首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endotoxin injures bovine pulmonary endothelial cells in culture but the cytotoxicity is unaffected by a host of antiinflammatory drugs. We hypothesized that agents which could decrease intracellular concentrations of toxic metabolites of O2 would prevent endotoxin effects on cultured pulmonary artery endothelial cells. We measured endotoxin-induced release of lactate dehydrogenase (LDH) from and production of prostanoids by cultured bovine pulmonary endothelial cells in the presence and absence of dimethyl sulfoxide (DMSO) and the xanthine oxidase inhibitor allopurinol. Escherichia coli endotoxin (0.001-10 micrograms/ml) caused a dose-related release of LDH and stimulated production of both prostacyclin [measured as 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha)] and prostaglandin E2 (PGE2). Both DMSO and allopurinol decreased endotoxin-induced LDH release; this effect was related to concentration of the drugs (0-2% for DMSO and 0-0.3 mg/ml for allopurinol). Both drugs also prevented endotoxin-induced changes in endothelial morphology. Endotoxin increased intracellular reduction of the redox dye nitro blue tetrazolium, caused intracellular oxidation of 2',7'-dichlorofluorescein diacetate and caused release of conjugated dienes from endothelial cells; both DMSO and allopurinol inhibited those responses. DMSO, but not allopurinol, prevented endotoxin-induced production of prostacyclin and PGE2 by endothelium. Direct injury of pulmonary endothelium by endotoxin is inhibited by two chemically dissimilar drugs which have a common potential for decreasing intracellular concentrations of toxic metabolites of O2; indirect evidence suggests that potential as a mechanism for the protective effects of the drugs.  相似文献   

2.
de Lima TM  de Sa Lima L  Scavone C  Curi R 《FEBS letters》2006,580(13):3287-3295
Modulation of macrophage functions by fatty acids (FA) has been studied by several groups, but the effect of FA on nitric oxide production by macrophages has been poorly examined. In the present study the effect of palmitic, stearic, oleic, linoleic, arachidonic, docosahexaenoic and eicosapentaenoic acids on NF-kappaB activity and NO production in J774 cells (a murine macrophage cell line) was investigated. All FA tested stimulated NO production at low doses (1-10 microM) and inhibited it at high doses (50-200 microM). An increase of iNOS expression and activity in J774 cells treated with a low concentration of FA (5 microM) was observed. The activity of NF-kappaB was time-dependently enhanced by the FA treatment. The inhibitory effect of FA on NO production may be due to their cytotoxicity, as observed by loss of membrane integrity and/or increase of DNA fragmentation in cells treated for 48 h with high concentrations. The results indicate that, at low concentrations FA increase NO production by J774 cells, whereas at high concentrations they cause cell death.  相似文献   

3.
Endotoxin-induced lung injury in rats: role of eicosanoids   总被引:7,自引:0,他引:7  
We studied lung vascular injury and quantitated lung eicosanoids in rats after intraperitoneal injection of Salmonella enteritidis endotoxin. Within 40 min after endotoxin injection (20 mg/kg), lung tissue thromboxane B2 doubled, although 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) increased by 8- to 10-fold. Lung 5-hydroxyeicosatetraenoic acid and leukotriene C4 were variably increased by endotoxin. The levels of all eicosanoids returned to base line 6 h after endotoxin challenge. Lung vascular injury, as assessed by the extravascular accumulation of 125I-albumin and water in isolated perfused lungs, was observed 90 min after endotoxin injection (0.02-20 mg/kg) in vivo. Inhibition of the cyclooxygenase pathway with indomethacin and the lipoxygenase pathway with diethylcarbamazine and 2-(12-hydroxydodeca-5,10-dinyl)-3,5,6-trimethyl-1,4-benzoqui none failed to attenuate endotoxin-induced lung injury. In addition, essential fatty acid deficiency, which markedly reduced lung tissue levels of 6-keto-PGF1 alpha, thromboxane B2, and leukotriene C4, did not protect against endotoxin injury. We conclude that although lung eicosanoids are activated during endotoxemia, they do not play a crucial role in the development of acute lung vascular injury in rats.  相似文献   

