首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
I E Lehoux  B Mitra 《Biochemistry》1999,38(31):9948-9955
(S)-Mandelate dehydrogenase from Pseudomonas putida, an FMN-dependent alpha-hydroxy acid dehydrogenase, oxidizes (S)-mandelate to benzoylformate. The generally accepted catalytic mechanism for this enzyme involves the formation of a carbanion intermediate. Histidine-274 has been proposed to be the active-site base that abstracts the substrate alpha-proton to generate the carbanion. Histidine-274 was altered to glycine, alanine, and asparagine. All three mutants were completely inactive. The mutants were able to form adducts with sulfite, though with much weaker affinity than the wild-type enzyme. Binding of the inhibitor, (R)-mandelate, was not greatly affected by the mutation, unlike that of the substrate, (S)-mandelate, indicating that H274 plays a role in substrate binding. The activity of H274G and, to a lesser extent, H274A could be partially restored by the addition of exogenous imidazoles. The maximum rescued activity for H274G with imidazole was approximately 0.1% of the wild-type value. Saturation kinetics obtained for rescued activity suggest that formation of a ternary complex of imidazole, enzyme, and substrate is required for catalysis. pH-dependence studies confirm that the free base form of imidazole is the rescue agent. An earlier study of pH profiles of the wild-type enzyme indicated that deprotonation of a residue with a pK(a) of 5.5 in the free enzyme was essential for activity (Lehoux, I. E., and Mitra, B. (1999) Biochemistry 38, 5836-5848). Data obtained in this work confirm that the pK(a) of 5.5 belongs to histidine-274.  相似文献   

2.
Dewanti AR  Xu Y  Mitra B 《Biochemistry》2004,43(7):1883-1890
(S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes (S)-mandelate to benzoylformate. In this work, we show that the ethyl and methyl esters of (S)-mandelic acid are substrates for MDH. Although the binding affinity of the neutral esters is 25-50-fold lower relative to the negatively charged (S)-mandelate, they are oxidized with comparable k(cat)s. Substrate analogues in which the carbonyl group on the C-1 carbon is replaced by other electron-withdrawing groups were not substrates. The requirement of a carbonyl group on the C-1 carbon in a substrate suggests that the negative charge developed during the reaction is stabilized by delocalization to the carbonyl oxygen. Arg277, a residue that is important in both binding and transition state stabilization for the activity with (S)-mandelate, is also critical for transition state stabilization for the esters, but not for their binding affinity. We previously showed that the substrate oxidation half-reaction with (S)-mandelate has two rate-limiting steps of similar activation energies and proceeds through the formation of a charge-transfer complex of an electron-rich donor and oxidized FMN [Dewanti, A. R., and Mitra, B. (2003) Biochemistry 42, 12893-12901]. This charge-transfer intermediate was observed with the neutral esters as well. The observation of this electron-rich intermediate for the oxidation of an uncharged substrate to an uncharged product, as well as the critical role of Arg277 in the reaction with the esters, provides further evidence that the MDH reaction mechanism is not a concerted transfer of a hydride ion from the substrate to the FMN, but involves the transient formation of a carbanion/ene(di)olate intermediate.  相似文献   

3.
The mandelate pathway of Pseudomonas putida ATCC 12633 comprises five enzymes and catalyzes the conversion of R- and S-mandelamide to benzoic acid which subsequently enters the beta-ketoadipate pathway. Although the first four enzymes have been extensively characterized the terminal enzyme, a NAD(P)(+)-dependent benzaldehyde dehydrogenase (BADH), remains largely undescribed. Here we report that BADH is a dimer in solution, and that DTT is necessary both to maintain the activity of BADH and to prevent oligimerization of the enzyme. Site-directed mutagenesis confirms that Cys249 is the catalytic cysteine and identifies Cys140 as the cysteine likely to be involved in inter-monomer disulfide formation. BADH can utilize a range of aromatic substrates and will also operate efficiently with cyclohexanal as well as medium-chain aliphatic aldehydes. The logV and logV/K pH-rate profiles for benzaldehyde with either NAD(+) or NADP(+) as the coenzyme are both bell-shaped. The pK(a) values on the ascending limb range from 6.2 to 7.1 while those on the descending limb range from 9.6 to 9.9. A spectrophotometric approach was used to show that the pK(a) of Cys249 was 8.4, i.e., Cys249 is not responsible for the pK(a)s observed in the pH-rate profiles.  相似文献   

