首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional model of an electron-transfer complex between the tetrahemic cytochrome c3 and the ferredoxin I from the sulfate-reducing bacterium Desulfovibrio desulfuricans (Norway strain) has been generated through computer graphics methods. The model is based on the known X-ray structure of the cytochrome and on a model of the ferredoxin that has been derived through computer graphics modeling and energy minimization methods, from the X-ray structure of the homologous ferredoxin from Peptococcus aerogenes. Four possible models of interaction between the two molecules were examined by bringing in close proximity each of the four hemes and the redox center (4Fe-4S) of the ferredoxin and by optimizing the ion pairs interactions. One of these models shows by far the "best" structure in terms of charges, interactions, and complementarity of the topology of the contact surfaces. In this complex, the distance between the iron atoms of the ferredoxin redox center and the hemic iron atom is 11.8 A, which compares well with those found between redox centers in other complexes. The contact surface area between the two molecules is 170 A2.  相似文献   

2.
The cytochrome c553 from Desulfovibrio vulgaris (DvH c553) is of importance in the understanding of the relationship of structure and function of cytochrome c due to its lack of sequence homology with other cytochromes, and its abnormally low oxido-reduction potential. In evolutionary terms, this protein also represents an important reference point for the understanding of both bacterial and mitochondrial cytochromes c. Using the recently determined nuclear magnetic resonance (NMR) structure of the reduced protein we compare the structural, dynamic, and functional characteristics of DvH c553 with members of both the mitochondrial and bacterial cytochromes c to characterize the protein in the context of the cytochrome c family, and to understand better the control of oxido-reduction potential in electron transfer proteins. Despite the low sequence homology, striking structural similarities between this protein and representatives of both eukaryotic [cytochrome c from tuna (tuna c)] and prokaryotic [Pseudomonas aeruginosa c551 (Psa c551)] cytochromes c have been recognized. The previously observed helical core is also found in the DvH c553. The structural framework and hydrogen bonding network of the DvH c553 is most similar to that of the tuna c, with the exception of an insertion loop of 24 residues closing the heme pocket and protecting the propionates, which is absent in the DvH c553. In contrast, the Psa c551 protects the propionates from the solvent principally by extending the methionine ligand arm. The electrostatic distribution at the recognized encounter surface around the heme in the mitochondrial cytochrome is reproduced in the DvH c553, and corresponding hydrogen bonding networks, particularly in the vicinity of the heme cleft, exist in both molecules. Thus, although the cytochrome DvH c553 exhibits higher primary sequence homology to other bacterial cytochromes c, the structural and physical homology is significantly greater with respect to the mitochondrial cytochrome c. The major structural and functional difference is the absence of solvent protection for the heme, differentiating this cytochrome from both reference cytochromes, which have evolved different mechanisms to cover the propionates. This suggests that the abnormal redox potential of the DvH c553 is linked to the raised accessibility of the heme and supports the theory that redox potential in cytochromes is controlled by heme propionate solvent accessibility.  相似文献   

3.
The sub‐nanosecond structural dynamics of reduced and oxidized cytochrome c were characterized. Dynamic properties of the protein backbone measured by amide 15N relaxation and side chains measured by the deuterium relaxation of methyl groups change little upon change in the redox state. These results imply that the solvent reorganization energy associated with electron transfer is small, consistent with previous theoretical analyses. The relative rigidity of both redox states also implies that dynamic relief of destructive electron transfer pathway interference is not operational in free cytochrome c.  相似文献   