4.
OBJECTIVE AND DESIGN: The involvement of PAF, TXA2 and NO in LPS-induced pulmonary neutrophil sequestration an hyperlactataemia was studied in conscious rats. As pharmacological tools WEB 2170 (PAF receptor antagonist, 20 mg/kg), camongarel (inhibitor of TXA2 synthase, 30 mg/kg), N(G)-nitro L-arginine methyl ester (L-NAME -- non-selective nitric oxide synthase inhibitor, 30 mg/kg) were used. METHODS: Plasma lactate and NO2-/NO3- levels as well as myeloperoxidase (MPO) activity in lung tissue were measured one and five hours after administration of LPS (4 mg/kg(-1)). RESULTS: LPS induced a twofold increase in plasma lactate levels and nearly 10-fold increase in plasma NO2-/NO3- levels five but not one hour after LPS administration. However, LPS-induced increase in pulmonary MPO activity was seen at both time intervals. Neither WEB 2170 nor camonagrel changed one or five hours responses to LPS (lactate, NO2-/NO3-, MPO). L-NAME potentiated LPS-induced rise in MPO activity in the lung and this potentiation was not affected by WEB 2170 or camonagrel. L-NAME supressed plasma NO2-/NO3- response and substantially potentiated plasma lactate response to LPS and both effects were partially reversed by WEB 2170 or camonagrel. CONCLUSIONS: In summary, we demonstrated that PAF and TXA 2 play a role in overproduction of lactate during endotoxaemia in NO-deficient rats. However, these lipids do not mediate endotoxin-induced sequestration of neutrophils in the lung.  相似文献   

5.
The effects of NG-monomethyl-L-arginine (NMMA), a specific inhibitor of nitric oxide (NO) synthesis was tested on the endotoxin-induced alterations of alpha-adrenoceptor function. In isolated aorta, there was no significant difference in the tension induced by phenylephrine (PE, 10 microM) on rings removed from control and endotoxin injected rats (10 mg/kg, ip). However, a lack of tonicity of the contraction was observed in rings of shocked rats (8 +/- 2.9 and 86 +/- 4.6% relaxation at 105 min for sham and shocked rings respectively). The gradual tension decrease to PE was more potent in rings possessing endothelial cells. However, in both preparations, the loss of tonicity was significantly inhibited by NMMA (30 microM). In endothelium-free rings, L-arginine (100 microM) potentiated the loss of tonicity to PE and reversed the inhibitory effect of NMMA. NMMA, like methylene blue, was also able to restore the PE-contraction. The results indicate that the endotoxin-induced alterations of vascular reactivity may be due, in part, to NO formation from L-arginine independent of the endothelium.  相似文献   

6.
In the present study, we examined the effects of L-nitroarginine methylester (L-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, indomethacin (IND), a non-selective COX inhibitor and a combination of these agents (L-NAME+IND) on carrageenan-induced pleurisy in rats. Exudate volume, albumin leakage, leukocyte influx, exudate and plasma nitrite/nitrate (NO(x)) levels and exudate PGE(2) levels increased markedly 6 h after an intrapleural injection of 2% carrageenan. First, the effects of L-NAME and IND alone were investigated. L-NAME non-significantly reduced exudate volume by 26% at 10 mg/kg (i.p.), and significantly by 45% at 30 mg/kg. IND dose-dependently decreased the exudate volume at 0.3-10 mg/kg (p.o.) and the effect reached the maximal level at 1 mg/kg (33%). Second, the effects of L-NAME (10 mg/kg, i.p.), IND (1 mg/kg, p.o.) and L-NAME+IND were examined. L-NAME and IND alone at the dose employed significantly reduced the exudate volume and albumin levels by 21-26%. L-NAME but not IND tended to reduce the increased exudate and plasma NO(x) by 18% and 19%, respectively. IND but not L-NAME significantly reduced leukocyte numbers and PGE(2) levels in the exudates by 25% and 77%, respectively. L-NAME+IND significantly reduced exudate volume, albumin leakage, leukocyte number, PGE(2) and NO(x) by 43%, 41%, 31%, 80% and 37%, respectively. The inhibitory effects of L-NAME+IND on exudate volume, albumin leakage and NO(x) levels were greater than those of L-NAME and IND alone. In conclusion, a non-selective NOS inhibitor and COX inhibitor showed anti-inflammatory effects at the early phase of carrageenan-induced pleurisy, and a combination of both inhibitors had a greater effect than each alone probably via the potentiation of NOS inhibition. The simultaneous inhibition of NOS and COX could be a useful approach in therapy for acute inflammation.  相似文献   