4.
Yeast dihydroorotate dehydrogenase (DHOD) was purified 2800-fold to homogeneity from its natural source. Its sequence is 70% identical to that of the Lactococcus lactis DHOD (family IA) and the two active sites are nearly the same. Incubations of the yeast DHOD with dideuterodihydroorotate (deuterated in the positions eliminated in the dehydrogenation) as the donor and [14C]orotate as the acceptor revealed that the C5 deuteron exchanged with H2O solvent at a rate equal to the 14C exchange rate, whereas the C6 deuteron was infrequently exchanged with H2O solvent, thus indicating that the C6 deuteron of the dihydroorotate is sticky on the flavin cofactor. The pH dependencies of the steady-state parameters (k(cat) and k(cat)/Km) are similar, indicating that k(cat)/Km reports the productive binding of substrate, and the parameters are dependent on the donor-acceptor pair. The lower pKa values for k(cat) and k(cat)/Km observed for substrate dihydroorotate (around 6) in comparison to the values determined for dihydrooxonate (around 8) suggest that the C5 pro S hydrogen atom of dihydroorotate (but not the analogous hydrogen of dihydrooxonate), which is removed in the dehydrogenation, assists in lowering the pKa of the active site base (Cys133). The pH dependencies of the kinetic isotope effects on steady-state parameters observed for the dideuterated dihydroorotate are consistent with the dehydrogenation of substrate being rate limiting at low pH values, with a pKa value approximating that assigned to Cys133. Electron acceptors with dihydroorotate as donor were preferred in the following order: ferricyanide (1), DCPIP (0.54), Qo (0.28), fumarate (0.15), and O2 (0.035). Orotate inhibition profiles versus varied concentrations of dihydroorotate with ferricyanide or O2 as acceptors suggest that both orotate and dihydroorotate have significant affinities for the reduced and oxidized forms of the enzyme.  相似文献   

5.
C Grubmeyer  H Teng 《Biochemistry》1999,38(22):7355-7362
L-Histidinol dehydrogenase catalyzes the biosynthetic oxidation of L-histidinol to L-histidine with sequential reduction of two molecules of NAD. Previous isotope exchange results had suggested that the oxidation of histidinol to the intermediate histidinaldehyde occurred 2-3-fold more rapidly than overall catalysis. In this work, we present kinetic isotope effects (KIE) studies at pH 9.0 and at pH 6.7 with stereospecifically mono- and dideuterated histidinols. The data at pH 9.0 support minimal participation of the first hydride transfer and substantial participation of the second hydride transfer in the overall rate limitation. Stopped-flow experiments with protiated histidinol revealed a small burst of NADH production with stoichiometry of 0.12 per subunit, and 0.25 per subunit with dideuterated histidinol, indicating that the overall first half-reaction was not significantly faster than the second reaction sequence. Results from kcat and kcat/KM titrations with histidinol, NAD, and the alternative substrate imidazolyl propanediol demonstrated an essential base with pKa values between 7.7 and 8.4. In KIE experiments performed at pH 6.7 or with a coenzyme analogue at pH 9. 0, the first hydride transfer became more rate limiting. Kinetic simulations based on rate constants estimated from this work fit well with a mechanism that includes a relatively fast, and thermodynamically unfavorable, hydride transfer from histidinol and a slower, irreversible second hydride transfer from a histidinaldehyde derivative. Thus, although the chemistry of the first hydride transfer is fast, both partial reactions participate in the overall rate limitation.  相似文献   