4.
Previous Brownian dynamics (BD) simulations identified specific basic residues on fructose-1,6-bisphophate aldolase (aldolase) (I. V. Ouporov et al., Biophysical Journal, 1999, Vol. 76, pp. 17-27) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (I. V. Ouporov et al., Journal of Molecular Recognition, 2001, Vol. 14, pp. 29-41) involved in binding F-actin, and suggested that the quaternary structure of the enzymes may be important. Herein, BD simulations of F-actin binding by enzyme dimers or peptides matching particular sequences of the enzyme and the intact enzyme triose phosphate isomerase (TIM) are compared. BD confirms the experimental observation that TIM has little affinity for F-actin. For aldolase, the critical residues identified by BD are found in surface grooves, formed by subunits A/D and B/C, where they face like residues of the neighboring subunit enhancing their electrostatic potentials. BD simulations between F-actin and aldolase A/D dimers give results similar to the native tetramer. Aldolase A/B dimers form complexes involving residues that are buried in the native structure and are energetically weaker; these results support the importance of quaternary structure for aldolase. GAPDH, however, placed the critical residues on the corners of the tetramer so there is no enhancement of the electrostatic potential between the subunits. Simulations using GAPDH dimers composed of either S/H or G/H subunits show reduced binding energetics compared to the tetramer, but for both dimers, the sets of residues involved in binding are similar to those found for the native tetramer. BD simulations using either aldolase or GAPDH peptides that bind F-actin experimentally show complex formation. The GAPDH peptide bound to the same F-actin domain as did the intact tetramer; however, unlike the tetramer, the aldolase peptide lacked specificity for binding a single F-actin domain.  相似文献   

5.
In the photosynthetic bacterium Rhodobacter sphaeroides, a water soluble cytochrome c2 (cyt c2) is the electron donor to the reaction center (RC), the membrane-bound pigment-protein complex that is the site of the primary light-induced electron transfer. To determine the interactions important for docking and electron transfer within the transiently bound complex of the two proteins, RC and cyt c2 were co-crystallized in two monoclinic crystal forms. Cyt c2 reduces the photo-oxidized RC donor (D+), a bacteriochlorophyll dimer, in the co-crystals in approximately 0.9 micros, which is the same time as measured in solution. This provides strong evidence that the structure of the complex in the region of electron transfer is the same in the crystal and in solution. X-ray diffraction data were collected from co-crystals to a maximum resolution of 2.40 A and refined to an R-factor of 22% (R(free)=26%). The structure shows the cyt c2 to be positioned at the center of the periplasmic surface of the RC, with the heme edge located above the bacteriochlorophyll dimer. The distance between the closest atoms of the two cofactors is 8.4 A. The side-chain of Tyr L162 makes van der Waals contacts with both cofactors along the shortest intermolecular electron transfer pathway. The binding interface can be divided into two domains: (i) A short-range interaction domain that includes Tyr L162, and groups exhibiting non-polar interactions, hydrogen bonding, and a cation-pi interaction. This domain contributes to the strength and specificity of cyt c2 binding. (ii) A long-range, electrostatic interaction domain that contains solvated complementary charges on the RC and cyt c2. This domain, in addition to contributing to the binding, may help steer the unbound proteins toward the right conformation.  相似文献   

6.
7.
To understand general aspects of stability and folding of c-type cytochromes, we have studied the folding characteristics of cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). This cytochrome is structurally similar but lacks sequence homology to other heme proteins; moreover, it has an abnormally low reduction potential. Unfolding of oxidized and reduced cytochrome c553 by guanidine hydrochloride (GuHCl) was monitored by circular dichroism (CD) and Soret absorption; the same unfolding curves were obtained with both methods supporting that cytochrome c553 unfolds by an apparent two-state process. Reduced cytochrome c553 is 7(3) kJ/mol more stable than the oxidized form; accordingly, the reduction potential of unfolded cytochrome c553 is 100(20) mV more negative than that of the folded protein. In contrast to many other unfolded cytochrome c proteins, upon unfolding at pH 7.0 both oxidized and reduced heme in cytochrome c553 become high-spin. The lack of heme misligation in unfolded cytochrome c553 implies that its unfolded structure is less constrained than those of cytochromes c with low-spin, misligated hemes.  相似文献   