7.
Aged garlic extract attenuates intracellular oxidative stress.   总被引:5,自引:0,他引:5  
N Ide  B H Lau 《Phytomedicine》1999,6(2):125-131
Oxidation of low density lipoprotein (LDL) has been recognized as playing an important role in the initiation and progression of atherosclerosis. We recently reported that aged garlic extract (AGE) inhibited LDL oxidation and minimized oxidized LDL-induced cell injury. In this study, the antioxidant effects of AGE were further examined using bovine pulmonary artery endothelial cells (PAEC) and murine macrophages. Lactate dehydrogenase (LDH) release, as an index of membrane injury, and intracellular glutathione (GSH) levels were determined. Oxidized LDL (Ox-LDL) caused an increase of LDH release and depletion of GSH. Pretreatment with AGE prevented these changes. AGE exhibited an inhibition of Ox-LDL-induced peroxides in PAEC. AGE suppressed peroxides in murine Macrophage (J774 cells) dose-dependently. The J774 cells were also incubated with AGE, interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS) and nitric oxide (NO) production was measured. AGE inhibited NO production in J774 cells. In a cell free system, AGE was shown to scavenge H2O2 dose-dependently. Our data demonstrate that AGE can protect the endothelial cells from oxidized LDL-induced injury by preventing depletion of intracellular GSH and by removing peroxides. AGE also reduces levels of NO and peroxides in macrophages. These data suggest that AGE is a useful protective agent against cytotoxicity associated with Ox-LDL and NO, and it may thus be useful for the prevention of atherosclerosis and cardiovascular diseases.  相似文献   

8.
Nitric oxide (NO) production during endotoxemia is associated with decreased total CYP content, CYP 1A1/2, 2B1/2, 2C6, 2C11, 3A1, and 3A2 mRNA, protein expression or activity which is prevented by NO synthase (NOS) inhibitors in rats. This study was conducted to determine if endotoxin-induced hypotension caused by NO production is mediated by inhibition of renal CYP 4A protein expression and activity. In conscious male Sprague-Dawley rats, endotoxin (10 mg/kg, ip) reduced mean arterial pressure (MAP), increased serum and renal nitrite levels, and inducible NOS (iNOS), and decreased renal CYP 4A1/A3 protein and CYP 4A activity. The selective iNOS inhibitor 1,3-PBIT (10 mg/kg, ip; 1h after endotoxin) prevented endotoxin-induced decrease in MAP, renal CYP 4A1/A3 protein level and CYP 4A activity and increase in systemic and renal nitrite production. The selective constitutive NOS (cNOS) inhibitor N(G)-nitro-L-arginine (L-NNA; 20 mg/kg, ip; 1 h after endotoxin) partially attenuated endotoxin-induced decrease in MAP. The selective CYP 4A inhibitor, aminobenzotriazole (50 mg/kg, ip; 1 h after endotoxin) diminished CYP 4A1/A3 protein level and CYP 4A activity. Aminobenzotriazole did not alter the endotoxin-induced decrease in MAP, but it reversed the effect of 1,3-PBIT in preventing endotoxin-induced fall in MAP and CYP 4A activity. These data suggest that the endotoxemia-induced increase in NO production primarily via iNOS suppresses renal CYP 4A expression and activity, and inhibition of iNOS with 1,3-PBIT restores renal CYP 4A protein and activity and MAP presumably due to increased production of arachidonic acid metabolites derived from CYP 4A.  相似文献   