6.
On the basis of the X-ray crystal structure of scytalone dehydratase complexed with an active center inhibitor [Lundqvist, T., Rice, J., Hodge, C. N., Basarab, G. S., Pierce, J. and Lindqvist, Y. (1994) Structure (London) 2, 937-944], eight active-site residues were mutated to examine their roles in the catalytic mechanism. All but one residue (Lys73, a potential base in an anti elimination mechanism) were found to be important to catalysis or substrate binding. Steady-state kinetic parameters for the mutants support the native roles for the residues (Asn131, Asp31, His85, His110, Ser129, Tyr30, and Tyr50) within a syn elimination mechanism. Relative substrate specificities for the two physiological substrates, scytalone and veremelone, versus a Ser129 mutant help assign the orientation of the substrates within the active site. His85Asn was the most damaging mutation to catalysis consistent with its native roles as a general base and a general acid in a syn elimination. The additive effect of Tyr30Phe and Tyr50Phe mutations in the double mutant is consistent with their roles in protonating the substrate's carbonyl through a water molecule. Studies on a synthetic substrate, which has an anomeric carbon atom which can better stabilize a carbocation than the physiological substrate (vermelone), suggest that His110Asn prefers this substrate over vermelone in order to balance the mutation-imposed weakness in promoting the elimination of hydroxide from substrates. All mutant enzymes bound a potent active-site inhibitor in near 1:1 stoichiometry, thereby supporting their active-site integrity. An X-ray crystal structure of the Tyr50Phe mutant indicated that both active-site waters were retained, likely accounting for its residual catalytic activity. Steady-state kinetic parameters with deuterated scytalone gave kinetic isotope effects of 2.7 on kcat and 4.2 on kcat/Km, suggesting that steps after dehydration partially limit kcat. Pre-steady-state measurements of a single-enzyme turnover with scytalone gave a rate that was 6-fold larger than kcat. kcat/Km with scytalone has a pKa of 7.9 similar to the pKa value for the ionization of the substrate's C6 phenolic hydroxyl, whereas kcat was unaffected by pH, indicating that the anionic form of scytalone does not bind well to enzyme. With an alternate substrate having a pKa above 11, kcat/Km had a pKa of 9.3 likely due to the ionization of Tyr50. The non-enzyme-catalyzed rate of dehydration of scytalone was nearly a billion-fold slower than the enzyme-catalyzed rate at pH 7.0 and 25 degrees C. The non-enzyme-catalyzed rate of dehydration of scytalone had a deuterium kinetic isotope effect of 1.2 at pH 7.0 and 25 degrees C, and scytalone incorporated deuterium from D2O in the C2 position about 70-fold more rapidly than the dehydration rate. Thus, scytalone dehydrates through an E1cb mechanism off the enzyme.  相似文献   

7.
Dewanti AR  Mitra B 《Biochemistry》2003,42(44):12893-12901
(S)-Mandelate dehydrogenase from Pseudomonas putida is a member of a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids to alpha-ketoacids. The reductive half-reaction consists of the steps involved in substrate oxidation and FMN reduction. In this study, we investigated the mechanism of this half-reaction in detail. At low temperatures, a transient intermediate was formed in the course of the FMN reduction reaction. This intermediate is characteristic of a charge-transfer complex of oxidized FMN and an electron-rich donor and is formed prior to full reduction of the flavin. The intermediate was not due to binding of anionic substrates or inhibitors. It was only observed with efficient substrates that have high k(cat) values. At higher temperatures, it was formed within the dead time of the stopped-flow instrument. The rate of formation of the intermediate was 3-4-fold faster than its rate of disappearance; the former had a larger isotope effect. This suggests that the charge-transfer donor is an electron-rich carbanion/enolate intermediate that is generated by the base-catalyzed abstraction of the substrate alpha-proton. This is consistent with the observation that the intermediate was not observed with the R277K and R277G mutants, which have been shown to destabilize the carbanion intermediate (Lehoux, I. E., and Mitra, B. (2000) Biochemistry 39, 10055-10065). Thus, the MDH reaction has two rate-limiting steps of similar activation energies: the formation and breakdown of a distinct intermediate, with the latter step being slightly more rate limiting. We also show that MDH is capable of catalyzing the reverse reaction, the reoxidation of reduced MDH by the product ketoacid, benzoylformate. The transient intermediate was observed during the reverse reaction as well, confirming that it is indeed a true intermediate in the MDH reaction pathway.  相似文献   

8.
The NAD+-dependent formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 4 gram atoms of zinc per mol, corresponding to 2 gram atoms of zinc per subunit monomer. Treatment of the enzyme with o-phenanthroline resulted in removal of 1 gram atom of zinc per subunit and caused a complete inactivation of the enzyme. The activity lost was restored by the addition of zinc ions, by which the zinc content was also reversed to almost the same level as that of the native enzyme. Another zinc atom that was resistant to metal chelator-treatment was liberated from the enzyme only after the irreversible denaturation of the enzyme. These results indicate that the formaldehyde dehydrogenase of P. putida is a zinc metalloenzyme and one of two zinc atoms per subunit participates in the catalytic activity of the enzyme, another zinc being presumably involved in maintaining the native conformation of the enzyme. Treatment of the enzyme with bipyridine also caused a reversible inactivation of the enzyme, but the zinc content remained unchanged. The spectrophotometric analysis indicated that the formation of a enzyme-Zn-bipyridine complex took place. Incubation of the enzyme with p-chloromercuribenzoate also resulted in a complete loss of the activity. These results suggest that an intrinsic zinc and sulfhydryl group together with NAD+ participate in the dehydrogenation reaction of substrate by the enzyme.  相似文献   