8.
 The pH dependence of the redox potentials in the tetrahemic cytochrome c 3 from Desulfovibrio vulgaris Hildenborough (redox-Bohr effect) is here investigated using continuum electrostatics methods. The redox-Bohr effect seems to be associated with changes in the protonation state of charged residues in the protein, but the exact residues had not been identified. The global pK a of this phenomenon is dependent on the redox state of the molecule, and the influence of the pH on the microscopic potential of each heme has been experimentally quantified. The availability of detailed experimental data provides us with important and unique guides to the performance of ab initio pK a calculations aiming at the identification of the groups involved. These calculations were performed in several redox states along the reduction pathway, with the double objective of finding groups with redox-linked pK a shifts, and absolute pK as compatible with the redox-Bohr effect. The group with the largest pK a shift along the reduction pathway is propionate D from heme I. Its effect on the redox potential of individual hemes, as calculated by electrostatic calculations, correlates very well with the experimental order of influence, making it a likely candidate. Abnormal titration of the same propionate has been experimentally observed on a homologous cytochrome c 3 from a different strain, thus strengthening the theoretical result. However, its absolute calculated pK a in the fully oxidised cytochrome is outside the zone where the phenomenon is known to occur, but the calculation shows a strong dependence on small conformational changes, suggesting large uncertainties in the calculated value. A group with a pK a value within the experimentally observed range is propionate D from heme IV. Its influence on the redox potential of the hemes does not correlate with the experimental order, indicating that, although it may be one of the possible players on the phenomenon, it cannot be solely responsible for it. Mutation of the Lys45 residue is suggested as an indirect way of probing the importance of the propionate D from heme I in the mechanism. Non-heme groups may also be involved in this process; our calculations indicate His67 and the N-terminal as groups that may play a role. Accuracy and applicability of current continuum electrostatic methods are discussed in the context of this system. Received: 27 March 1997 / Accepted: 19 August 1997  相似文献   

9.
Molecular dynamics simulations were performed on free RNase T1 and the 2'GMP-RNase T1 complex in vacuum and with water in the active site along with crystallographically identified waters, allowing analysis of both active site and overall structural and dynamics changes due to the presence of 2'GMP. Differences in the active site include a closing in the presence of 2'GMP, which is accompanied by a decrease in mobility of active site residues. The functional relevance of the active site fluctuations is discussed. 2'GMP alters the motion of Tyr-45, suggesting a role for that residue in providing a hydrophobic environment for the protein-nucleic acid interactions responsible for the specificity of RNase T1. The presence of 2'GMP causes a structural change of the C-terminus of the alpha-helix, indicating the transmission of structural changes from the active site through the protein matrix. Overall fluctuations of both the free and 2'GMP enzyme forms are in good agreement with X-ray temperature factors. The motion of Trp-59 is influenced by 2'GMP, indicating differences in enzyme dynamics away from the active site, with the calculated changes following those previously seen in time-resolved fluorescence experiments.  相似文献   

10.
We report on the effects of self-assembled monolayer (SAM) dilution and thickness on the electron transfer (ET) event for cytochrome c (CytC) electrostatically immobilized on carboxyl terminated groups. We observed biphasic kinetic behavior for a logarithmic dependence of the rate constant on the SAM carbon number (ET distance) within the series of mixed SAMs of C(5)COOH/C(2)OH, C(10)COOH/C(6)OH, and C(15)COOH/C(11)OH that is in overall similar to that found earlier for the undiluted SAM assemblies. However, in the case of C(15)COOH/C(11)OH and C(10)COOH/C(6)OH mixed SAMs a notable increase of the ET standard rate constant was observed, in comparison with the corresponding unicomponent (omega-COOH) SAMs. In the case of the C(5)COOH/C(2)OH composite SAM a decrease of the rate constant versus the unicomponent analogue was observed. The value of the reorganization free energy deduced through the Marcus-like data analysis did not change throughout the series; this fact along with the other observations indicates uncomplicated rate-determining unimolecular ET in all cases. Our results are consistent with a model that considers a changeover between the alternate, tunneling and adiabatic intrinsic ET mechanisms. The physical mechanism behind the observed fine kinetic effects in terms of the protein-rigidifying omega-COOH/CytC interactions arising in the case of mixed SAMs are also discussed.  相似文献   

11.
12.
The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium-contaminated waters and waste streams.  相似文献   