9.
10.
Nitric oxide (NO) is the mediator of ischemic preconditioning against myocardial infarction. Desflurane produces anesthetic preconditioning to protect the myocardium against infarction. In the model of myocardial ischemia-reperfusion injury in rabbits, we evaluated desflurane-induced ischemic preconditioning and studied its mechanism of NO synthesis. Thirty-two male adult New Zealand white rabbits were anesthetized with intravenous (IV) 30 mg/kg pentobarbital followed by 5 mg/kg/hr infusion. All rabbits were subjected to 30 minutes (min) long lasting left anterior descending coronary artery (LAD) occlusion and three hours (hr) of subsequent reperfusion. Before LAD occlusion, the rabbits were randomly allocated into four groups for preconditioning treatment (eight for each group). The control group did not receive any preconditioning treatment. The desflurane group received inhaled desflurane 1.0 MAC (minimal end-tidal alveolar concentration) for 30 min that was followed by a 15 min washout period. The L-NAME-desflurane group received L-NAME (NG-nitro-L-arginine methyl ester; non-selective Nitric Oxide Synthetase (NOS) inhibitor) 1 mg/kg IV 15 min before 1.0 MAC inhaled desflurane for 30 min. The L-NAME group received L-NAME 1 mg/kg IV. Infarct volume, ventricular arrhythmia, plasma lactate dehydrogenase (LDH), creatine kinase (CK) activity and myocardial perfusion were recorded simultaneously. We have found that hemodynamic values of the coronary blood flow before, during, and after LAD occlusion were not significantly different among these four groups. For the myocardial ischemia-reperfusion injury animals, the infarction size (mean +/- SEM) in the desflurane group was significantly reduced to 18 +/- 3% in the area at risk as compared with 42 +/- 7% in the control group, 35 +/- 6 in the L-NAME group, and 34 +/- 4% in the L-NAME-desflurane group. The plasma LDH, CK levels, and duration of ventricular arrhythmia were also significantly decreased in the desflurane group during ischemia-reperfusion injury. Our results indicate that desflurane is an anesthetic preconditioning agent, which could protect the myocardium against the ischemia-reperfusion injury. This beneficial effect of desflurane on the ischemic preconditioning is probably through NO release since L-NAME abrogates the desflurane preconditioning effect.  相似文献   

11.
To investigate the effect and underlying mechanism of aescin on acute liver injury induced by endotoxin, liver injury was established by injecting lipopolysaccharide (LPS) in mice. Animals were assigned to seven groups: the control group and groups treated with LPS (40 mg/kg), aescin (3.6 mg/kg), LPS plus dexamethasone (4 mg/kg) and LPS plus aescin (0.9, 1.8 or 3.6 mg/kg). Hepatic histopathological changes were examined under a light microscope. Activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were determined. Levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), nitric oxide (NO) and antioxidative parameters in liver homogenate were measured. Glucocorticoid receptor (GR), 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and 11 beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2) expressions in liver were determined by western blotting. Treatment with escin could inhibit immigration of inflammatory cells, alleviate the degree of necrosis, and decrease serum ALT and AST activities. Aescin also down-regulated levels of inflammation mediators (TNF-α, IL-1β and NO) and 11β-HSD2 expression in liver, up-regulated GR expression, enhanced endogenous antioxidative capacity, but have no obvious effect on 11β-HSD1 expression in liver. The findings suggest aescin has protective effects on endotoxin-induced liver injury, and the underlying mechanisms were associated with its anti-inflammatory effects, up-regulating GR expression, down-regulating 11β-HSD2 experssion, and antixoidation.  相似文献   

12.
Bone marrow-derived mesenchymal stem cells (BMDMSCs) appear to be important in repair of the chronic lung injury caused by bleomycin in mice. To determine effects of these BMDMSCs on an acute inflammatory response, we injected C57BL/6 mice intraperitoneally with 1 mg/kg endotoxin followed either by intravenous infusion of 5 x 10(5) BMDMSCs, the same number of lung fibroblasts, or an equal volume of normal saline solution. Lungs harvested 6, 24, and 48 h and 14 days after endotoxin showed that BMDMSC administration prevented endotoxin-induced lung inflammation, injury, and edema. Although we were able to detect donor cells in the lungs at 1 day after endotoxin, by 14 days no donor cells were detected. BMDMSC administration suppressed the endotoxin-induced increase in circulating proinflammatory cytokines without decreasing circulating levels of anti-inflammatory mediators. Ex vivo cocultures of BMDMSC and lung cells from endotoxemic animals demonstrated a bilateral conversation in which lung cells stimulated proliferation and migration of stem cells and suppressed proinflammatory cytokine production by lung cells. We conclude that BMDMSCs decrease both the systemic and local inflammatory responses induced by endotoxin. These effects do not require either lung engraftment or differentiation of the stem cells and are due at least in part to the production of stem cell chemoattractants by the lungs and to humoral and physical interactions between stem cells and lung cells. We speculate that mobilization of this population of BMDMSCs may be a general mechanism for modulating an acute inflammatory response.  相似文献   

