首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
Peptide-membrane interactions have been implicated in both the toxicity and aggregation of β-amyloid (Aβ) peptides. Recent studies have provided evidence for the involvement of liquid-ordered membrane domains known as lipid rafts in the formation and aggregation of Aβ. As a model, we have examined the interaction of Aβ(1−42) with phase separated DOPC/DPPC lipid bilayers using a combination of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRF). AFM images show that addition of Aβ to preformed supported bilayers leads to accumulation of small peptide aggregates exclusively on the gel phase DPPC domains. Initial aggregates are observed approximately 90 min after peptide addition and increase in diameter to 45-150 nm within 24 h. TIRF studies with a mixture of Aβ and Aβ-Fl demonstrate that accumulation of the peptide on the gel phase domains occurs as early as 15 min after Aβ addition and is maintained for over 24 h. By contrast, Aβ is randomly distributed throughout both fluid and gel phases when the peptide is reconstituted into DOPC/DPPC vesicles prior to formation of a supported bilayer. The preferential accumulation of Aβ on DPPC domains suggests that rigid domains may act as platforms to concentrate peptide and enhance its aggregation and may be relevant to the postulated involvement of lipid rafts in modulating Aβ activity in vivo.  相似文献   

2.
The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated peptide, which is a synthetic decapeptide N-terminally linked to a C14 acyl chain (C14-peptide), is incorporated into DPPC bilayers in amounts ranging from 0-20 mol %. The calorimetric scans of the two-component system demonstrate a distinct influence of the C14-peptide on the lipid bilayer thermodynamics. This is manifested as a concentration-dependent downshift of both the main phase transition and the pretransition. In addition, the main phase transition peak is significantly broadened, indicating phase coexistence. In the AFM imaging scans we found that the C14-peptide, when added to supported gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10 A height difference. The AFM images also show that the appearance of the ripple phase of the DPPC lipid bilayers is unaffected by the C14-peptide. The experimental results are supported by molecular dynamics simulations, which show that the C14-peptide has a disordering effect on the lipid acyl chains and causes a lateral expansion of the lipid bilayer. These effects are most pronounced for gel-like bilayer structures and support the observed downshift in the phase-transition temperature. Moreover, the molecular dynamics data indicate a tendency of a tryptophan residue in the peptide sequence to position itself in the bilayer headgroup region.  相似文献   

3.
Elucidation of the molecular mechanism leading to biomembrane fusion is a challenging issue in current biomedical research in view of its involvement in controlling cellular functions and in mediating various important diseases. According to the generally admitted stalk mechanism described for membrane fusion, negatively curved lipids may play a central role during the early steps of the process. In this study, we used atomic force microscopy (AFM) to address the crucial question of whether negatively curved lipids influence the interaction of the simian immunodeficiency virus (SIV) fusion peptide with model membranes. To this end, dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers containing 0.5 mol % dioleoylphosphatidic acid (DOPA) were incubated with the SIV peptide and imaged in real time using AFM. After a short incubation time, we observed a 1.9 nm reduction in the thickness of the DPPC domains, reflecting either interdigitation or fluidization of lipids. After longer incubation times, these depressed DPPC domains evolved into elevated domains, composed of nanorod structures protruding several nanometers above the bilayer surface and attributed to cylindrical reverse micelles. Such DOPC/DPPC/DOPA bilayer modifications were never observed with nontilted peptides. Accordingly, this is the first time that AFM reveals the formation of cylindrical reverse micelles in lipid bilayers promoted by fusogenic peptides.  相似文献   