13.
14.
The Bcl-2 family of proteins plays a central role in the regulation of mitochondrial outer-membrane permeabilization, a critical step in apoptosis. Heterodimerization between the pro- and anti-apoptotic members of Bcl-2 family is a key event in this process. Anti-apoptotic proteins have high levels of expression in many cancers and they have different affinities for different pro-apoptotic proteins. Experimentally determined structures of all members of Bcl-2 proteins have remarkably similar helical fold despite poor amino acid sequence identity. Peptides representing BH3 region of pro-apoptotic proteins have been shown to bind the hydrophobic cleft of anti-apoptotic proteins and this segment is responsible in modulating the apoptotic pathways in living cells. Understanding the molecular basis of protein-protein recognition is required to develop inhibitors specific to a particular anti-apoptotic protein. We have carried out molecular dynamics simulations on the anti-apoptotic Bcl-X(L) protein in complex with three different BH3 peptides derived from pro-apoptotic Bak, Bad and Bim proteins. Each complex structure was simulated for a period of 50 ns after 2.5 ns equilibration. Analysis of the simulation results showed that in the Bcl-X(L) protein, the helix containing the BH3 region is more flexible than other helices in all three simulations. A network of strong hydrophobic interactions exists between four of the six helices and they contribute significantly to the stability of this helix bundle protein. Analysis of Bcl-X(L)-BH3 peptide interactions reveals the role of loop residues in the protein-peptide interactions in all three simulations. Bad and Bim peptides maintain strong hydrophobic and hydrophilic interactions with the helix preceding the central hydrophobic helix. Residues from this helix interact with an Arg residue in Bad and Bim peptides. This Arg residue is next to the conserved Leu residue and is replaced by Ala in Bak. Absence of these interactions and the helix propensity are likely to be the cause for Bak peptide's weaker binding affinity with the Bcl-X(L) protein. The results of this study have implications in the design of Bcl-X(L)-specific inhibitors.  相似文献   

15.
Chari R  Singh SN  Yadav S  Brems DN  Kalonia DS 《Proteins》2012,80(4):1041-1052
In this study, we report the effects of acidic to basic residue point mutations (5K) on the dipole moment of RNAse SA at different pHs. Dipole moments were determined by measuring solution capacitance of the wild type (WT) and the 5K mutant with an impedance analyzer. The dipole moments were then (1) compared with theoretically calculated dipole moments, (2) analyzed to determine the effect of the point mutations, and (3) analyzed for their contribution to overall protein-protein interactions (PPI) in solution as quantitated by experimentally derived second virial coefficients. We determined that experimental and calculated dipoles were in reasonable agreement. Differences are likely due to local motions of residue side chains, which are not accounted for by the calculated dipole. We observed that the proteins' dipole moments increase as the pH is shifted further from their isoelectric points and that the wild-type dipole moments were greater than those of the 5K. This is likely due to an increase in the proportion of one charge (either negative or positive) relative to the other. A greater charge disparity corresponded to a larger dipole moment. Finally, the larger dipole moments of the WT resulted in greater attractive overall PPI for that protein as compared to the 5K.  相似文献   

16.
Two crystalline forms of cytochrome c3 isolated from two strains of Desulfovibrio vulgaris, Miyazaki, tentatively designated as D. vulgaris, Miyazki F and D. vulgaris, Miyazaki K, have been found. Both belong to the orthorhombic system, space group P2(1)2(1)2(1), but have different cell dimensions; a=54.1, b=68.9 and c=35.0 A for D. vulgaris, Miyazaki F, and a=43.5, b=41.2, and c=62.9 A for D. vulgaris, Miyazaki K. The asymmetric unit of each crystal contains one molecule of cytochrome c3.  相似文献   