13.
Chloropicrin (CCl3NO2) is a widely used soil fumigant with an unknown mechanism of acute toxicity. We investigated the possible involvement of dechlorination in CCl3NO2 toxicity by considering its metabolism, inhibition of pyruvate and succinate dehydrogenases, cytotoxicity in cultured cells, and interaction with hemoproteins. In a newly discovered pathway, CCl3NO2 is metabolized to thiophosgene, which is characterized as the cyclic cysteine adduct (raphanusamic acid) in the urine of mice. CCl3NO2 inhibits porcine heart pyruvate dehydrogenase complex (IC-50 4 microM) and mouse liver succinate dehydrogenase complex (IC-50 13 microM), whereas its dehalogenated metabolites (CHCl2NO2 and CH2ClNO2) are more than 10 times less effective. The inhibitory potency of CCl3NO2 for these dehydrogenase complexes is similar to that of captan, folpet, and dichlone fungicides (IC-50 2-6 microM). CCl3NO2 cytotoxicity with Hepa 1c1c7+ mouse hepatoma cells (IC-50 9 microM) is not correlated with glutathione depletion. Mice treated intraperitoneally with CCl3NO2 at 50 mg/kg but not with an equivalent dose of CHCl2NO2 show increased concentrations of oxyhemoglobin in liver. The acute toxicity of CCl3NO2 in mice is due to the parent compound or metabolites other than CHCl2NO2 or CH2ClNO2 and may be associated with inhibition of the pyruvate dehydrogenase complex and elevated oxyhemoglobin.  相似文献   

14.
H Jaeschke  V B Schini  A Farhood 《Life sciences》1992,50(23):1797-1804
The potential role of nitric oxide (NO) and its reaction product with superoxide, peroxynitrite, was investigated in a model of hepatic ischemia-reperfusion injury in male Fischer rats in vivo. Pretreatment with the NO synthase inhibitor nitro-L-arginine (10 mg/kg) did neither affect the post-ischemic oxidant stress and liver injury during the initial reperfusion phase nor the subsequent infiltration of neutrophils into the liver and the later, neutrophil-induced injury phase. Furthermore, no evidence was found for a postischemic increase of the urinary excretion of nitrite, a stable oxidation metabolite of NO. In contrast, the administration of Salmonella enteritidis endotoxin (1 mg/kg) induced a significant diuresis in Fischer rats and an 800-fold enhancement of the urinary nitrite excretion. Nitro-L-arginine pretreatment inhibited the endotoxin-induced nitrite formation by 97%. Hepatic cGMP levels, as index of NO formation in the liver, were only increased significantly after endotoxin administration but not after ischemia and reperfusion. Our results provide no evidence for any enhanced generation of NO or peroxynitrite either systemically or locally during reperfusion and therefore it is unlikely that any of these metabolites are involved in the oxidant stress and liver injury during reperfusion after hepatic ischemia.  相似文献   

15.
This study was performed in order to examine whether the uraemic toxin, methylguanidine (MG), can modulate tumor necrosis factor alpha (TNF alpha) release by activated macrophages. In this study we have evaluated the ability of MG to influence TNF alpha release in vitro, in Escherichia coli lypopolysaccharide- (LPS)-stimulated J774 cells preincubated overnight with MG, and in vivo in rats treated with MG before and after LPS challenge. Parallel experiments employing N(G)-nitro-L-arginine methyl esther (L-NAME) were also carried out for comparison. The effect of LPS (6 x 10(3) u/ml) on TNF alpha release by J774, following overnight incubation with MG or L-NAME (1 mM), was examined 3 hours after LPS challenge. LPS-stimulated J774 released 287.83+/-88 u/ml TNF alpha into the culture medium. MG (1 mM) significantly inhibited TNF alpha release by 73% (P<0.05). L-NAME (1 mM) significantly inhibited TNF alpha release too by 72.88% (P<0.05). The effect of MG and L-NAME have been also studied in vivo. Serum TNF alpha levels in LPS treated rats 2 h after LPS challenge were 88.33+/-31.7 u/ml as compared to the serum TNF alpha levels of control rats (undetectable). Treatment of rats with MG (30 mg/kg, i.p.) strongly and significantly reduced TNF alpha release (98.71% inhibition; with P<0.001); in the same experimental setting L-NAME (10 mg/kg, i.p.) also significantly reduced TNF alpha serum levels (76.47% inhibition; with P<0.01). These results could indicate that immune disfunction related to uremia may be related to the inhibitory capability of uremic catabolyte, MG, on TNF alpha synthesis and release.  相似文献   

