首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Peptide segments derived from consensus sequences of the inhibitory site of cystatins, the natural inhibitors of cysteine proteinases, were used to develop new substrates and inhibitors of papain and rat liver cathepsins B, H, and L. Papain hydrolyzedAbz-QVVAGA-EDDnp andAbz-LVGGA-EDDnp at about the same rate, with specificity constants in the 107M–1 sec–1 range; cathepsin L also hydrolyzes both substrates with specificity constants in the 105 M–1 sec–1 range due to lowerk cat values, with theK m 's being identical to those with papain. OnlyAbz-LVGGA-EDDnp was rapidly hydrolyzed by cathepsin B, and to a lesser extent by cathepsin H. Peptide substrates that alternate these two building blocks (LVGGQVVAGAPWK and QVVAGALVGGAPWK) discriminate the activities of cathepsins B and L and papain. Cathepsin L was highly selective for cleavage at the G-G bond of the LVGG fragment in both peptides. Papain and cathepsin B cleaved either the LVGG fragment or the QVVAG fragment, depending on their position within the peptide. While papain was more specific for the segment located C-terminally, cathepsin B was specific for that in N-terminal position. Peptidyl diazomethylketone inhibitors based on these two sequences also reacted differently with papain and cathepsins. GlcA-QVVA-CHN2 was a potent inhibitor of papain and reacted with papain 60 times more rapidly (k +0= 1,100,000 M–1 sec–1) than with cathepsin L, and 220 times more rapidly than with cathepsin B. Cathepsins B and L were preferentially inhibited by Z-RLVG-CHN2. Thus cystatin-derived peptides provide a valuable framework for designing sensitive, selective substrates and inhibitors of cysteine proteinases.  相似文献   

2.
Abstract

Eight different di- and tripeptidyl aldehyde derivatives, each having at its C-terminus an aldehyde analog of L-norleucine, L-methionine, or L-phenylalanine with a preceding L-leucine residue, were synthesized and tested for their inhibitory effects on several serine and cysteine endopeptidases. These compounds showed almost no inhibition of trypsin, and only weak inhibition of α-chymotrypsin and cathepsin H, while they exhibited marked inhibition of cathepsin B < calpain II ≈ calpain I < cathepsin L, being stronger in this order. The mode of inhibition of these cysteine proteinases was competitive for the peptide substrate used and inhibitor constants (Ki) were calculated from the Dixon plot. The best inhibitors found were: 4-phenyl-butyryl-Leu-Met-H for calpain I (Ki, 36 nM) and calpain II (Ki, 50 nM); acetyl-Leu-Leu-nLeu-H for cathepsin L (Ki, 0.5nM); acetyl-Leu-Leu-Met-H for cathepsin B (Ki, 100nM).  相似文献   

3.
Cathespin L (EC 3.4.22.15) and cathepsin H (EC 3.4.22.16) have been purified from brain cortex to apparent homogeneity by a simultaneous procedure involving acid extraction of homogenate at pH 4.2, ammonium sulfate fractionation (30–80%), chromatography on pepstatin-Sepharose, CM-Sephadex C-50, DEAE-Sephadex A-50, phenyl- and concanavalin A-Sepharose and isoelectric focusing. Cathepsin L and cathepsin H were assayed in the presence of dithiothreitol and Na2EDTA (2 mM each) with Z-Phe-Arg-NHMec (pH 5.5) and Lys-NNa (pH 6.5) respectively. Cathepsin L consists of 2 polypeptide chains with Mr 25 000 and 5 000, Mr of cathepsin H is 28 000. Cathepsin L exists in brain tissue in two multiple forms with pI values 5.7 and 5.9, pI of cathepsin H is 6.8. Substrate specificity of these thiol proteinases was tested with proteins (pyridoxyl-hemoglobin, azocasein) and low Mr naphthylamide and methylcoumarylamide substrates: Lys-NNa, Arg-NNa, Dz-Arg-NNa, Z-Arg-Arg-NNaOMe, Z-Phe-Arg-NHMec, Z-Phe, Val-Arg-NHMec, Z-Gly-Gly-Arg-NHMec. Z-Phe-Arg-NHMec is the best substrate for cathepsin L (KM=5 M, Kcat=21 s–1), Arg-NNa—for cathepsin H (KM=0.1 mM, Kcat=1.93 s–1), being endoaminopeptidase cathepsin H also hydrolyses Bz-Arg-NNa (KM=0.7 mM, Kcat=1.3 s–1). Both proteinases are inhibited by traditional inhibitors of cysteine proteinases and E-64, but leupeptin turned to be more effective inhibitor of cathepsin L (Ki=2.4 nM) than of cathepsin H (Ki=9.2 M), the latter enzyme being sensitive to puromycin and benzethonium chloride as well. Z-Phe-Phe-CHN2 and Z-Phe-Ala-CHN2 are potent irreversible inhibitors of brain cathepsin L with K2nd 150 000 and 137 000 M–1 s–1 respectively. Properties of the enzymes from human and bovine brain are similar.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