9.
Y Xu  B Mitra 《Biochemistry》1999,38(38):12367-12376
(S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a member of the flavin mononucleotide-dependent alpha-hydroxy acid oxidase/dehydrogenase family, is a membrane-associated protein, in contrast to the more well-characterized members of this protein family including glycolate oxidase (GOX) from spinach. In a previous study [Mitra, B., et al. (1993) Biochemistry 32, 12959-12967], the membrane association of MDH was correlated to a 53 amino acid segment in the interior of the primary sequence by construction of a chimeric enzyme, MDH-GOX1, in which the membrane-binding segment in MDH was deleted and replaced with the corresponding 34 amino acid segment from the soluble GOX. Though MDH-GOX1 was soluble, it was an inefficient, nonspecific enzyme that involved a different transition state for the catalyzed reaction from that of the wild-type MDH. In the present study, it is shown that the membrane-binding segment in MDH is somewhat shorter, approximately 39 residues long. Partial or total deletion of this segment disrupts membrane localization of MDH. This segment is not important for substrate oxidation activity. A new chimera, MDH-GOX2, was created by replacing this shorter membrane-binding segment from MDH with the corresponding 20 amino acid segment from GOX. The soluble MDH-GOX2 is very similar to the wild-type membrane-bound enzyme in its spectroscopic properties, substrate specificity, catalytic activity, kinetic mechanism, and lack of reactivity toward oxygen. Therefore, it should prove to be a highly useful model for structural studies of MDH.  相似文献   

10.
Dewanti AR  Xu Y  Mitra B 《Biochemistry》2004,43(33):10692-10700
(S)-Mandelate dehydrogenase from Pseudomonas putida belongs to a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids. Despite a high degree of sequence and structural similarity, this family can be divided into three subgroups based on the different oxidants utilized in the second oxidative half-reaction. Only the oxidases show high reactivity with molecular oxygen. Structural data indicate that the relative position of a peptide loop and the isoalloxazine ring of the FMN is slightly different in the oxidases compared to the dehydrogenases; the last residue on this loop is either an alanine or glycine. We examined the effect of the G81A, G81S, G81V, and G81D mutations in MDH on the overall reaction and especially on the suppression of activity with oxygen. G81A had a higher specificity for small substrates compared to that of wtMDH, though the affinity for (S)-mandelate was relatively unchanged. The rate of the first half-reaction was 20-130-fold slower for G81A and G81S; G81D and G81V had extremely low activity. Redox-potential measurements indicate that the reduction in activity is due to the decrease in electrophilicity of the FMN. The affinity for oxygen increased 10-15-fold for G81A and G81S relative to wtMDH; the rate of oxidation increased 2-fold for G81A. The increased reactivity with molecular oxygen did not correlate with the redox potentials and appears to primarily result from a higher affinity for oxygen. These results suggest that one of the ways the oxidase activity of MDH is controlled is through steric effects because of the relative positions of the FMN and the Gly81 loop.  相似文献   

11.
12.
Xu Y  Dewanti AR  Mitra B 《Biochemistry》2002,41(41):12313-12319
(S)-Mandelate dehydrogenase from Pseudomonas putida belongs to a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids. Active site structures of three homologous enzymes, including MDH, show the presence of two conserved arginine residues in close juxtaposition (Arg165 and Arg277 in MDH). Arg277 has an important catalytic role; it stabilizes both the ground and transition states through its positive charge as well as a hydrogen bond [Lehoux, I. E., and Mitra, B. (2000) Biochemistry 39, 10055-10065]. In this study, we examined the role of Arg165 and the overall importance of the Arg165/Arg277 pair. Single mutants at Arg165 as well as double mutants at Arg165 and Arg277 were characterized. Our results show that Arg165 has a role similar to, but less critical than, that of Arg277. It stabilizes the transition state through its positive charge and the ground state through a charge-independent interaction, most likely, a hydrogen bond. Though the k(cat)s for the charge-conserved mutants, R165K and R277K, were only 3-5-fold lower than those of wild-type MDH (wtMDH), the k(cat) for R165K/R277K was approximately 350-fold lower. Thus, at least one arginine residue is required for the optimal substrate orientation and catalysis. Stopped-flow studies show that the FMN reduction step is completely rate-limiting for both wtMDH and the arginine mutants, with the possible exception of R165E. Substrate isotope effects indicate that the carbon-hydrogen bond-breaking step is only partially rate-limiting for wtMDH but fully rate-limiting for the mutants. pH profiles of R165M conclusively show that the pK(a) of 9.3 in free wtMDH does not belong to Arg165.  相似文献   