16.
《Journal of Physiology》1997,91(3-5):139-149
We describe the effects of nitric oxide (NO) agonists and antagonists and the influence of a novel organoprotective pentadecapeptide BPC 157, on the development of pulmonary hypertension syndrome and tissue lesions in chicks. Acute toxicity, which includes single dose application of saline (1 mL intraperitoneally (ip)), BPC 157 (10 μg/kg bw), L-NAME (NO antagonist, doses 50, 100, 150 mg/kg bw) and L-arginine (NO agonist/100 mg/kg bw with their combination L-NAME + BPC 157; L-NAME + L-arginine) was investigated. In this experiment pathohistological examination of the spleen, heart, liver and lungs and hematological analysis was conducted. In the chronic toxicity experiment, the animals were treated daily for 5 weeks with L-NAME (10 mg/kg bw), L-arginine (100 mg/kg bw), BPC 157 (10 μg/kg bw) and their combinations (L-NAME + BPC 157; L-NAME + L-arginine) ip. Seven animals from each group, including controls (saline 1 mL ip) were killed every week. Application of L-NAME caused pulmonary hypertension syndrome (PHS) in the treated chicks, which was prevented by the simultaneous application of L-arginine and BPC 157. Pathohistological examination of both acute and chronic toxicity revealed that L-NAME caused severe tissue damage (myocardial and hepatic cell necrosis, necrosis of the lymphoid cells in the spleen) while L-arginine provoked predominantly congestion, edema and hemorrhages in all organs. The effect of L-NAME was successfully inhibited by the application of L-arginine and BPC 157 but the latter substance did not cause any tissue or organ damage. Hematological analysis shows significant hemoglobin and leukocyte number decrease in the L-NAME-treated groups of chicks.  相似文献   

17.
Many studies in diverse models suggest that nitric oxide (NO) may be protective against liver injury due to ischaemia-reperfusion (IR). We evaluated, in an experimental in vivo model of rat liver partial ischaemia, the effects of pretreatment by an NO donor (spermineNONOate, 5mg/kg), and exogenous cGMP (8Br-cGMP, 16 mg/kg) or an endogenous cGMP producer (ANP, 10 microg/kg), to assess their beneficial effects. After 6h of reperfusion, 8Br-cGMP completely prevented the adverse effect of Nomega-nitro-L-arginine (10mg/kg) and 8Br-cGMP alone showed a protective action on both hepatocytes (AST, -25%, LDH, -55%) and endothelial cells (plasma hyaluronic acid (HA), -30%). ANP caused a marked decrease in AST and LDH activities only after 1h of reperfusion (AST, -30%, LDH, -40%). Pretreatment with spermineNONOate prevented hepatocyte injury after 1 and 6h of reperfusion (AST, -22%, LDH, -27%). However, neither spermineNONOate nor ANP had any protective effect on endothelial cell damage. These results confirm the beneficial effect of an NO donor and strongly suggest the implication of a cGMP pathway that does not involve a blockade of inflammatory cytokines production (IL-6 generation was unaffected by 8Br-cGMP pre-treatment). In our model, 8Br-cGMP showed a greater protective effect than ANP or spermineNONOate and so might be used to prevent hepatic injury after IR. Finally, we propose a schematic representation of the different routes for the actions of NO in protecting the liver against IR damage.  相似文献   

18.
Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde, the levels of which are increased in the blood of smokers. To determine if acrolein is involved in the pathology of smoke angiopathy, the effect of acrolein on human umbilical vein endothelial cells (HUVEC) was examined. Intracellular nitric oxide (NO) levels, determined using diaminofluorescein-2 diacetate (DAF-2 DA), an NO sensitive fluorescent dye, were found to be increased after treatment in HUVEC with 10 microM acrolein. The measurement of nitrite with 2,3-diaminonaphthalene and a Western blot analysis revealed that nitrite and S-nitroso-cysteine levels were increased in a dose-dependent manner, confirming that NO production is increased by acrolein. The increase was not reduced by treatment with 10mM N-acetyl-l-cysteine (NAC), an anti-oxidant, but was reduced with 10 microM of the intracellular calcium chelator, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester. Acrolein-stimulated NO production was significantly reduced by pretreatment with 1mM N(G)-nitro-l-arginine-methyl ester (L-NAME), an NO synthase inhibitor. The cytotoxicity of acrolein was reduced by pretreatment with 10 microM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO), an intracellular NO scavenger, or 1mM L-NAME, whereas it was not reduced by 10mM NAC, 20 microM Curcumin, another peroxide scavenger, or 100 microM Mn(III)TMPyP, a superoxide dismutase mimic. Nuclear staining and a Western blot analysis using an anti-cleaved caspase 3 antibody revealed that the reduced viability of HUVEC by acrolein was due to apoptosis, which was reversed after pretreatment with 0.1mM carboxy-PTIO or 1mM L-NAME. Thus, acrolein increases intracellular calcium production to induce intracellular NO production by a calcium-dependent NO synthase, possibly eNOS, and the excess and rapid increase in NO might lead to the apoptosis of HUVEC. These data suggest that acrolein might be involved in the pathology of smoke angiopathy through the NO-induced apoptosis of endothelial cells.  相似文献   