4.
Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization.  相似文献   

5.
Li L  Cheng JX 《Biochemistry》2006,45(39):11819-11826
We report a new type of gel-liquid phase segregation in giant unilamellar vesicles (GUVs) of mixed lipids. Coexisting patch- and stripe-shaped gel domains in GUV bilayers composed of DOPC/DPPC or DLPC/DPPC are observed by confocal fluorescence microscopy. The lipids in stripe domains are shown to be tilted according to the DiIC18 fluorescence intensity dependence on the excitation polarization. The patch domains are found to be mainly composed of DPPC-d62 according to the coherent anti-Stokes Raman scattering (CARS) images of DOPC/DPPC-d62 bilayers. When cooling GUVs from above the miscibility temperature, the patch domains start to appear between the chain melting and the pretransition temperature of DPPC. In GUVs containing a high molar percentage of DPPC, the stripe domains form below the pretransition temperature. Our observations suggest that the patch and stripe domains are in the Pbeta' and Lbeta' gel phases, respectively. According to the thermoelastic properties of GUVs described by Needham and Evans [(1988) Biochemistry 27, 8261-8269], the Pbeta' and Lbeta' phases are formed at relatively low and high membrane tensions, respectively. GUVs with high DPPC percentage have high membrane surface tension and thus mainly exhibit Lbeta' domains, while GUVs with low DPPC percentage have low membrane surface tension and form Pbeta' domains accordingly. Adding negatively charged lipid to the lipid mixtures or applying an osmotic pressure to GUVs using sucrose solutions releases the surface tension and leads to the disappearance of the Lbeta' gel phase. The relationship between the observed domains in free-standing GUV bilayers and those in supported bilayers is discussed.  相似文献   

6.
Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.  相似文献   

7.
Understanding drug-biomembrane interactions at high resolution is a key issue in current biophysical and pharmaceutical research. Here we used real-time atomic force microscopy (AFM) imaging to visualize the interaction of the antibiotic azithromycin with lipid domains in model biomembranes. Various supported lipid bilayers were prepared by fusion of unilamellar vesicles on mica and imaged in buffer solution. Phase-separation was observed in the form of domains made of dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), or SM/cholesterol (SM/Chl) surrounded by a fluid matrix of dioleoylphosphatidylcholine (DOPC). Time-lapse images collected following addition of 1 mM azithromycin revealed progressive erosion and disappearance of DPPC gel domains within 60 min. We attribute this effect to the disruption of the tight molecular packing of the DPPC molecules by the drug, in agreement with earlier biophysical experiments. By contrast, SM and SM-Chl domains were not modified by azithromycin. We suggest that the higher membrane stability of SM-containing domains results from stronger intermolecular interactions between SM molecules. This work provides direct evidence that the perturbation of lipid domains by azithromycin strongly depends on the lipid nature and opens the door for developing new applications in membrane biophysics and pharmacology.  相似文献   

8.
Understanding drug-biomembrane interactions at high resolution is a key issue in current biophysical and pharmaceutical research. Here we used real-time atomic force microscopy (AFM) imaging to visualize the interaction of the antibiotic azithromycin with lipid domains in model biomembranes. Various supported lipid bilayers were prepared by fusion of unilamellar vesicles on mica and imaged in buffer solution. Phase-separation was observed in the form of domains made of dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), or SM/cholesterol (SM/Chl) surrounded by a fluid matrix of dioleoylphosphatidylcholine (DOPC). Time-lapse images collected following addition of 1 mM azithromycin revealed progressive erosion and disappearance of DPPC gel domains within 60 min. We attribute this effect to the disruption of the tight molecular packing of the DPPC molecules by the drug, in agreement with earlier biophysical experiments. By contrast, SM and SM-Chl domains were not modified by azithromycin. We suggest that the higher membrane stability of SM-containing domains results from stronger intermolecular interactions between SM molecules. This work provides direct evidence that the perturbation of lipid domains by azithromycin strongly depends on the lipid nature and opens the door for developing new applications in membrane biophysics and pharmacology.  相似文献   

9.
Biomembranes are not homogeneous, they present a lateral segregation of lipids and proteins which leads to the formation of detergent-resistant domains, also called "rafts". These rafts are particularly enriched in sphingolipids and cholesterol. Despite the huge body of literature on raft insolubility in non-ionic detergents, the mechanisms governing their resistance at the nanometer scale still remain poorly documented. Herein, we report a real-time atomic force microscopy (AFM) study of model lipid bilayers exposed to Triton X-100 (TX-100) at different concentrations. Different kinds of supported bilayers were prepared with dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM) and cholesterol (Chol). The DOPC/SM 1:1 (mol/mol) membrane served as the non-resistant control, and DOPC/SM/Chol 2:1:1 (mol/mol/mol) corresponded to the raft-mimicking composition. For all the lipid compositions tested, AFM imaging revealed that TX-100 immediately solubilized the DOPC fluid phase leaving resistant patches of membrane. For the DOPC/SM bilayers, the remaining SM-enriched patches were slowly perforated leaving crumbled features reminiscent of the initial domains. For the raft model mixture, no holes appeared in the remaining SM/Chol patches and some erosion occurred. This work provides new, nanoscale information on the biomembranes' resistance to the TX-100-mediated solubilization, and especially about the influence of Chol.  相似文献   