4.
Two kinds of cysteine proteinase inhibitor (Mr 145 000 and Mr 15 500) were purified from bovine serum. These purified inhibitors showed a single band on SDS-polyacrylamide gel electrophoresis, respectively. The isoelectric point of the high molecular weight inhibitor was found to be 4.4 and that of the low molecular weight inhibitor was 8.6. The high molecular weight inhibitor inhibited papain and cathepsin H, but had little activity against cathepsin B. While the low molecular weight inhibitor was a strong inhibitor of papain and cathepsin H and showed a weak inhibition of cathepsin B. These two inhibitors showed different immunological reactivities.  相似文献   

5.
A low-Mr tight binding proteinase inhibitor was purified from bovine muscle by alkaline denaturation of cysteine proteinases, gel filtration on Sephadex G-75 and affinity chromatography on carboxymethyl-papain-Sepharose. Chromatofocusing separated three isoforms which are similar in their Mr of about 14 000, their stability with heating at 80 degrees C and their inhibitory activity towards cathepsin H, cathepsin B and papain. The equilibrium constants (Ki) were determined for these three cysteine proteinases but for cathepsin H, association (kass) and dissociation (kdiss) rate constants were also evaluated. Ki values of 56 nM and 8.4 nM were found for cathepsin B and cathepsin H, respectively. For papain, Ki was in the range of 0.1-1 nM. The kinetic features of enzyme-inhibitor binding suggest a possible role for this low-Mr protein inhibitor in controlling 'in vivo' cathepsin H proteolytic activity. With regard to cathepsin B, such a physiological role was less evident.  相似文献   

6.
Several species of cysteine proteinase inhibitors have been demonstrated in the greyhound intervertebral disk which were resolved four species (Mr 15 8000, 16 600, 17 200 and 17 800) by gelatin-SDS-polyacrylamide gel electrophoresis. Reductive alkylation did not affect their inhibitory capability not their electrophoretic migration on gelatin-SDS-polyacrylamide gel electrophoresis. The cysteine proteinase inhibitors from the nucleus pulposus and annulus fibrosus were identical as assessed by the aforementioned criteria, although the level in the nucleus was found to be higher than that in the annulus. Ion-exchange chromatography demonstrated distinct acidic and basic forms of the disc cysteine proteinase inhibitor. The latter species was the most abundant and its Mr was determined to be 16 900 by gelatin-SDS-polyacrylamide gel electrophoresis. Both forms were shown to be strongly inhibitory against the cysteine proteinases. papain and ficin, but were less strongly inhibitory against cathepsin B (EC 3.4.22.1). Presumably these disc cysteine proteinase finhibitors play a regulatory role in the metabolism of proteoglycans and collagen by endogenous cysteine proteinases.  相似文献   

