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late‐Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world of the Cambrian. The Ediacaran biota thus played an enabling role in bilaterian evolution similar to that proposed for the Savannah environment for human evolution and bipedality. Rather than being obliterated by the rise of the bilaterians, the subtle remnants of Ediacara‐style taxa within the Cambrian suggest that they remained significant components of Phanerozoic communities, even though at some point their enabling role for bilaterian evolution was presumably taken over by bilaterians or other metazoans. Bilaterian evolution was thus an essentially benthic event that only later impacted the planktonic environment and the style of organic export to the sea floor.  相似文献   

8.
Athyrium oblitescens, a putative hybrid species, was examined electrophoretically and cytologically to clarify its origin. Allozyme data showed thatA. oblitescens consisted of at least three allozyme types, designated Type C, Type O and Type W. Genotypic compositions of Type C and Type W suggested that they were derived from independent hybridizations betweenA. otophorum andA. clivicola and betweenA. otophorum andA. wardii, respectively. Contrary to previous reports of tetraploidy inA. oblitescens and its hypothesized parent species, cytological observation revealed that Type C and Type W were both hexaploids. Possible pathways for the origin of these hexaploids are proposed. Type O was not genetically distinct fromA. otophorum by either electrophoretic or cytological analyses, and thus there was no evidence of hybrid origin.  相似文献   

9.
Understanding how animal complexity has arisen and identifying the key genetic components of this process is a central goal of evolutionary developmental biology. The discovery of microRNAs (miRNAs) as key regulators of development has identified a new set of candidates for this role. microRNAs are small noncoding RNAs that regulate tissue-specific or temporal gene expression through base pairing with target mRNAs. The full extent of the evolutionary distribution of miRNAs is being revealed as more genomes are scrutinized. To explore the evolutionary origins of metazoan miRNAs, we searched the genomes of diverse animals occupying key phylogenetic positions for homologs of experimentally verified human, fly, and worm miRNAs. We identify 30 miRNAs conserved across bilaterians, almost double the previous estimate. We hypothesize that this larger than previously realized core set of miRNAs was already present in the ancestor of all Bilateria and likely had key roles in allowing the evolution of diverse specialist cell types, tissues, and complex morphology. In agreement with this hypothesis, we found only three, conserved miRNA families in the genome of the sea anemone Nematostella vectensis and no convincing family members in the genome of the demosponge Reniera sp. The dramatic expansion of the miRNA repertoire in bilaterians relative to sponges and cnidarians suggests that increased miRNA-mediated gene regulation accompanied the emergence of triploblastic organ-containing body plans. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
We sought an explanation for epidemiological changes in Streptococcus agalactiae infections by investigating the link between ecological niches of the bacterium by determining the prevalence of 11 mobile genetic elements. The prevalence of nine of these elements differed significantly according to the human or bovine origin of the isolate. Correlating this distribution with the phylogeny obtained by multilocus sequence analysis, we observed that human isolates harboring GBSi1, a clear marker of the bovine niche, clustered in clonal complex 17. Our results are thus consistent with the emergence of this virulent human clone from a bovine ancestor.  相似文献   

11.
All tick proteins assigned to the lipocalin family lack the structural conserved regions (SCRs) that are characteristic of the kernel lipocalins and can thus be classified as outliers. These tick proteins have been assigned to the tick lipocalin family based on database searches that indicated homology between tick sequences and the fact that the histamine binding protein (HBP2) from the hard tick Rhipicephalus appendiculatus (Ixodidae) shows structural similarity to the lipocalin fold. Sequence identity between kernel and outlier lipocalins falls below 20% and the question raised is whether the outlier and kernel lipocalins are truly homologous. More specifically in the case of the tick lipocalins, whether their structural fold is derived from the lipocalin fold or whether convergent evolution resulted in the generation of the basic lipocalin-like fold which consists of an eight stranded continuous anti-parallel beta-barrel terminated by a C-terminal alpha-helix that lies parallel to the barrel. The current study determined the gene structure for HBP2 and TSGP1, TSGP2 and TSGP4, lipocalins identified from the soft tick Ornithodoros savignyi (Argasidae). All tick lipocalins have four introns (A-D) with conserved positions and phases within the tick lipocalin sequence alignment. The positions and phase information are also conserved with regard to the rest of the lipocalin family. Phylogenetic analysis using this information shows conclusively that tick lipocalins are evolutionary related to the rest of the lipocalin family. Tick lipocalins are grouped within a monophyletic clade that indicates a monophyletic origin within the tick lineage and also group with the other arthropod lipocalins in a larger clade. Phylogenetic analysis of sequence alignments based on conserved secondary structure of the lipocalin fold support the conclusions from the gene structure trees. These results indicate that exon-intron arrangement can be useful for the inclusion of outlier lipocalins within the larger lipocalin family.  相似文献   