13.
Carnitine dehydrogenase (carnitine:NAD+ oxidoreductase, EC 1.1.1.108) from Pseudomonas putida IFP 206 catalyzes the oxidation of L-carnitine to 3-dehydrocarnitine. The enzyme was purified 72-fold to homogeneity as judged by polyacrylamide gel electrophoresis. The molecular mass of this enzyme is 62 kDa and consists of two identical subunits. The isoelectric point was found to be 4.7. the carnitine dehydrogenase is specific for L-carnitine and NAD+. The optimum pH for enzymatic activity in the oxidation reaction was found to be 9.0 and 7.0 in the reduction reaction. The optimal temperature is 30 degrees C. The Km values for substrates were determined.  相似文献   

14.
Lehoux IE  Mitra B 《Biochemistry》2000,39(33):10055-10065
(S)-Mandelate dehydrogenase from Pseudomonas putida is an FMN-dependent alpha-hydroxy acid dehydrogenase. Structural studies of two homologous enzymes, glycolate oxidase and flavocytochrome b(2), indicated that a conserved arginine residue (R277 in MDH) interacts with the product carboxylate group [Lindqvist, Y., Branden, C.-I., Mathews, F. S., and Lederer, F. (1991) J. Biol. Chem. 266, 3198-3207]. The catalytic role of R277 was investigated by site-specific mutagenesis together with chemical rescue experiments. The R277K, R277G, R277H, and R277L proteins were generated and purified in active forms. The k(cat) for the charge-conserved mutation, R277K, was only 4-fold lower than wt-MDH, but its K(m) value was 40-fold lower; in contrast, k(cat)s for R277G, R277H, and R277L were 400-1000-fold lower than for wt-MDH and K(m) values were 5-15-fold lower compared to R277K. The K(d)s for negatively charged competitive inhibitors were relatively unaffected in all four R277 mutants. The k(cat) for R277G could be enhanced by the addition of exogenous guanidines or imidazoles; the maximum rescued k(cat) was approximately 70% of the wt-MDH value. Only reagents that were positively charged and could function as hydrogen bond donors were effective rescue agents. Our results indicate that R277 plays a major role in transition state stabilization through its positive charge-consistent with a mechanism involving a carbanion intermediate. The positive charge has a relatively small contribution toward substrate binding. R277 also forms a specific hydrogen bond with both the substrate and the transition state; this interaction contributes significantly to the low K(m) for (S)-mandelate.  相似文献   

15.
Incubation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with the antibiotic pentalenolactone (1) resulted in time-dependent, irreversible inhibition of GAPDH. The kinetics of inactivation were biphasic, exhibiting an initial rapid phase and a slower second phase. Pentalenolactone methyl ester (2) also irreversibly inactivated GADPH, albeit at a slower rate and with a higher KI. The substrate glyceraldehyde-3-phosphate (G-3-P) afforded protection against inactivation by 1, whereas the presence of NAD+ in the incubation mixture stimulated the inactivation by increasing the apparent affinity of the enzyme for the inhibitor. In steady-state kinetic experiments, 1 acted as a competitive inhibitor of GAPDH with respect to G-3-P but exhibited uncompetitive inhibition with respect to NAD+. Inactivation of NAD+-free apo-GAPDH by 1 showed simple pseudo-first-order kinetics. By titrating the free thiol residues of partially inactivated GAPDH, it was found that both pentalenolactone and pentalenolactone methyl ester react with all four Cys-SH residues of the tetrameric GAPDH.  相似文献   

16.
17.
V Hines  M Johnston 《Biochemistry》1989,28(3):1227-1234
Dihydroorotates deuteriated at both C5 and C6 have been prepared and used to probe the mechanism of the bovine liver mitochondrial dihydroorotate dehydrogenase. Primary deuterium isotope effects on kcat are observed with both (6RS)-[5(S)-2H]- and (6RS)-[6-2H] dihydroorotates (3 and 6, respectively); these effects are maximal at low pH. At pH 6.6, DV = 3.4 for the C5-deuteriated dihydroorotate (3), and DV = 2.3 for the C6-deuteriated compound (6). The isotope effects approach unity at pH 8.8. Analysis of the pH dependence of the isotope effects on kcat reveals a shift in the rate-determining step of the enzyme mechanism as a function of pH. Dihydroorotate oxidation appears to require general base catalysis (pKB = 8.26); this step is completely rate-determining at low pH and isotopically sensitive. Reduction of the cosubstrate, coenzyme Q6, is rate-limiting at high pH and is isotopically insensitive; this step appears to require general acid catalysis (pKA = 8.42). The results of double isotope substitution studies and analysis for substrate isotope exchange with solvent point toward a concerted mechanism for oxidation of dihydroorotate. This finding serves to distinguish further the mammalian dehydrogenase from its parasitic cognate, which catalyzes a stepwise oxidation reaction [Pascal, R., & Walsh, C.T. (1984) Biochemistry 23, 2745].  相似文献   