7.
Cystatin B is unique among cysteine proteinase inhibitors of the cystatin superfamily in having a free Cys in the N-terminal segment of the proteinase binding region. The importance of this residue for inhibition of target proteinases was assessed by studies of the affinity and kinetics of interaction of human and bovine wild-type cystatin B and the Cys 3-to-Ser mutants of the inhibitors with papain and cathepsins L, H, and B. The wild-type forms from the two species had about the same affinity for each proteinase, binding tightly to papain and cathepsin L and more weakly to cathepsins H and B. In general, these affinities were appreciably higher than those reported earlier, perhaps because of irreversible oxidation of Cys 3 in previous work. The Cys-to-Ser mutation resulted in weaker binding of cystatin B to all four proteinases examined, the effect varying with both the proteinase and the species variant of the inhibitor. The affinities of the human inhibitor for papain and cathepsin H were decreased by threefold to fourfold and that for cathepsin B by approximately 20-fold, whereas the reductions in the affinities of the bovine inhibitor for papain and cathepsins H and B were approximately 14-fold, approximately 10-fold and approximately 300-fold, respectively. The decreases in affinity for cathepsin L could not be properly quantified but were greater than threefold. Increased dissociation rate constants were responsible for the weaker binding of both mutants to papain. By contrast, the reduced affinities for cathepsins H and B were due to decreased association rate constants. Cys 3 of both human and bovine cystatin B is thus of appreciable importance for inhibition of cysteine proteinases, in particular cathepsin B.  相似文献   

8.
Two potential azapeptide inhibitors of cathepsin K were designed and synthesized. To analyze in detail interactions between these azainhibitors and the investigated cysteine protease, molecular dynamics simulations were performed. For the obtained compounds the equilibrium constants for dissociation of inhibitor – enzyme complex, Ki, were determined. The examined azapeptides proved to be not as potent inhibitors of cathepsin K as they were expected to be according to the results of simulations. However, these calculations provide valuable information about probable structures of this type of peptidomimetics in the catalytic pocket of cathepsin K, which could be useful in designing of more selective inhibitors of this cysteine protease.  相似文献   

9.
A procedure for the simultaneous isolation of four cysteine proteinases, cathepsins B, H, L and C, from human kidney is described. The method includes concentration of the acidified homogenate by ammonium sulphate precipitation. The resuspended and dialysed precipitate was chromatographed on DEAE-cellulose DE-32, to allow separation of cathepsins H and C from cathepsins B and L. The main isoform of cathepsin H was separated from cathepsin C by cation-exchange chromatography on CM-Sephadex C-50. These two enzymes were further purified by covalent chromatography on thiopropyl Sepharose and gel permeation on Sephacryl S-200. The last step allowed separation of cathepsin C and the minor isoform of cathepsin H. Purification of the other two enzymes, cathepsins B and L, was carried out on thiol Sepharose, followed by chromatography on CM-Sepharose C-50. In this step, pure cathepsin L was obtained, while two isoforms of cathepsin B had to be finally purified on Sephacryl S-200 columns. The purity of each enzyme was analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis, isoelectric focusing on polyacrylamide gels and N-terminal sequencing. The activities of the purified cathepsins B, H and L were determined in terms of kcat/KM for three substrates, Z-Phe-Arg-MCA, Z-Arg-Arg-MCA and Arg-MCA. The method produced 25 mg of cathepsin B, 6.5 mg of cathepsin H, 1.5 mg of cathepsin L and 3.8 mg of cathepsin C from 3.5 kg of human kidney.  相似文献   