10.
Biomembranes are not homogeneous, they present a lateral segregation of lipids and proteins which leads to the formation of detergent-resistant domains, also called “rafts”. These rafts are particularly enriched in sphingolipids and cholesterol. Despite the huge body of literature on raft insolubility in non-ionic detergents, the mechanisms governing their resistance at the nanometer scale still remain poorly documented. Herein, we report a real-time atomic force microscopy (AFM) study of model lipid bilayers exposed to Triton X-100 (TX-100) at different concentrations. Different kinds of supported bilayers were prepared with dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM) and cholesterol (Chol). The DOPC/SM 1:1 (mol/mol) membrane served as the non-resistant control, and DOPC/SM/Chol 2:1:1 (mol/mol/mol) corresponded to the raft-mimicking composition. For all the lipid compositions tested, AFM imaging revealed that TX-100 immediately solubilized the DOPC fluid phase leaving resistant patches of membrane. For the DOPC/SM bilayers, the remaining SM-enriched patches were slowly perforated leaving crumbled features reminiscent of the initial domains. For the raft model mixture, no holes appeared in the remaining SM/Chol patches and some erosion occurred. This work provides new, nanoscale information on the biomembranes' resistance to the TX-100-mediated solubilization, and especially about the influence of Chol.  相似文献   

11.
The distribution of low concentrations of ganglioside GM1 in L-alpha-dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol monolayers supported on mica has been studied using atomic force microscopy (AFM). The monolayers studied correspond to a pure gel phase and a mixture of liquid-expanded (LE) and liquid-condensed (LC) phases for DPPC and to a single homogeneous liquid-ordered phase for 2:1 DPPC/cholesterol. The addition of 2.5-5% GM1 to phase-separated DPPC monolayers resulted in small round ganglioside-rich microdomains in the center and at the edges of the LC domains. Higher amounts of GM1 (10%) give numerous filaments in the center of the LC domains and larger patches at the edges. A gel phase DPPC monolayer containing GM1 showed large domains containing a network of GM1-rich filaments. The addition of GM1 to a liquid-ordered 2:1 DPPC/cholesterol monolayer gives small, round domains that vary in size from 50 to 150 nm for a range of surface pressures. Larger amounts of GM1 lead to coalescence of the small, round domains to give longer filaments that cover 30-40% of the monolayer surface for 10 mol % GM1. The results indicate that biologically relevant GM1 concentrations lead to submicron-sized domains in a cholesterol-rich liquid-ordered phase that is analogous to that found in detergent-insoluble membrane fractions, and are thought to be important in membrane microdomains or rafts. This demonstrates that AFM studies of model monolayers and bilayers provide a powerful method for the direct detection of microdomains that are too small for study with most other techniques.  相似文献   

12.
We used real-time atomic force microscopy (AFM) to visualize the interactions between supported lipid membranes and well-defined surfactin analogs, with the aim to understand the influence of geometry, charge and hydrophobicity. AFM images of mixed dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers recorded after injection of cyclic surfactin at 1 mM, i.e. well-above the critical micelle concentration, revealed a complete solubilization of the bilayers within 30 min. A linear analog having the same charge and acyl chains was able to solubilize DOPC, but not DPPC, and to promote redeposition leading eventually to a new bilayer. Increasing the charge of the polar head or the length of the acyl chains of the analogs lead to the complete solubilization of both DOPC and DPPC, thus to a stronger membrane activity. Lastly, we found that at low surfactin concentrations (40 µM), DPPC domains were always resistant to solubilization. These data demonstrate the crucial role played by geometry, charge and hydrophobicity in modulating the membrane activity (solubilization, redeposition) of surfactin. Also, this study suggests that synthetic analogs are excellent candidates for developing new surfactants with tunable, well-defined properties for medical and biotechnological applications.  相似文献   