18.
B N Leichus  J S Blanchard 《Biochemistry》1992,31(12):3065-3072
Lipoamide dehydrogenase is a flavoprotein which catalyzes the reversible oxidation of dihydrolipoamide, Lip(SH)2, by NAD+. The ping-pong kinetic mechanism involves stable oxidized and two-electron-reduced forms. We have investigated the rate-limiting nature of proton transfer steps in both the forward and reverse reactions catalyzed by the pig heart enzyme by using a combination of alternate substrates and solvent kinetic isotope effect studies. With NAD+ as the variable substrate, and at a fixed, saturating concentration of either Lip(SH)2 or DTT, inverse solvent kinetic isotope effects of 0.68 +/- 0.05 and 0.71 +/- 0.05, respectively, were observed on V/K. Solvent kinetic isotope effects on V of 0.91 +/- 0.07 and 0.69 +/- 0.02 were determined when Lip(SH)2 or DTT, respectively, was used as reductant. When Lip(SH)2 or DTT was used as the variable substrate, at a fixed concentration of NAD+, solvent kinetic isotope effects of 0.74 +/- 0.06 and 0.51 +/- 0.04, respectively, were observed on V/K for these substrates. Plots of the kinetic parameters versus mole fraction D2O (proton inventories) were linear in all cases. Solvent kinetic isotope effect measurements performed in the reverse direction using NADH as the variable substrate showed equivalent, normal solvent kinetic isotope effects on V/KNADH when oxidized lipoamide, lipoic acid, or DTT were present at fixed, saturating concentrations. Solvent kinetic isotope effects on V were equal to 1.5-2.1. When solvent kinetic isotope effect measurements were performed using the disulfide substrates lipoamide, lipoic acid, or DTT as the variable substrates, normal kinetic isotope effects on V/K of 1.3-1.7 were observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Formaldehyde dehydrogenase was isolated and purified in an overall yield of 12% from cell-free extract of Pseudomonas putida C-83 by chromatographies on columns of DEAE-cellulose, DEAE-Sephadex A-50, and hydroxyapatite. The purified enzyme was homogeneous as judged by disc gel electrophoresis and was most active at pH 7.8 using formaldehyde as a substrate. The enzyme was also active toward acetaldehyde, propionaldehyde, glyoxal, and pyruvaldehyde, though the reaction rates were low. The enzyme was NAD+-linked but did not require the external addition of glutathione, in contrast with the usual formaldehyde dehydrogenase from liver mitochondria, baker's yeast, and some bacteria. The enzyme was markedly inhibited by Ni2+, Pd2+, Hg2+, p-chloromercuribenzoate, and phenylmethanesulfonyl fluoride. The molecular weight of the enzyme was estimated to be 150,000 by the gel filtration method, and analysis by SDS-polyacrylamide gel electrophoresis indicated that the enzyme was composed of two subunit monomers. Kinetic analysis gave Km values of 67 microM for formaldehyde and 56 microM for NAD+, and suggested that the reaction proceeds by a "Ping-pong" mechanism. The enzyme catalyzed the oxidation of formaldehyde accompanied by the stoichiometric reduction of NAD+, but no reverse reaction was observed.  相似文献   

20.
Cells of Pseudomonas putida, after growth with naphthalene as sole source of carbon and energy, contain an enzyme that oxidizes (+)-cis-1(r),2(s)-dihydroxy-1,2-dihydronaphthalene to 1,2-dihydroxynaphthalene. The purified enzyme has a molecular weight of 102,000 and apparently consists of four 25,500 molecular weight subunits. The enzyme is specific for nicotinamide adenine dinucleotide as an electron acceptor and also oxidizes several other cis-dihydrodiols. However, no enzymatic activity was observed with trans-1,2-dihydronaphthalene, or the K-region cis-dihydrodiols of carcinogenic polycyclic hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号