10.
The importance of individual residues in the N-terminal region of cystatin B for proteinase inhibition was elucidated by measurements of the affinity and kinetics of binding of N-terminally truncated, recombinant variants of the bovine inhibitor to cysteine proteinases. Removal of Met-1 caused an 8- to 10-fold lower affinity for papain and cathepsin B, decreased the affinity also for cathepsin L but only minimally affected cathepsin H affinity. Additional truncation of Met-2 further weakened the binding to papain and cathepsin B by 40-70-fold, whereas the affinity for cathepsins L and H was essentially unaffected. Removal of Cys-3 had the most drastic effects on the interactions, resulting in a further affinity decrease of approximately 1500-fold for papain, approximately 700-fold for cathepsin L and approximately 15-fold for cathepsin H; the binding to cathepsin B could not be assessed. The binding kinetics could only be evaluated for papain and cathepsin H and showed that the reduced affinities for these enzymes were predominantly due to increased dissociation rate constants. These results demonstrate that the N-terminal region of cystatin B contributes appreciably to proteinase inhibition, in contrast to previous proposals. It is responsible for 12-40% of the total binding energy of the inhibitor to the proteinases investigated, being of least importance for cathepsin H binding. Cys-3 is the most important residue of the N-terminal region for inhibition of papain, cathepsin L and cathepsin H, the role of the other residues of this region varying with the target proteinase.  相似文献   

11.
M. Pagano  R. Engler 《FEBS letters》1984,166(1):62-66
HMrα2CPI was found to be an inhibitor of human liver cathepsin H by the measurement of the dissociation constant (Ki), the association rate constant (k1) and the dissociation rate constant (k?1) between the enzyme and the inhibitor. These data suggest that this protein-proteinase inhibitor can play a physiological role in the regulation of free cathepsin H.  相似文献   

12.
Summary As part of a genetic study of the mechanisms for cation transport in cultured mammalian cells, two mouse fibroblastic cell lines have been compared with respect to unidirectional42K+ influx. The cell lines areLM(TK ) andLTK-5, a mutant selected fromLM(TK ) by the ability to grow in medium containing 0.2mm K+. In both cell lines, the overall influx can be resolved into three components: (i) a ouabain- and vanadate-sensitive component ( i MK f), presumably the Na/K pump, which is a saturable function of extracellular K+ with aK 1/2 of 1.3mm; (ii) a furosemide-sensitive component ( i Mk fx), also a saturable function of extracellular K+, with aK 1/2 of 6mm; and (iii) a diffusional component ( i Mk d); which is a linear function of extracellular K+.By several independent criteria, i Mk o and i Mk f appear to be distinct transport processes. First, as indicated above, they can be separated with the use of inhibitors. In addition, they can be separated genetically, since theLTK-5 mutant shows a threefold elevation in i Mk f with no change in i Mk o. And finally, extracellular Na+ has no effect on i Mk o, but stimulates i Mk f, a result consistent with the notion that i Mk f influx occurs by Na–K cotransport.Further experiments were directed towards understanding the nature of theLTK-5 mutation and the physiological role of i Mk f. LTK-5 differs from the parental cell line, not only in having an increased i Mk f, but also in having a large cell volume, a slow maximal growth rate, and an ability to grow at 0.2mm K+. The most straightforward interpretation — that the increased i Mk f is itself responsible—is unlikely since the addition of furosemide to the growth medium had no effect upon the growth rate or cell volume of the mutant at either normal or low extracellular K+ concentrations. It did, however, render the parent capable of growth at 0.2mm K+. Possible interpretations are discussed.  相似文献   

13.
Cytotoxic T-lymphocyte antigen-2 (CTLA-2) is a novel cysteine proteinase inhibitor. The protein sequence is homologous to the proregion of mouse cathepsin L. Here, we report the expression, purification, and characterization of recombinant CTLA-2 (CTLA-2alpha). CTLA-2alpha was cloned into the pET16b vector and the plasmid was transformed into Escherichia coli strain BL21 (DE3) pLysS. The recombinant CTLA-2alpha was highly expressed and purified by His-Bind affinity chromatography, Factor Xa digestion, and hydrophobic chromatography. Throughout these procedures, 3mg recombinant CTLA-2alpha was obtained from 450 ml of bacterial culture medium. The purified protein exhibited inhibitory activities towards certain cysteine proteinases and was properly refolded, as indicated by circular dichroism spectroscopy. Recombinant CTLA-2alpha fully inhibited Bombyx cysteine proteinase (BCP) (overall Kd (Ki*) = 0.23 nM) and and cathepsin L (overall Kd (Ki*) = 0.38 nM). Inhibition of cathepsin H ( Ki = 86 nM) and papain ( Ki = 560 nM) was much weaker, while inhibition of cathepsin B was negligible ( Ki > 1 microM). Our results indicate that mouse CTLA-2alpha is a selective inhibitor of the cathepsin L-like cysteine proteinases.  相似文献   