13.
The N-terminal domain of the capsid protein cleavage product of the flock house virus (FHV) consists of 21 residues and forms an amphipathic alpha-helix, which is thought to play a crucial role in permeabilizing biological membranes for RNA translocation in the host cell. We have found that the Met --> Nle variant of this domain (denoted here as gamma1) efficiently induces the formation of the interdigitated gel phase (LbetaI) of 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers. In situ scanning force microscopy of solid supported bilayers and fluorescence spectroscopy of peptide-treated DPPC vesicles provide evidence for the formation of acyl chain interdigitated lipid domains. It could be shown by fluorescence spectroscopy that the peptide inserts in the DPPC matrix above the main transition temperature of the lipid, while the formation of domains with decreased thickness occurs after the sample is cooled to 25 degrees C. The orientation and secondary structure of the peptide in lipid bilayers were investigated using attenuated total reflectance infrared (ATR-IR) and circular dichroism (CD) spectroscopy. These results enabled us to formulate a mechanistic model for the peptide-mediated induction of interdigitation in DPPC bilayers. Moreover, the membrane activity of gamma1 with gel phase lipids established in this study may have further implications for the infection strategy adopted by simple RNA viruses.  相似文献   

14.
Use of cyclodextrin for AFM monitoring of model raft formation   总被引:5,自引:0,他引:5       下载免费PDF全文
The lipid rafts membrane microdomains, enriched in sphingolipids and cholesterol, are implicated in numerous functions of biological membranes. Using atomic force microscopy, we have examined the effects of cholesterol-loaded methyl-beta-cyclodextrin (MbetaCD-Chl) addition to liquid disordered (l(d))-gel phase separated dioleoylphosphatidylcholine (DOPC)/sphingomyelin (SM) and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC)/SM supported bilayers. We observed that incubation with MbetaCD-Chl led to the disappearance of domains with the formation of a homogeneously flat bilayer, most likely in the liquid-ordered (l(o)) state. However, intermediate stages differed with the passage through the coexistence of l(o)-l(d) phases for DOPC/SM samples and of l(o)-gel phases for POPC/SM bilayers. Thus, gel phase SM domains surrounded by a l(o) matrix rich in cholesterol and POPC could be observed just before reaching the uniform l(o) state. This suggests that raft formation in biological membranes could occur not only via liquid-liquid but also via gel-liquid immiscibility. The data also demonstrate that MbetaCD-Chl as well as the unloaded cyclodextrin MbetaCD make holes and preferentially extract SM in supported bilayers. This strongly suggests that interpretation of MbetaCD and MbetaCD-Chl effects on cell membranes only in terms of cholesterol movements have to be treated with caution.  相似文献   

15.
The distribution of ganglioside in supported lipid bilayers has been studied by atomic force microscopy. Hybrid dipalmitoylphosphatidylcholine (DPPC)/dipalmitoylphosphatidylethanolamine (DPPE) and (2:1 DPPC/cholesterol)/DPPE bilayers were prepared using the Langmuir Blodgett technique. Egg PC and DPPC bilayers were prepared by vesicle fusion. Addition of ganglioside GM1 to each of the lipid bilayers resulted in the formation of heterogeneous surfaces that had numerous small raised domains (30--200 nm in diameter). Incubation of these bilayers with cholera toxin B subunit resulted in the detection of small protein aggregates, indicating specific binding of the protein to the GM1-rich microdomains. Similar results were obtained for DPPC, DPPC/cholesterol, and egg PC, demonstrating that the overall bilayer morphology was not dependent on the method of bilayer preparation or the fluidity of the lipid mixture. However, bilayers produced by vesicle fusion provided evidence for asymmetrically distributed GM1 domains that probably reflect the presence of ganglioside in both inner and outer monolayers of the initial vesicle. The results are discussed in relation to recent inconsistencies in the estimation of sizes of lipid rafts in model and natural membranes. It is hypothesized that small ganglioside-rich microdomains may exist within larger ordered domains in both natural and model membranes.  相似文献   

16.
Coupling atomic force microscopy (AFM) with high-resolution fluorescence microscopy is an attractive means of identifying membrane domains by both physical topography and fluorescence. We have used this approach to study the ability of a suite of fluorescent molecules to probe domain structures in supported planar bilayers. These included BODIPY-labeled ganglioside, sphingomyelin, and three new cholesterol derivatives, as well as NBD-labeled phosphatidylcholine, sphingomyelin, and cholesterol. Interestingly, many fluorescent lipid probes, including derivatives of known raft-associated lipids, preferentially partitioned into topographical features consistent with nonraft domains. This suggests that the covalent attachment of a small fluorophore to a lipid molecule can abolish its ability to associate with rafts. In addition, the localization of one of the BODIPY-cholesterol derivatives was dependent on the lipid composition of the bilayer. These data suggest that conclusions about the identification of membrane domains in supported planar bilayers on the basis of fluorescent lipid probes alone must be interpreted with caution. The combination of AFM with fluorescence microscopy represents a more rigorous means of identifying lipid domains in supported bilayers.  相似文献   