17.
We present a new examination of the EPR redox titration data for the tetraheme cytochrome c3 from Desulfovibrio vulgaris Miyazaki. Our analysis includes the contribution of the interaction potentials between the four redox sites and is based on the model previously developed for the study of cytochrome c3 from Desulfovibrio desulfuricans Norway. We observed, as for D. desulfuricans Norway cytochrome c3, that the conformation of the heme with the lowest redox potential, heme 4, is sensitive to the redox state of the heme with the highest potential, heme 1. However in D. vulgaris Miyazaki cytochrome c3 spectral simulations show that heme 4 is present in two conformational states which interconvert partially when heme 1 is reduced. The sets of redox parameters which satisfy the fitting procedure of the titration curves are in the following domain: -250 mV less than or equal to e41 less than or equal to -220 mV, -325 mV less than or equal to e2 less than or equal to -320 mV, -335 mV less than or equal to e3 less than or equal to -330 mV, -360 mV less than or equal to e4 less than or equal to -355 mV, -5 mV less than or equal to I12 less than or equal to 20 mV, -10 mV less than or equal to I13 less than or equal to 5 mV, -15 mV less than or equal to I23 less than or equal to -5 mV, -15 mV less than or equal to I24 less than or equal to -10 mV, -25 mV, less than or equal to I34 less than or equal to -15 mV. As in D. desulfuricans Norway cytochrome c3 the interactions are moderate. Simple electrostatic considerations suggest that these moderate values could be related to the large accessibility of the hemes to the solvent. Our work does not confirm the existence of a cooperative interaction between heme 2 and heme 3 which has been proposed on the basis of electrochemical measurements.  相似文献   

18.
Previous Brownian dynamics (BD) simulations (Ouporov IG, Knull HR and Thomasson KA 1999. Biophys. J. 76: 17-27) of complex formation between rabbit aldolase and F-actin have identified three lysine residues (K288, K293 and K341) on aldolase and acidic residues (DEDE) at the N-terminus of actin as important to binding. BD simulations of computer models of aldolase mutants with any of these lysine residues replaced by alanine show reduced binding energy; the greatest effect of a single substitution is for K341A, and replacement of all three lysines greatly reduces binding. BD simulations of wild-type rabbit aldolase vs altered F-actin show that binding is decreased if any one of the four N-terminal acidic residues is replaced by alanine and binding is greatly reduced if three or more of the N-terminal acidic residues are replaced; none of the four actin residues appear more critical for binding than the others.  相似文献   

19.
Molecular dynamics simulations of Clostridium pasteurianum rubredoxin in the oxidized and reduced forms have been performed. Good agreement between both forms and crystal data has been obtained (rms deviation of backbone atoms of 1.06 and 1.42 Å, respectively), which was due in part to the use of explicit solvent and counterions. The reduced form exhibits an unexpected structural change: the redox site becomes much more solvent-accessible, so that water enters a channel between the surface and the site, but with little actual structural rearrangement (the rms deviation of backbone atoms between the oxidized and reduced is 0.77 Å). The increase in solvent accessibility is also seen, although to a much lesser extent, between the oxidized and reduced crystal structures of Pyrococcus furiosus rubredoxin, but no high resolution crystal or nuclear magnetic resonance solution data exist for reduced C. pasteurianum rubredoxin. The electrostatic potential at the iron site and fluctuations in the potential, which contribute to both the redox and electron transfer properties, have also been evaluated for both the oxidized and the reduced simulations. These results show that the backbone plays a significant role (62–70 kcall/mol/e) and the polar sidechains contribute relatively little (0–4 kcal/mol/e) to the absolute electrostatic potential at the iron of rubredoxin for both forms. However, both groups contribute significantly to the change in redox state by becoming more polarized and more densely packed around the redox site upon reduction. Furthermore, these results show that the solvent becomes much more polarized in the reduced form than in the oxidized form, even excluding the penetrating water. Finally, the simulation indicates that the contribution of the charged side chains to the electrostatic potential is largely canceled by that of the counterions. © 1995 Wiley-Liss, Inc.  相似文献   

20.
 Using potentiometric titrations, two protons were found to participate in the redox-Bohr effect observed for cytochrome c 3 from Desulfovibrio vulgaris (Hildenborough). Within the framework of the thermodynamic model previously presented, this finding supports the occurrence of a concerted proton-assisted 2e step, ideally suited for the coupling role of cytochrome c 3 to hydrogenase. Furthermore, at physiological pH, it is shown that when sulfate-reducing bacteria use H2 as energy source, cytochrome c 3 can be used as a charge separation device, achieving energy transduction by energising protons which can be left in the acidic periplasmic side and transferring deenergised electrons to sulfate respiration. This mechanism for energy transduction, using a full thermodynamic data set, is compared to that put forward to explain the proton-pumping function of cytochrome c oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号