12.
The A and B chromosomes of different karyotype variants (cytodemes A1, A2, A3 and A4) ofBrachycome dichromosomatica were analysed by computer-aided chromosome image analysis and fluorescencein situ hybridisation (FISH). Ribosomal DNA and the B chromosome-specific sequence Bd49 were detected on all B chromosomes. In addition to minor size variation of the Bs, polymorphism of the rDNA and Bd49 position and copy number revealed two major types of B chromosomes. The B chromosomes of all the cytodemes were indistinguishable from each other in length, but that of A3 showed evidence of rearrangements consistent with its long-term geographic isolation. The results presented suggest a monophyletic origin of the B chromosomes ofB. dichromosomatica.  相似文献   

13.
Abstract. In several carnivores a newly fertilized egg enters diapause instead of being directly implanted into the uterus, a phenomenon called delayed implantation. Several hypotheses have been forwarded to explain the utility of this prolonged gestation period, but all of these depend on several independent origins of the character. Here, we conduct a phylogenetic reconstruction of the evolution of delayed implantation in the Carnivora that reveals one basal origin, with additional transitions all having occurred within the Mustelidae. Hence, previous hypotheses relating to its evolution become untestable. Further analyses revealed that the presence or absence of delayed implantation is unrelated to the timing of mating season and birth season. Instead, mustelids with direct implantation are smaller than those with delayed implantation. We therefore suggest that delayed implantation has been selected against in small species due to the relatively higher fecundity costs of a prolonged gestation period.  相似文献   

14.
Biologists have debated the origin of snakes since the nineteenth century. One hypothesis suggests that snakes are most closely related to terrestrial lizards, and reduced their limbs on land. An alternative hypothesis proposes that snakes are most closely related to Cretaceous marine lizards, such as mosasaurs, and reduced their limbs in water. A presumed close relationship between living monitor lizards, believed to be close relatives of the extinct mosasaurs, and snakes has bolstered the marine origin hypothesis. Here, we show that DNA sequence evidence does not support a close relationship between snakes and monitor lizards, and thus supports a terrestrial origin of snakes.  相似文献   

15.
A key focus of evolutionary developmental biology (evo–devo)in recent years has been to elucidate the evolution of developmentalmechanisms as a means of reconstructing the hypothetical lastcommon ancestors of various clades. Prominent among such reconstructionshave been proposals as to the nature of the mysterious "Urbilateria,"originally defined as the last common ancestor of the extantBilateria (protostomes and deuterostomes). Indeed, drawingsof this animal can now be found, as well as detailed informationon the genetics and morphological processes that it used toconstruct its gut, heart, eyes, appendages, segments, and bodyregions. Perhaps surprisingly, however, no explanations haveyet been offered as to how this animal might have achieved thesuccessful reproduction that must have been necessary for itto give rise to those lineages that are ancestral to today'sdiverse clades. The present article examines the comparativedata available to date on the specification of the only cellscontaining the genetic hereditary material, the germ cells,and speculates on the possible evolutionary and developmentalorigin of the Urbilaterian germ line.  相似文献   