17.
Supported lipid bilayers (SLBs) are widely used in biophysical research to investigate the properties of biological membranes and offer exciting prospects in nanobiotechnology. Atomic force microscopy (AFM) has become a well-established technique for imaging SLBs at nanometer resolution. A unique feature of AFM is its ability to monitor dynamic processes, such as the interaction of bilayers with proteins and drugs. Here, we present protocols for preparing dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers supported on mica using small unilamellar vesicles and for imaging their nanoscale interaction with the antibiotic azithromycin using AFM. The entire protocol can be completed in 10 h.  相似文献   

18.
Herbig ME  Assi F  Textor M  Merkle HP 《Biochemistry》2006,45(11):3598-3609
The cell penetrating peptide (CPP) pVEC has been shown to translocate efficiently the plasma membrane of different mammalian cell lines by a receptor-independent mechanism without exhibiting cellular toxicity. This ability renders CPPs of broad interest in cell biology, biotechnology, and drug delivery. To gain insight into the interaction of CPPs with biomembranes, we studied the interaction of pVEC and W2-pVEC, an Ile --> Trp modification of the former, with phase-separated supported phospholipid bilayers (SPB) by atomic force microscopy (AFM). W2-pVEC induced a transformation of dipalmitoyl phosphatidylcholine (DPPC) domains from a gel phase state via an intermediate state with branched structures into essentially flat bilayers. With pVEC the transformation followed a similar pathway but was slower. Employing fluorescence polarization, we revealed the capability of the investigated peptides to increase the fluidity of DPPC domains as the underlying mechanism of transformation. Due to their tighter packing, sphingomyelin (SM) domains were not transformed. By combination, AFM observations, dynamic light scattering studies, and liposome leakage experiments indicated that bilayer integrity was not compromised by the peptides. Transformation of gel phase domains in SPB by CPPs represents a novel aspect in the discussion on uptake mechanisms of CPPs.  相似文献   

19.
β amyloid peptide plays an important role in both the manifestation and progression of Alzheimer disease. It has a tendency to aggregate, forming low-molecular weight soluble oligomers, higher-molecular weight protofibrillar oligomers and insoluble fibrils. The relative importance of these single oligomeric-polymeric species, in relation to the morbidity of the disease, is currently being debated. Here we present an Atomic Force Microscopy (AFM) study of Aβ(25–35) aggregation on hydrophobic dioleoylphosphatidylcholine (DOPC) and DOPC/docosahexaenoic 22∶6 acid (DHA) lipid bilayers. Aβ(25–35) is the smallest fragment retaining the biological activity of the full-length peptide, whereas DOPC and DOPC/DHA lipid bilayers were selected as models of cell-membrane environments characterized by different fluidity. Our results provide evidence that in hydrophobic DOPC and DOPC/DHA lipid bilayers, Aβ(25-35) forms layered aggregates composed of mainly annular structures. The mutual interaction between annular structures and lipid surfaces end-results into a membrane solubilization. The presence of DHA as a membrane-fluidizing agent is essential to protect the membrane from damage caused by interactions with peptide aggregates; to reduces the bilayer defects where the delipidation process starts.  相似文献   

20.
We analyzed the kinetics for the subgel (SGI) phase formation in DPPC/DOPC binary bilayers paying attention to DOPC-induced modification of the bilayer physical properties. Differential scanning calorimetry and X-ray diffraction revealed that addition of DOPC reduced the apparent initial lag time to start the SGI phase formation, and that the SGI phase in the binary bilayers had basically the same structure as that in pure DPPC bilayers though addition of DOPC markedly increased the peak temperature and enthalpy of the subtransition in heating. Moreover, addition of DOPC abolished the prolongation of the initial lag time in pure DPPC bilayers induced by lowering the incubation temperature from 0 to ?5 °C. Our results suggested that DOPC molecules work as a diffusion enhancer to promote the nucleation of the SGI phase, and relatively destabilize the gel phase so that the formed SGI phase transforms into the ripple phase in heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号