14.
A library of cathepsin S inhibitors of the dipeptide nitrile chemotype, bearing a bioisosteric sulfonamide moiety, was synthesized. Kinetic investigations were performed at four human cysteine proteases, i.e. cathepsins S, B, K and L. Compound 12 with a terminal 3-biphenyl sulfonamide substituent was the most potent (Ki = 4.02 nM; selectivity ratio cathepsin S/K = 5.8; S/L = 67) and 24 with a 4′-fluoro-4-biphenyl sulfonamide substituent the most selective cathepsin S inhibitor (Ki = 35.5 nM; selectivity ratio cathepsin S/K = 57; S/L = 31). In silico design and biochemical evaluation emphasized the impact of the sulfonamide linkage on selectivity and a possible switch of P2 and P3 substituents with respect to the occupation of the corresponding binding sites of cathepsin S.  相似文献   

15.
The potentiating effects of cyanide on the inhibition of rat liver mitochondrial monoamine oxidase-A & B and of ox liver mitochondrial MAO-B by pheniprazine [(1-methyl-2-phenylethyl)hydrazine] has been studied. Pheniprazine was shown to behave as a mechanism-based MAO inhibitor. For rat liver MAO-B, the initial non-covalent step was characterized by dissociation constant (K i) of 2450 nM and the first-order rate constant (k +2) for the covalent adduct formation was 0.16 min−1. As a reversible inhibitor it was selective towards rat liver MAO-A (K i = 420 nM) but the rate of irreversible inhibition of that enzyme was considerably slower (k +2 = 0.06 min−1). MAO-B from ox liver more closely resembled MAO-A from the rat in sensitivity to reversible inhibition by pheniprazine (K i = 450 nm) but it was closer to rat liver MAO-B in rate of irreversible inhibition (k +2 = 0.29 min−1). The K i values were significantly decreased in the presence of KCN but there was little effect on the k +2 values. However, sensitivities of the different enzymes to KCN varied widely and considerably higher concentrations of KCN were required for this effect to be apparent with the rat liver mitochondrial MAO-A than with MAO-B from rat and ox liver. The kinetic behaviour of cyanide activation was consistent with partial (non-essential) competitive activation in all cases. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

16.
We report here the molecular characterization and possible function of a cysteine protease (termed HlCPL-A) identified in the midgut of the hard tick Haemaphysalis longicornis. HlCPL-A is a 333 amino acid protein belonging to the papain family of the cysteine protease. A construct encoding proHlCPL-A was expressed in Escherichia coli and purified as both procathepsin L and active processed cathepsin L forms. The HlCPL-A gene expression was up-regulated by blood-feeding process. HlCPL-A exhibited substrate specificity against synthetic peptidyl substrates (Z-Phe-Arg-MCA and Z-Arg-Arg-MCA; kcat / Km = 0.19 and 0.0023 M− 1 S− 1, respectively). The proteolytic activity of HlCPL-A was inhibited by leupeptin, antipain and E-64 but was unaffected by pepstatin. HlCPL-A was capable of degrading bovine hemoglobin at pH 3.2 to 5.6. These results suggest that HlCPL-A may play important roles in the digestion of host hemoglobin in ticks.  相似文献   