16.
Starch gel electrophoresis and isoelectric focusing were performed on sarcoplasmic proteins from three taxa of cobitid fish in Japan, Cobitis biwae , C. taenia striata and C. l. taenia . These taxa are hardly distinguishable from each other by external appearance or morphological characters. Electrophoretic patterns of sarcoplasmic proteins from white muscle suggested fixed allelic differences between C. biwae and C. t. striata at two protein-coding loci (parvalbumin and creatine kinase). The third taxon, C. t. taenia , showed composite banding patterns with respect to the above two proteins, suggesting C. t, taenia originated from hybridization between C. biwae and C, t. striata . Previously, C. t, taenia and C. t. striata were believed to have shared a common ancestor subsequent to their divergence from C. biwae .  相似文献   

17.
The Deinococcus-Thermus group of species is currently recognized as a distinct phylum solely on the basis of their branching in 16S rRNA trees. No unique biochemical or molecular characteristics that can distinguish this group from all other bacteria are known at present. In this work, we describe eight conserved indels (viz., inserts or deletions) in seven widely distributed proteins that are distinctive characteristics of the Deinococcus-Thermus phylum but are not found in any other group of bacteria. The identified signatures include a 7-amino-acid (aa) insert in threonyl-tRNA synthetase, 1- and 3-aa inserts in the RNA polymerase beta' subunit, a 5-aa deletion in signal recognition particle (Ffh/SR54), a 2-aa insert in major sigma factor 70 (sigma70), a 2-aa insert in seryl-tRNA synthetase (SerRS), a 1-aa insert in ribosomal protein L1, and a 2-aa insert in UvrA homologs. By using PCR primers for conserved regions, fragments of these genes were amplified from a number of Deinococcus-Thermus species, and all such fragments (except SerRS in Deinococcus proteolyticus) were found to contain the indicated signatures. The presence of these signatures in various species from all three known genera within this phylum, viz., Deinococcus, Thermus, and Meiothermus, provide evidence that they are likely distinctive characteristics of the entire phylum which were introduced in a common ancestor of this group. The signature in SerRS, which is absent in D. proteolyticus, was likely introduced after the branching of this species. Phylogenetic studies as well as the nature of the inserts in some of these proteins (viz., sigma70 and SerRS) also support a sister group relationship between the Thermus and the Meiothermus genera. The identified signatures provide strong evidence for the monophyletic nature of the Deinococcus-Thermus phylum. These molecular markers should prove very useful in the identification of new species related to this group.  相似文献   

18.
Mox homeobox genes are expressed during early vertebrate somitogenesis. Here we describe the expression of Has-Mox, a Mox gene from the gastropod Haliotis asinina. Has-Moxis expressed in the trochophore larva in paraxial mesodermal bands. During larval development, Has-Mox expression remains restricted to mesodermal cells destined to form adult muscle in the foot. This restricted expression of Has-Mox in Haliotis is similar to that observed for vertebrate Mox genes, suggesting a conserved role in myogenesis in deuterostomes and lophotrochozoans. In contrast, Mox is not expressed in muscle lineages in the ecdysozoan representatives Caenorhabditis elegans or Drosophila; the C. elegansgenome has lost Mox altogether. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00427-002-0223-6.  相似文献   

19.
Summary The origin of plastids by either a single or multiple endosymbiotic event(s) and the nature of the progenitor(s) of plastids have been the subjects of much controversy. The sequence of the small subunit rRNA (Ssu rRNA) from the plastid of the chlorophyllc-containing algaCryptomonas is presented, allowing for the first time a comparison of this molecule from all of the major land plant and algal lineages. Using a distance matrix method, the phylogenetic relationships among representatives of these lineages have been inferred and the results indicate a common origin of plastids from a cyanobacterium-like ancestor. Within the plastid line of descent, there is a deep dichotomy between the chlorophyte/land plant lineage and the rhodophyte/chromophyte lineage, with the cyanelle ofCyanophora paradoxa forming the deepest branch in the latter group. Interestingly,Euglena gracilis and its colorless relativeAstasia longa are more related to the chromophytes than to the chlorophytes, raising once again the question of the origin of the euglenoid plastids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号