19.
Matsuda H  Li Y  Yoshikawa M 《Life sciences》2000,66(3):PL 41-PL 46
We reported previously that escins Ia, Ib, IIa, and IIb, isolated from horse chestnuts, inhibited the 30-min gastric emptying (GE) in mice. In this study, the effects of escins Ia-IIb on gastrointestinal transit (GIT), and the roles of endogenous prostaglandins (PGs) and nitric oxide (NO) in the effects of escins Ia--IIb on GE and GIT were investigated in fasted mice. Escins Ia-IIb (12.5-50 mg/kg, p.o.) dose-dependently accelerated GIT. Both GE inhibitions and GIT accelerations by escins Ia-IIb (25 mg/kg) were markedly attenuated by pretreatment with indomethacin (10 mg/kg, s.c., an inhibitor of PGs synthesis). Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p., an inhibitor of constitutive and inducible NO synthase) attenuated the effects of escins Ia-IIb on GIT, but not on GE. The effect of L-NAME was reversed by L-arginine (600 mg/kg, i.p., a substrate of NO synthase), but not by D-arginine (900 mg/kg, i.p., the enantiomer of L-arginine). The GIT accelerations of escins Ia-IIb were not attenuated by pretreatment with D-NAME (10 mg/kg, i.p., the enantiomer of L-NAME) or dexamethasone (5 mg/kg, i.p., an inhibitor of inducible form of NO synthase). The results suggest that endogenous PGs play an important role in both GE inhibitions and GIT accelerations, and constitutive NO is involved in the GIT accelerations, by escins Ia--IIb in mice.  相似文献   

20.
We determined the contributions of various endothelium-derived relaxing factors to control of basal vascular tone and endothelium-dependent vasodilation in the mouse hindlimb in vivo. Under anesthesia, catheters were placed in a carotid artery, jugular vein, and femoral artery (for local hindlimb circulation injections). Hindlimb blood flow (HBF) was measured by transit-time ultrasound flowmetry. N(omega)-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg plus 10 mg x kg(-1) x h(-1)), to block nitric oxide (NO) production, altered basal hemodynamics, increasing mean arterial pressure (30 +/- 3%) and reducing HBF (-30 +/- 12%). Basal hemodynamics were not significantly altered by indomethacin (10 mg x kg(-1) x h(-1)), charybdotoxin (ChTx, 3 x 10(-8) mol/l), apamin (2.5 x 10(-7) mol/l), or ChTx plus apamin (to block endothelium-derived hyperpolarizing factor; EDHF). Hyperemic responses to local injection of acetylcholine (2.4 microg/kg) were reproducible in vehicle-treated mice and were not significantly attenuated by L-NAME alone, indomethacin alone, L-NAME plus indomethacin with or without co-infusion of diethlyamine NONOate to restore resting NO levels, ChTx alone, or apamin alone. Hyperemic responses evoked by acetylcholine were reduced by 29 +/- 11% after combined treatment with apamin plus charybdotoxin, and the remainder was virtually abolished by additional treatment with L-NAME but not indomethacin. None of the treatments altered the hyperemic response to sodium nitroprusside (5 microg/kg). We conclude that endothelium-dependent vasodilation in the mouse hindlimb in vivo is mediated by both NO and EDHF. EDHF can fully compensate for the loss of NO, but this cannot be explained by tonic inhibition of EDHF by NO. Control of basal vasodilator tone in the mouse hindlimb is dominated by NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号