17.
The interactions between egg-white cystatin and the cysteine proteinases papain, human cathepsin B and bovine dipeptidyl peptidase I were studied. Cystatin was shown to be a competitive reversible inhibitor of cathepsin B (Ki 1.7 nM, k-1 about 2.3 X 10(-3) s-1). The inhibition of dipeptidyl peptidase I was shown to be reversible (Ki(app.) 0.22 nM, k-1 about 2.2 X 10(-3) s-1). Cystatin bound papain too tightly for Ki to be determined, but an upper limit of 5 pM was estimated. The association was a second-order process, with k+1 1.0 X 10(7) M-1 X s-1. Papain was shown to form equimolar complexes with cystatin. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of complexes formed between papain or cathepsin B and an excess of cystatin showed no peptide bond cleavage after incubation for 72 h. The reaction of the active-site thiol group of papain with 5,5'-dithiobis-(2-nitrobenzoic acid) at pH 8 and 2,2'-dithiobispyridine at pH 4 was blocked by complex-formation. Dipeptidyl peptidase I and papain were found to compete for binding to cystatin, contrary to a previous report. The two major isoelectric forms of cystatin were found to have similar specific inhibitory activities for papain, and similar affinities for papain, cathepsin B and dipeptidyl peptidase I. This, together with specific oxidation of the N-terminal serine residue with periodate, showed the N-terminal amino group of cystatin 1 to be unimportant for inhibition. General citraconylation of amino groups resulted in a large decrease in the affinity of cystatin for dipeptidyl peptidase I. It is concluded that the interaction of cystatin with cysteine proteinases has many characteristics similar to those of an inhibitor such as aprotinin with serine proteinases.  相似文献   

18.
A cysteine proteinase inhibitor with acidic isoelectric point (pI = 4.7-5.0) was found in human seminal plasma. Its apparent molecular mass is 16 kDa. It inhibits cysteine proteinases like ficin, cathepsin H, cathepsin B and papain. The inhibitory activity of seminal plasma against ficin is almost the same as that of human serum.  相似文献   

19.
The type 1 domain of thyroglobulin is a protein module (Thyr-1) that occurs in a variety of secreted and membrane proteins. Several examples of Thyr-1 modules have been previously identified as inhibitors of the papain family of cysteine proteinases. Saxiphilin is a neurotoxin-binding protein from bullfrog and a homolog of transferrin with a pair of such Thyr-1 modules located in the N-lobe. Saxiphilin is now characterized as a potent inhibitor of three cysteine proteinases as follows: papain, human cathepsin B, and cathepsin L. The stoichiometry of enzyme inhibition reveals that both Thyr-1 domains of saxiphilin inhibit papain (apparent K(i) = 1. 72 nm), but only one of these domains inhibits cathepsin B (K(i) = 1. 67 nm) and cathepsin L (K(i) = 0.02 nm). Physical association of saxiphilin and papain blocked from turnover at the active-site cysteine residue can be detected by cross-linking with glutaraldehyde. The rate of association of saxiphilin and cathepsin B is strongly pH-dependent with an optimum at pH 5.2, reflecting control by at least two H(+)-titratable groups. These results further demonstrate that various Thyr-1 domains are selective inhibitors of cysteine proteinases with utility in the study of protein interactions and degradation.  相似文献   

20.
Human cystatin, a new protein inhibitor of cysteine proteinases   总被引:8,自引:0,他引:8  
A new low-molecular weight protein inhibitor of cysteine proteinases, human cystatin, was isolated from sera of patients with autoimmune diseases. It inhibits papain, human cathepsin H and cathepsin B. According to its partially determined amino-acid sequence, human cystatin is highly homologous to egg white cystatin, but only distantly related to stefin, the cytosolic protein inhibitor of cysteine proteinases isolated from human polymorphonuclear granulocytes. Very probably human cystatin is identical with human gamma-trace, a microprotein of known sequence but hitherto unknown function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号